N}.iIW CONCEPTS IN THE ARCHITECTURE OF SOLIDS*
S S. RAMASESHAN © 7 . * . " )
; Raman Research I nsutute, Bangalore 560 080 I ndm

' Thjs}uayibe i]IuStrétcd sxmply in two dimensions.
A floor can be paved with identically shaped tiles
: 'whlch are parallelograms, rhombuses, rectangles,
squares, tnangles or hexagons but not with
eqmangular pentagonal tiles (figure 1). Because
of this and other similar Testrictions some of the
most elega.nt solid shapes aré excluded from the
ambit of crystallography.

Ihe anclent Greeks, who were great aesthetes
and also geometers, discovered five perfect solids,
“the so-called Platonic solids. They are the tetra-
dron,'__the tc;lbe the oc’rahedron the dodeca-

" CRYSTALS AND TRANSLATIONAL
SYMMETRY -

I wisH 1o talk to you in the next few minutes
about some recent exciting developments ln
the field of the architecture of solids.

Some of ‘the most beauteous forms in which
Nature expresscs herself are crystals. One has
only to walk through the Raman Coilection to
become acutely aware of this. These exquisite
forms arise because of the apparent propensity of
molecules or jons to arrange themselves in three-
dimensional arrays or lattices.

It is this periodicity or translational symmetry
which is the basis of x-ray crystallography. The
lattice periodicity acts like an amplifier of the
intensity “of x-rays scattered in particular direc-
tions by the atoms and sharpens the diffraction
maxima. The geometry of the lattice defines the
positions of these spots while the molecular or
ionic structure affects the relative intensity. A
material which does not have translational sym-
metry cannot be a crystal; such substances are
hence treated as liquids or glasses and e%‘pected to
produce a diffraction pattern of diffuse rings. The
determination of the structure from diffuse pat-
terns produced by solids lacking translational
symmetry involves a great deal of speculation. It
is only because of the existence of translational
symmetry in many solids that x-ray crystallo
graphy has made immense contributions to th
understanding of the structure of matter. This
has resulted in many advances in the fields of
inorganic chemistry, mineralogy, organic chem-_
istry and even to the understaudlng of the very
processes of life. : :

Translational symmetry imposes many severe
Symmetry restrictions. For example, a five-foid.
axis of symmetry is forbidden in crystallography.

THEA PENROSE TILING

This was the state of aﬁ'alrs till Roger Penrose
Oxford ohe of our great living geometers,
who. showed that ‘our universe must have a

* From the Presidential address delivered on 6th F ebnmry '
1585 at the Golden Jubiies meetmg of the Indian Academy cf
Sciences.
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- on the scene, Mathematical recreations have been

his favourite hobby. Along with his father, he was

the originator of the idea of the demon stairs

which goes round and round without going _.
higher and higher and which was made famous

by the lithograph “Ascending and Descendmg”
by the renowned Dutch artist Escher.

One of the basic questions Penrose® * asked
“himself was ‘Can a floor be paved with a set of
tiles having two or more different shapes that tile
only non-periodically'. He discovered a set of two

tiles that force non-periodicity. To understand

- this, we go back again to the Greeks who

- discovered the golden mean or the goldenqse'c- -
- tion. This ratio is said to be the one most pleasing

to the eye, and is the basis of the stark beauty of .

the Parthenon and the other exquisite buildings
- on the Acropohs in Athens. This ratio of 1:(1

+ \/_ )2 derives from the ability of a rectangle to

be subdivided successively into squares and rect- ~Ic
bldden by conventlonal crystallography. If one is
hvmg ina place nled by one of the uncountable
infinity of Penrose ﬁlmgs, one cannot know

angles as shown in figure 3. The two tiles of

Penrose are derived from a thombus of angles
72° and 108°, dividing the long diagonal in the

golden ratio (1:®)and joining the obtuse corners
{figure 4). Two tiles result, one “kite” shaped and
the other “dart” shaped. The rhombus, of course,
tiles periodically and so oneis not allowed to join
the pieces in this manner. Forbidden ways of

joining sides of equal length can be enforced in
many ways, the simplest being to labe! the

of Penrose tihggs is “uncountablc
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T f5)/2 = 161803398, .. .

Figure 4, Two basic tiles of Penrose.

- corners H and JT"‘(-Héds and Tails) and to follow
-the rule that in fitting edges only corners having
Athe same letter ‘may meet. Using these simple -

: pnnc1ples one can tﬂe ax_ly ﬂoor and the pattern
ily will

ed very beautlful. Figure 5 shows such dif- .
..-v-ferent patterns. Tte can be proved that the number
There are

. plored a cu'cu]ar reglon of diameter d and we call
- it a town where we live. If we ask ourselves how
" far are we from a regibn that exactly matches the
- streets of our hometown™, the answer is a remark-
" able theorem of Conway which states® “never
. greater than 2d. If you walk in the right direction
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you need not walk more than 2d to find an exact ::there can be a Pearose non-periodic tiling in
copy of your home town, with the same street . three dimensions. The person who answered this
pattern™! ' . .. first was again A, L. Mackay of Birkbeck College,
I believe that Penrose was reluctant to disclose . London.  He generalised the two-dimensional

his extraordinary findings because he wanted to " Penrose tiling to three dimensions. using two
apply for patents (I would like to verify this)but  ‘thombohedra, one acute and the other obtusc
hie did permit a popular exposition of his scheme using simple recursion relationships (figure 7).
to be written up. When Martin Gardner’s article® . .. These three-dimensional tilings project in two
in Scientific American appeared, I asked myselfas . dimensions to the Penrose tiling described earlier
to what the diffraction pattern of one of these ~ “Which in turn projects into one dimension as non-
non-periodic Penrose tilings would be. It is not  periodic lattice made up of two characteristic
difficult to visualise a possible atomic structure ngths which are related by the golden ratio®.
corresponding to a Penrose tiling and to calculate S
the diffraction pattern. One gets the most surpris-
ing result that the two-dimensional non-periodic
Penrose structure shows sharp diffraction spots.
These are arranged broadly on circular regions
giving an appearance of a “diffuse” x-ray powder
pattern composed of a large number of discrete nental on?: il ,

sharp spots. The optical transform of one of the ‘Crystals “of “gold having icosahedral sym- .
Penrose-tiling structures (after Mackay* who ‘metry®S which give sharp electron diffraction
made so many pioneering contributions to this = “$pots have been observed under the electron
ficld) is shown in figure 6. We shall not discuss - microscope. These have been explained as due to
here why a non-periodic structure gives sharp  ‘twinning, impurity twinning or distortion. One -
diffraction spots instead of a diffuse pattern.’  * has to examine carefully (in view of what follows)

- The next logical question is to ask whether “whether these éxplanations were not prompted

EXPERIMENTAL CONFIRMATION




Figure 6. Optical transform of a two-dimensional
Penrose tiling pattern (after Mackay*).
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_Figure 7. A _three-dimensional analogue of the
... Penrose tiling (after Mackay*}. :

-

by a desire to preserve the sacred dogma of ; et e |

.crystallography. .

In the November 12th (1984) issue of Physical
Review Letters there appeared a paper by D.
Shechtman (Israel), I Blech (Israel), D. Gratias
(France)and J. W. Cahn (USA)’, where a metallic
solid (aluminivm alloyed with 149 atomic per
cent manganese prepared by rapid solidification)
. showed very sharp electron diffraction peaks

- Figure 8. on diffraction pattern of suﬁercoo}ed

(figure 8). These diffraction peaks could not be . Al-Mn aﬂoy.shawing'icosahed:;;_l symmetry.

indexed to any of the conventional Bravais
lattices. What tock the world of crystallography
by surprise was that the sharp diffraction patterns ~ _held by

s that “the crystal does not form

displayed all the symmetries of the icosahedron. by the insertion of components in a three-
. The diffraction geometry looks similar to the ~ dimensiopal framework of symmetry elements. It

optical transform of the Penrose tiling. . arisesfroma
The discovery is a vindication of the concept  atoms,

R~

" e oy

m a local interaction between individual
-and _symmetry elements are a con-
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sequence”s. It is obvxous that one has to extend tﬂmgs may suggcst new possibilities of molecular
our concept of crystallinity to mean the degree to “structure in two and three dimensions.

which identical components of a structure areina "When one looks at this new architecture one
similar environment. It has now been shown ‘cannot but be remmded of something G. K.
that by pursuing recursive relationships, it is hestermn sald

possible to produce an inﬁnjte“variety of sl !trur’:- The world looks a httle more regular than
tures which are regular but “non-cry c it is. Its exactitude is obvious, but its
There can be no doubt that a new era in sohd ‘in tude is hidden. Tts wildness lies in
state architecture has been opened up. "walt. There is a sort of treason in the

- SOME IMPLICATIONS

This new type of architecture presents many. .
challenges. The structural scientist has not only .
to determine the structure of the molecular or
ionic conglomeration, but also the Penrose

pattern—a problem more complex than that of =7 “114 201, g
L2 Penr R.,Bull. Inst Math and its App., 1974, 10,

conventional crystallography. Does a glass (or . -
even a liquid) consist of microregions consisting -
of Penrose tilings distributed at random? Are
there other modes of non-periodic tiling which
are different from the omes discovered so far? .- .'Mackay, A L Phys Bull, Nov. 1976, 495
To the solid state physicist this non-periodic "¢ Ino, 8., J. Phys Sac., Jpn, 1966, 21, 346.
architecture presents a new class of solids with 7"
very peculiar band gaps (prdbably having special
properties). To the orgamc chemist the Penrose




