' | CHAPTER 1V
PHOTOELASTIC EFFECT IN CRYSTALS

1. INTRODUCTION

A thorough and exhaustive account of Crystal Photoelasticity up to the
year 1928 is given by Szivessy in his article in Handbuch der Physik (62). Since
then numerous papers have appeared on this subject, partly because of its important
relationship to other phenomena like the optical effects arising from mechanical
oscillations in a crystal and the thermal diffusion of light. In this article an attempt
is made to summarise the present state of knowledge in this subject both from the
theorctical and experimental aspects.

2. PHENOMENOLOGICAL THEORY OF PHOTOELASTICITY

() ELASTO AND PEIZO-OPTIC CONSTANTS:—The index ellipsoid

for any crystal can be represented by the equation
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where ny, n, and ny are the three principal refractive indices for any wavelength A,
This equation is not valid for all wavelengths for crystals exhibiting monoclinic
and triclinic symmetry. For these two cases, however, a transformation is neces-
sary leading to an equation for the index ellipsoid in terms of six parameters. For
the sake of completeness we shall use the equation for the index ellipsoid, in the

general form . A
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as our starting equation, -

In general, a mechanical stress both deforms and rotates the index ellipsoid
with consequent changes in the birefringence and in the direction of the principal
axes. In the development of the phenomenological theory of photoelasticity it is
customary to assume that the Fresnel’s laws hold good in a homogeneously deformed
crystal and that the differences between the optical parameters in the deformed and
the original states are linear functions of the six stress components Xuy Yy, Z2, Yy,
Zy, Xy or of the six strain components &y, Yy, &z, Vzy xs Xy

If we express the optical parameters of the underformed crystal by nyy (4, = 1,
2, 3) and the corresponding quantities in the deformed state by ;y then
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~* or in terms of stress
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. The negative sign in equation (4) arices due to the convention according to
which stress is taken to be positive when it is compressional and negative when
extensional, while the strain components are positive for elongation and negative
for compression. In other words a positive strain corresponds to a negative stress.

The first g'roup of constants p,, are called the Pockels elasto-optic constants
and the second group, ¢;, the Pockels plezo-optxc constants. They are related as
follows. '

by Sqn: K’ prk X} ' ©)

where ¢xj and sxy are the elastic constants and moduli respectively. " The set of
38 constants composed of the py’s and g¢,’s completely define the behaviour of a
crystal when subjected to known strains or stresses. Only in the crystals of lowest
syrometry do all the 36 constants have values differing from zero. The number
decr=ases with increasing symmetry, becoming 20 for monoclinic, 12 for ortho-
rhor:bic and so on. The number of independent constants and the scheme (or the
various crystal classes are entered in Table I. The schemes given in Table I are
those of Pockels which have been revised by Bhagavantam (4). In the first scheme
published by Pockels in 1897 some serious errors existed for the crystal classes
C,, Ss, Can,y Cgs Cen, Gy, Sy, Cyn, T and Th. These important corrections were made
by Bhagavantam and have been confirmed by group theoretical metkods (Bhaga-
vantam 4, 7 ; Jahn 27) and also experimentally (3-13, 37, 38, 51). Here it may be
mentioned that if one were to adopt Raman’s (55) new theory of elasticity the num-
ber of independent photoelastic constants for a triclinic crystal will be 54 instead
.of 36, and this number will again be reduced with asccndmg symmetry of the
crystal. ~

The first three equations in formulae (3) and (4) express changes in the principal
velocities which the crystal experiences on deformation and these can be measured
by the usual methods by making observations with the incident light having its
electric vectors parallel to the three axes of the undeformed crystal. The last three
equations represent a rotation of the principal axes of the ellipsoid on deformation.
This rotation is determined by measuring the change in refractive index under stress
with the incident electric vector perpendicular to any one of the axes and bisecting
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_ the angle between the other two. From the change in length of the corresponding
radius vector of the ellipsoid, the amount of rotation can be calculated. Thus by
measuring the changes in the principal refractive indices and the rotation of the
principal axes for various directions of pressure and observation, one gets a system
of linear equations in ¢;; in terms of measurable quantities, from which ¢;, and hence

can be evaluated. F rom a knowledge of ¢;; and p,; the three prxncxpal refractive
indices and the orientation of the prmapal axes of the deformed crystal can be evalua-
ted as follows :—
(4) THE POSITION OF THE OPTICAL SYMMETRY AXES AND
THE PRINCIPAL REFRACTIVE INDICES OF THE DEFORMED

*CRYSTAL :—Let the direction cosines between the optical symmetry axes of tke
undeformed crystal X°Y°Z° and the axes XYZ, to which X°Y°Z° are transformed
on deformatlon, be given by the adjomlng matrix. :
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Then the six polanntmn parameters ——; of the deformed crystal are given by
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When the direction cosines have been determined as above, the principal refractive
indices can be calculated from
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Denoting the small rotations which the principal polarisation axes experience
with respect to X°, Y°, Z° by ¢y, by, pz we get
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Through the combination of the three individual rotations (Eqn. 12) one obtains
the total rotation which the principal axes of the crystal experience on deformation.
In biaxial crystals fg, by, ¢z are in general, very small and hence it is immaterial in
which order the successive rotations are carried out. But in the case of uniaxial
crystals the rotation about the optic axis (say ¢z) will be finite, due to the fact that
the denominator and numerator are of the same order of magnitude in the equation
for ¢, (Eqn. 12); on the other hand, ¢x and ¢y will be small to a first degree of
approximation. In such cases the rotation about the optic axis ¢, must be carried
out first.

(¢) BEHAVIOUR OF CRYSTALS UNDER UNIDIRECTIONAL PRES-
SURE :—Lct us now consider insome detail the various optical properties of crystals
under unidirectional pressure. To start with the simplest case namely cubic
crystals of Tq, O, Op crystal clas<eS‘equation (4) can be written as
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For any general direction of pressure the crystal will become biaxial and the optic
axial angle 2V is given by :

7 I/V“ - 1/;}" ‘ as
sin' V —V 1/v1 Y (15)

where ,, v,, v, are the principal refractive indices of the deformed crystal. It is seen

froin equations (13) and (11) that (I/»? — 1/9?) and (1/»2 — 1/3,?) are homoge-

neous linear functions of the pressure. Their ratio and hence the optic axial

angle and the position of the principal axes of the deformed crystal are

independcnt of the magnitude of the pressure, for the same type of stress distribu-
tion. Pockels (44) has shown that as long as the direction of the principal axes
and the optic ‘axial angle are concerned the photoelastic behaviour of there

crystals depends only on the direction of pressure and constant X = ¢,/¢;. According
to Pockels the complete description of the optical behaviour of cubic crystals (of
classes Tq, O and Oy) under unidirectional pressures in different directions can be had

if one allows the pressure divection P to run through firstly (1) hall a quadrant of a
cube face {say from [100] direction to the [110] direction) and then (7)) a quadrant
from the [110] to the [001] dircction. It is clear from symmetry as also from equa-
tion (13) that two principal axes of polarisation lie in the first casc in the plane X°,Y°
and in the second case in the plane {110} . If we represent the various angles

involved by the following symbols. '

W - the angle between the pressure direction P and Z°
¢ - the angle between X° and the projection of P in the plane X° Y°.
£ - the angle between X° and one of the principal axes of the deformed crystal
in case (1)
7 - the angle between Z° and one of the principal axes of the deformed crystal
in case (1)
then according to Pockels
tan 2 = X tan 2¢ ; tan 2 = =% ;}_X(;l:_%z'l)f s T
When once £ and 7 are determined by this equation, the principal refractive indices
and hence the optic axial angle can easily be determined as explained previously.
The formulae for the latter are given in Table II along with the corresponding
positions of the biaxial plane for various valuesof X, ¢ and V. Tt is clear that the
optical cllect of unidirectional pressure on these cubic crystals depends on the magni-
tude and sign of X. The four possible cases have been listed in Table I1.  Further
from the expressions for 2V, we find that 2V vanishes for types (1) and (2) for¢ = 0

(16)

or ¥ =0 or = cos! \}3 whereas for types (3) and (4) 2V vanishes for

Jr = cos™3 73 and becomes 180° for Y = 0. In other words, these cubic crystals
of all the four types become uniaxial by unidirectional pressure parallel to a cube
normal, or to an octahedral normal.

One sided pressure in any other direction makes the cubic crystal biaxial, and
one of the principal axes of the strained crystal coincides with the pressure direction

only if the latter is perpendicular to a dodecahedral face, Table III gives the optical
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behaviour of four typlcal crystals, (belonging to the four different Uroups) for various
-directions of pressure.

The phenomena in the case of the cubic crystals of T and Ty crystal classes are
slightly more complicated because for these crystals ¢;, and g5 are not equal to each
other as in Tq, O, Oy classes. Consequently the crystal becomes biaxial even by
a simple compression along a cube axis, with one of the principal axes coinciding
with the pressure direction. From (4) it can be seen that for unidirectional pressure
—, ——1—2 and L vanish and hence the principal
Vo3*” Va1 P12” ]
axes do not experience any rotation. If g, > g5 (as is the case with all the crystals
studied thus far in these crystal classes) the biaxial plane will be X°OY° and the
optic axial angle 2V is given by

sin V = ,\/ T — 1w Y)
Qi1 — i3

fromr (11). Again we sce that this is independent of the magnitude of the pressure
as in Tq, O and Oy, crystal classes.

along a cube axis (say X°),

If now the crystal is stressed along the normal to a dodecahedral face, the crystal
becomes biaxial just as crystals of Tq, O,'Op classes, but with one important difference,
in that the principal axis of the deformed crystal does not coincide with the direction
of pressure as in the latter crystal classes. And the angular displacement 6 of the
principal axes from the direction of stress, can be shown to be

tan 20 = 72— 413 ‘ (18)

244
In fact Bhagavantam and Suryanarayana (10, 11} have used this tilt of the

principal axes for ditinguishing T and T}, classes from the Tq, O, Oy classcs.

By the methods outlined before it can be shown that crystals of T and Ty, classes
will become uniaxial only when the pressure is applicd along the normal to an octa-
hedral face. For all other directions of pressure the crystal becomes biaxial.

In conclusion one can state the following as a general rule applicable to all the
five classes of the cubic system. A pressure applied along any trigonal or tetragonal
axis of symmetry makes the crystal optically uniaxial with the pressure direction as
the unique axis and a pressure applied along any other axis makes the crystal biaxial
(Bhagavantam and Suryanarayana 10).

The above rule is valid for uniaxial crystals as well. - As can be seen from Table 1
and (4) a unidirectional pressure along the Z-axis of any uniaxial crystal does not
rotate the principal axes (since ¢ == ¢ = ¢g3 = 0). Turther as g3 = g3 the
principal refractive indices v, and v, of the deformed crystal will be maintained
equal. In other words, under unidirectional pressure the uniaxial crystal becomes
biaxial unless the pressure direction coincides with the optic axis. Let us now consi-
der in detail the particular case where the pressure direction is normal to the optic
axis Z°. In addition if it were to coincide with one of the crystallographic axes
(say X° axis) then the biaxial angle of the deformed crystal, to a first approximation
is given by

1 — [
inV = ' 91 1z | 197
sin f———l/nl —1np jP ] (19)




108 . PROGRESS IN CRYSTAL PHYSIGS -

where #; and ny are the ordinary and extraordinary refractive indices of the undeform-
ed crystal. Unlike the cubic crystal we see that the biaxial angle is proportional
to the square root of the pressure. For all crystals excepting those belonging to
Group VII of Table I one of the bisectrices would not coincide with the optic axis
of the undeformed crystal, but would be rotated slightly from this posilioﬁ by an
angle determined by the first two equations in (12). Further the position of the
biaxial plane is determined by ¢;; == ¢, If ¢3; < ¢10, the binormal plane is parallel
to the pressure direction for a positive uniaxial crystal and perpendicular to the
pressure direction for a negative uniaxial crystal. When ¢;; > ¢, the. behaviour
would be the opposite.

For biaxial crystals the phenomena are naturally more complex; but when
once all the /Ju’s or g;;’s have been determined, the position of the axes, the biaxial
angle, etc. of the crystal under unidirectional pressure of any orientation can be
worked out by the methods described in Sec. 2 (5).

(d) CRYSTALS UNDER HYDROSTATIC PRESSURE:— If in equation
(4) we introduce the condition that Xx = Yy = Z, = P,Xy =Y, = Zx = 0 then
the left hand side of the equation gives a measure of the change in the principal
velocities and also of the rotation of the principal axes of the crystal under hydro-
static pressure. Again, as outlined in Sec. 2 (b) the various properties of the de-
formed crystal can be evaluated from a knowledge of p,’s and g¢/'s.

It is interesting to note from the schemes given in Table I that all crystals
excepting those belonging to the monoclinic and triclinic systems do not experience
rotation of the principal axes on hydrostatic pressure. This is true in spite of the
fact that some of these groups like IV, V, VI and VIII have cocflicients like g¢,,,
gs1» Ye1 €tc. One also notices that a cubic crystal remains cubic and a uniaxial
crystal uniaxial under hydrostatic pressure.

3. EXPERIMENTAL METHODS

(z) OPTICALLY INACTIVE CRYSTALS

The various methods that have been adopted for the complete determination
of the photoelastic constants may be broadly classified as follows :— (i) Relative
retardation methods, (#) Interference method and (dii) Ultrasonic diffraction
method. In the first two, the changes in the optical properties of the crystal under
compression are measured, while in the third the ratios of the photoelastic constants
are obtained from a study of the polarisation characteristics of the light diffracted
by ultrasonic waves in the crystal. As complete details of the experimental
arrangements are given in various publications (10, 49, 52, 63, 66) only some
general remarks are given below. '

(z) RELATIVE RETARDATION METHODS :— The crystal specimen of
suitable orientation is subjected to a unidirectional stress and the change in the rela-
.tive retardation producedby stress, between the rays with electric vectors parallel and
perpendicular to the direction of stress, is measured by the usual techniques employing
Babinet compensator etc.. One important condition that must be satisfied to obtain
reliable results from these measurements is that the stress distribution in the specimen
must be uniform. This is usually achieved by making the length of the experimental
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specimen, which is also the direction of pressure at least three times the breadth,
and by confining the measurements to the middle of the specimen. -Normally .
measurements are carried out at a large number of points and the average value
is taken for the evaluation of the photoelastic constants. Lead spacers are sometimes
employed on both sides of the specimen as the medium for the transmission of stress
from the compressing apparatus to the specimen. Lead it found to introduce .
additional shearing stresses in the specimen (Coker and Filon 18) while card board
or paper is found to be very satisfactory (20). :

Stresses of the order of 100 Kg./cm.? are normally employed in these experi-
ments and within this range the law of proportionality (Brewster’s law) is found to
hold good in general except in a few cases like alkali halides, (Maris 32) AgCl
(Goodman et al 23). In these cases even stresses of the order of 10 to 50 Kg.fcm.?
produce translational gliding and thus lead to irreversible effects.

Recently Ramaseshan and Chandrasekharan (57) have evolved a new method
of measuring small birefringence usually encountered in photoelastic experiments by
measuring the decrease in the apparent Faraday rotation with stress. This method
has been further elaborated and perfected (54, 56) so that this method is now capa-
ble of measuring the dispersion of the mechanical birefringence very accuraiely
even though the absolute values at any wavelength may not be as accurate as the
Babinet compensator measurements. The application of this method is however
normally limited to cubic crystals. '

Theoretical expressions relating the birefringence produced by stress to the
plezo-optic constants.can be easily derived from equation (4). For example, con-
sider the case when the pressure is applied along the X-axis and the direction of
observation is Z. Then the relative retardation between the two rays polarised
parallel and perpendicular to the direction of stress is given by

iy 5
L{Any — Any) = t(T qu — "9 qﬂ) P -+ At (nyy — ng)

The second term on the right hand side represents the birefringence introduced
due to the change in thickness of the specimen due to the pressure P. It is seen
that the mechanical birefringence is a linear function of the two constants g;; and g,.
Thus observations made purely on the birefringence produced by stress cannot
yield the absolute values of ¢;; and ¢,;.  In general similar reasonings hold for other

gyy’s-
(22) INTERFEROMETRIC METHODS :— In this two plane parallel crystal
plates of the same orientation and dimensions are keptin the two beams of a Jamin
interferometer.  'When one of the prisms is subjected to a unidirectional stress the
interference fringes shift due to the changes in the thickness and the refractive
index of the specimen. From a study of the shift of the interference fringes for
light polarised parallel and perpendicular to the direction of stress, the changes
in the refractive index can be evaluated after making due allowance for the change
in the thickness of the specimen. An important modification of this method has
been described by Ramachandran (49) which has been used for all recent inter-
ferometric measurcments. In this, the shift of the localised Newtonian fringes
formed between the two surfaces of the crystal specimen is measured for a known
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unidirectional stress. From this the photoelastic constants can be evaluated aftér
taking into consideration the additional path retardation introduced due to the
thickness change.

5

Recently Vittoz (67, 68) has described a method of measuring optical path
differences accurate to A{1000. The method of measurement is based on the explo-
ration by means of a photomultiplier of the Fraunhoffer diffraction pattern produced
by three similar slits illuminated by a monochromatic parallel beam. Before being
incident on the slits the light traverses three identical cubes of the specimen, of which
the central one is subjected to stress during a measurement. A comparison of the
luminous flux at a certain point of the diffraction pattern due to the thrce beams,
with the intensity at the same place of the pattern due to the two lateral beams
alone, yiclds a very accurate measure of the variation of the optical path in the
central beam. ‘

In all these methods the precautions to be observed for obtaining uniform
stress distribution in the speciinen are the same as described in Scetion 3 (7). Here
again the relations between the observed changes in refractive indices and the
piezo-optic constants can easily be derived from any of the equations (4). For
example {or the particular case mentioned in Sec. 3 (7).

n%, 13y,
Any = 53 gl 5 Anggy = 5 712P.

Thus by measuring the absolute changes in refractive indices for various directions
of pressure and observation, one obtains a number of linear relations between g,,’s
in terms of measurable quantities,from which all qy’s and hence ﬁu’s can be evaluated.

(iiiy ULTRASONIC DIFFRACTION METHODS :— An elegant method
in which the uncertainty of non-uniform stress distribution is altogether eliminated
has been devised by Mueller (35). 1In this method plane polarised light of suitable
orientation is diffracted by progressive or stationary ultrasonic waves in a crystal ;
and the azimuth of the polarisation of the diffracted beam with respect to that of
the incident beam is determined by an analysing nicol. From a study of the rotation
of the plane of polarisation of the diffracted light and its dependence on the amplitude
or the intensity of the sound wave, the ratios of the elasto-optic constants can be
evaluated [Mueller (35}, Galt (22), Vedam (63)]. In recent years the method has
been cxtensively used for the case of cubic crystals.  For the less symmetric crystals
upto orthorhombic system this method can also be used for a few particular directions
of observation and propagation of ultrasonic waves in the crystal. For any general
direction of propagation of the ultrasonic waves and observation the equations
involved arc too complicated to be of any use even in the case of cubic crystals.

(b)) OPTICALLY ACTIVE CRYSTALS

It is obvious that the above methods cannot be directly used in the case
of circularly or elliptically birefringent crystals. This is because, in these crystals
the only vibrations that are propagated without change are circularly or elliptically
polarised vibrations and not linearly polarised vibrations as in the case of linearly
birefringent crystals. The actual computation of the changes of the optical
characteristics of these crystals on deformation, are extremely complicated if one
were to use the electromagnetic theory of the propagation of light in crystals. Even
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so, using this method, Pockels (40), who ‘was ‘the fifst to study "the photoelastic
behaviour in such crystals, did succeed in evaluating all the constants for quartz.

~ Recently Ramachandran and Chandrasekharan (52) have determined the

photoelastic constants of NaCG1QO;, making use of the Poincaré sphere concept of the
propagation of light in an optically active crystalline medium. This method com-
pletely obviates the necessity to use extremely cumbersome algebraic formulae.
Space does not permit us to give a full description of the Poincaré sphere and its
particular utility in photoelastic studies in optically active media but rcfcrcncc may
be made to the various publications on this topic (52, 54).

Here again the method essentially consists in (Z) determining the linear bi-
refringence produced by a known stress by measuring the changes in the polarisation
characteristics of the light transmitted by the deformed crystal (ii) and by measuring
the ratios of the photoelastic constants by the ultrasonic method. For the latter,
Mueller’s theory and also the experimental technique have to be suitably modified
to take into effect the optical activity of the medium (Vedam and Ramachandran 66).

(¢) ACCURACY

In the relative retardation measurements the accuracy obtamab]e is chiefly
dependent on the uniformity of stress distribution. However, under favourable
conditions one can get results accurate to 19, or even better. On the other hand,
in the interferometric method, the accuracy of the results is rather discouragingly
poor for the following reasons. In this method, the major contribution to the
path retardation is due to the change in the thickness of the specimen and
hence the change in refraction which is the object of the investigation, is obtained
as a small difference between two large quantitics.  Further, the thickness change
itself cannot be evaluated accurately, for the elastic moduli sy (i, 7 = 1, 2, 3) on which
the thickness change depends, are usually had with an error of 109, or more. Thus
even though one can determine the absolute path retardation. to A/1000 (Vittoz 68)
the value of the piezo-optic constants evaluated is susceptible to a quite large error,
However, since this error due to the thickness will be constant, for a study of the
dispersion of the photoelastic constants the method described by Vittoz would be
found very suitable. Using the ultrasonic method measurements have so far been
carried out visually and the accuracy obtainable is not very high. However, with
the aid of photoelectric devices, one can obtain the ratio of the photoelastxc constants
to within 0-59%, or even better.

4. DISCUSSION OF RESULTS

A glance at the tables reveals immediately the marked disagreement between
the values of various authors for the same crystal. As has been mentioned before,
the accuracy obtained in the values of the absolute constants fy is not very high.
But one might expect tolerable agreement within reasonable limits of error at least.
between the values of (p; — f1,), and p,, which are determined directly from relative
retardation measurements. Again we find the discrepancies between the results
far éxceed the experimental errors. From a series of experiments carried out in
this laboratory (Vedam) it is found that the experimental values are dependent on
(a) the inequality of the stress distribution in the specimen during static measure-
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ments (&) conditions under which the crystals were grown and annealed (¢) previous °
thermal and elastic history of the specimen and (d) the impurities, defects and dis-
locations present in the crystals. In this connection, mention may be made of the
observations of Ballard et al (1) on the large variations of the mechanical and optical
properties of air grown and vacuum grown LiF crystals. The refractive index and
optical dispersion of KBr is also found to vary markedly from specimen to specimen
{Rodney and Spindler 59). Further, it is' well known that the values of the elastic
constants of any crystal determined by various authors, do not agree amongst them-
selves. As the values of the elastic constants used in photoetastic studies by
- different workers are different from one another, it is not surprising to find that
discrepancies are exhibited in a pronounced form in the photoelastic constants.
It would have been preferable if cach observer had mentioned in his paper the
actual values of the elastic constants used in the evaluation of the photoelastic
constants, In _spite of the limitations mentioned above, a few general observations
can be made regardmg the photoelastic behaviour of crystals.

As was mentioned earlier, Pockels (42), purely from the phenomenological theory
predicted that four possible types of cubic crystals of Tq, O, Op classes exist (Table
II) depending on the sign and magnitude of X. He could get experimental evidence
for the existence of crystals belonging to the second, third and fourth groups. Mueller
(34) on the other hand classified cubic crystals of these classes into four possible
groups purely {from the signs of (_pu p1) and p,, as is shown in Table XI. The
classification of Pockels is also given in the same table for comparison. There seems
to be a tendency amongst workers in this field to identify the four groups of Mueller
with the four proposed by Pockels. From Table XI, one notices that Pockels’ classi-
fication not only depends on thesigns of (p;; — D12) and py, but also on their respective
magnitudes, and on the magnitudes of the elastic constants. This difference
in the classification is brought out very clearly in NH,C1 which belongs to group 111
according to Mueller but to group (4) of Pockels since for this substance (f;; — $,,)
= —0-095, p3u=0-025, 5,,/(51,—5,;) = 147/31-6 and hence X =—1-2. It seems that
as far as the complete description of the optical behaviour of crystals under stress
is concerned Pockels’ classification is more useful.

Purely from some arbitrary limits of a few parameters set from data on crystals
like NaCl, KC1 and glasses Mueller (34) made some very general conclusions about
the classification of cubic crystals by photoelastic means. He predicted that crystals
of the NaCl type, such as K, Rb, NH, halides and the bivalent salts BaO, CaO, etc.
would belong to group IV while the Li and Na halides would belong to group II.
Recent measurements on KBr, K1, LiF, AgCl, have confirmed the above predictions.
He also stated that the crystals of the CsCl and CaF, type should belong to group
III. This has been found to be true in NH,CI; a crystal belonging to the CsCl
type. However, West and Makas (69) have found that thallium halides (CsCl
type) actually belong to group I, i.e., they behave like positive uniaxial crystals when
_ strained along the [100] and [111] directions. These crystals belong to group, (1)
‘of Pockles as well and indeed are the only examples for this group for which experi-
mental evidence was lacking so far. Since lead glasses of hlgh refractwlty are known
to show. positive birefringence, one could naturally expect a sxmﬂar behaviour in
such hlghly refractmg substances hke the thalhum halides (West a:
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Further, according to Mueller, all crystals of the ZnS and Na,O type should
) belong to group III irrespective of whether the binding is homopolar or ionic. The
existing data for the photoelastic constants of diamond and for Pas of ZnS do not
support Mueller’s predictions which need some modification (Burstein and Smith
15). However, the agreement in the case of NH,Cl suggests that more experimental
data are necessary to clarify this question. It is not out of place to point out here
the enormous discrepancy between the two experimental determinations of g,, of
ZnS. While West and Makas (69) using Schramm’s (61) data find the g,, value
to be the largest on record, Kara, Mathieu and Poullet (29) find it to be the least.

Some of the other interesting results that one notices is that the values of
(p11— P12) and p,, for KCI>KBr>KI. It is very interesting to note that as AgCl
resembles KCI (as the radii of Ag and X ions are nearly the same), photoelastically
it behaves like KCI and KBr and belongs to group IV. MgO is the only crystal
which has negative values of both p,, and p,, while diamond has a —ve value for
only p,;,. The exact significance of these results will become apparent when they
“are examined from the point of view of Mueller’s theory as has heen done in the
next section. : _ ,

Amongst the isomorphous nitrates of Ba, Sr and Pb, (p,; — #4,) and (p;; — $13)
are much higher for the Ba salts than for the others. But this type of anomaly
is found to exist in other properties like melting point, elastic constants, thermal
expansion, solubility, magnetooptic anomaly, etc. The reason for this behaviour is
probably due to the presence of slight covalent binding in Ba(NQy), which is indi-
cated by the appearance of the lattice lines in its Raman spectrum more intensely
than those for Pb and Sr nitrates, (Couture and Mathieu 19). ‘

In potassium alum, where the refraction is mainly due to the oxygens of SO,
ions, the symmetry of this group combined with the small elastic anisotropy makes
the photoelastic anisotropy very small. Amongst the crystals of Ty class thallium
alum alone has positive values of p,,. : '

" A comparison of the results of NaCl and NaClO, shows that the magnitudes of
the photoelastic constants are very similar to each other. This is obviously due to
the fact that the NaClO; structure is based on slightly distorted NaCl lattice and
" the refractive indices of the two are also nearly the same.

Even though five out of the seven gyy’s of the tetragonal system (group 7 of
Table I) and also a linear term involving the remaining two constants can be deter-
mined purely from relative retardation measurements, values are reported for only
two crystals, namcly ADP and KDP. Further as all the 5 s have not been
measured, the p,.’s could not be evaluated and hence only qy’s have been reported
in Table VI.

. Beryl of the hexagonal system, quartz and calcite of the trigonal system are
the only uniaxial crystals for which complete data are available. The various pre-
dictions deduced from the phenomenological theory mentioned in Sec. 2 have been
experimentally verified in all these crystals by Pockels. For a unidirectional pressure
applied normal to the optic axis, these crystals become biaxial. In addition, if the
directions of applied pressure coincides with one of the crystallographic axes, the
biaxial angle 2V can be calculated using eqn. (19) and for a pressure of 1 Kg/mm,?

cp.—l15 :
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they have the following values:—beryl 6°15', quartz 5°54’, calcite 1° 30’. The optic
axial angle in the case of deformed quartz has been directly measured by Pockels
(40) and Beaullard (3) and the values are in very good agreement with the calculatcd
values.

Amongst the optically biaxial crystals thc photoclastic behaviour of topaz 2n
and barite (64) both crystallising in the orthorhombic holohedral class has been
reported. It is seen from Table (IX) that the wide disparity between the elastic
constants of these two crystals is reflected in the photoelastic behaviour as well.
The #yy’s of topaz are in general much smaller than those of barite. On applying
hydrostatic pressure, the principal refractive indices of both these crystals are found
to increase. In topaz the optic axial angle increases on hydrostatic pressure while
the opposite effect is found in barite. It may be pointed cut that while the acute
bisectrix in topaz is the c-axis that in 'barite is the a-axis. :

A survey of the results given in Tables (IV to IX) for all systems reveals that
P (B k= 1,2, 3) of ionic crystals are in general, of the same order of magnitude
and are much larger than i, (/ =4, 5, 6) ; but such differences in values do not
exist in covalent crystals like, diamond, topaz and MgO.

An exceedingly interesting point that has emerged from the studies on quartz
by Pockels (40) and on NaClQ,; by Ramachandran and Chandrasekbharan (52) is
that the rotatory power of the substance is sensibly -constant in the range of stress
usually employed in photoelastic studies. _

We shall next mention, in passing, the relationship of the photoelastic proper-
ties of crystals with other closely allied phenomena. Since both on the application
of compressive stress and on lowering of the temperature, the specific volume of a
substance diminishes, it weuld be interesting to enquire whether the changes in
refractive index for identical changes in volume produced by these effects would be
the same. Calculations show that they are not and in fact in some crystals even
the signs of the refractive index changes are oppuosite in the two cases. This indicates
that a factor affecting the refractive index purely caused by a change in temperature,
is operative in addition to that due to a change in the lattice dimensions. The
existence of this factor was discovered as early as 1902 by Pockels but a satisfactory
explanation of the phenomenon has been developed only recently by Ramachandran
(49, 50, 53).

The phenomenon of photoelasticity plays a significant role in thermal scattering
of light in crystals. [Mueller {35), Chandrasekharan (17a)]. Due to the existence
of elastic waves of thermal origin in a solid, say in"a cubic crystal, each element of
volume gets deformed and hence the optical polarisability of each ion in the element
becomes anisotropic. The numerical computation of this anisotropy factor intro-
duced in the polarisability of each ien by both longitudinal and transverse waves
in NaCl has been worked out by Marck and Taurel (31) using the elasto-optic. con-
stants of Pockels.

5. THEORY OF PHOTOELASTICITY
No review. on the subject of photoellasticity' would be complete without a
| reference to the various theories that have been put forward to explain this pheno-
menon, In this scctlon we shall bneﬁy deaI w1th the general theory deveIopcd

L Pﬂé‘ RS
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by Mueller (34-) of which earllcr attempts by Banerjec (2) and Herzfcld and Lee
(24, 25) form a part. When a solid is stressed its.symmetry is altered and the calcu-
lation of photoelastic constants is based on the evaluation of the changes in (1) the
Coulomb field, (2) the Lorenz-Lorentz field and (3) the intrinsic polarisability of
the ions. As these computations are extremely complicated for crystals of lower
symmetry, the theory has so far been worked out only for isotropic solids and cubic
crystals.

The contribution of the Coulomb field to thé refractive index of an undeformed
cubic crystal is zero by virtue of its symmetry and wauld be significant only when
the crystal is deformed anisotropically. The changes in the Lorentz field, however,
are dependent on the alteration of both the density and the symmetry. For example
when a cubic crystal is subjected to hydrostatic pressure, while the contribution of
-the Coulomb field to the change in the refractive index would be zero, that due to
the Lorentz field cannot be neglected. “When a cubic crystal is unidirectionally
stressed along the cube normal, the deformation reduces the crystal symmetry to a
tetragonal one, causing anisotropy in the Coulomb and the Lorentz fields. The
effects of these can be evaluated by using Bragg’s method of calculating the
birefringence (Banerjee) or the Lattice sum ‘method of Madelung (Herzfeld and
Lee) or from Born’s theory of crystal lattices (Mueller). ' '

" However, the third effect, namely, the changes in the intrinsic atomic polarisabi-
lities due to the strain cannot be computed so easily since it requires a knowledge
of the optical strengths, the polarisabilities and also strain-polarisability constants
of the ions. While attempts have been made to evaluate the former two, there is
no way as yet for obtaining the strain-polarisability constant from fundamental
considerations. This is because, in an elastically deformed solid, there is a distortion
of the arrangements of the atoms, which strengthens some of the chemical bonds
while weakening some others. It'is most natural to expect that this in its turn
would alter the electronic configuration of each atom. It should be possible in
principle, to calculate the changes in the optical polarisability with the aid of quan-
tum mechanics. Unfortunately this has not been possible as we do not know the
state of the electronic atmosphere even in a simple undeformed crystal. However,
an estimate of the strain-polarisability constant can be had from the measured values
of the photoelastic constants and from the values of Lotentz and Coulomb contri-
butions calculated from Mueller’s theory. /

We shall give below in the briefest outline the results of Mueller’s theory.

(a) LORENTZ FIELD IN STRAINED D* LATTICES :—In a D lattice
let the elementary cell contain several different atoms at positions ry, i -..... etc.
When a light wave is incident let the componerits of the moments induced in the
ions be pix, flig eeres ) By, HKY ceeees 3 Mz Pz veeee- etc. along the x, y and z direc-
tions. The field at the atom i due to all the other dipoles, in the undeformed state

" isgiven by

4; ' =
Fixy = Ex + — 2 Lijxx Nxx Pacx (20)

*In dxagoxnl or D fattices the atoms of the clcmcntary cell are located on the body diagonal
of the elementary cubc.  The face and budy centred cubic latiices of NaCl, GsCl, Cal'y, ZnS and
diamond arc D lattices, -
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where A is the volume of the elementary cell, N the number of atoms of the kind

kinit and ZLx is the Lorentz factor which would be 1/3 for the crystal in the un-
deformed state. When the lattice is deformed by a strain z; the above equation

becomes

L 4 : .
Fix = Ex + 7 3 Nix pc (13 + 510 22) (21)
where sjx = d_dIz:E which to a first degree of approximation, is )
v . . : )
six = {Lix (1 + Zz) — 1/3} /Zz ' (22)
Similarly for a shear, ' ’
xx’ = —yy’ = xy[2
L, 4 ., -y ' :
Pl = Ex + = 3 Nix" piex” (1/3 + sx” #x") (23)

Mucller hias numerically cvaluated the values of Ligy, Sixx, s’ for various D
lattices for known values of sinall deformation. It must be mentioned that no
account is taken here of the *“ inner displacements ” of atoms of the erystal which
are responsible for the piezo-clectric effect and also for the invalidation of the well-
known Cauchy relationships. This effect has been ncglectcd as the magnitude of
these displacements are not known.

(b)) THE COULOMB FIELD —Under the influence of the light wave with
the electric vector in the X direction the atom i becomes an oscillator which can be
considered as a vibrating electron with charge f1e. The forces acting on the electron
are the binding forces of the atom 7, the Lorentz force of the light wave, and the
Coulomb forces of all the ions.

In an elastically deformed D lattice, we get Coulomb- field as
4n pix 2z .

—== N : 24
Fin = 2x N six ) (24)
where 2y is the valence of the ion £. .

(¢) STRAIN-POLARISABILITY EFFECTS :—As has bern mentioned ear-
lier, this problem can be tackled only from the phenomenological point of view.
One could assume for small deformations a linear proportionality between polari-
sability and the strain, If the molar refraction of the k8 atom is represented by Ry
in the undeforined state and by Ryy, Ryy, sz in thc deformed state we have for a

strain

C
Fix=

Rix = Ry = ‘*l%iﬁ = Ry (1 + daex 22) (252)

4 A oL
sz_—’iT"‘—kE.— (1+Akzzz) ‘
Here o[y represents the polansabxhty of the k' atom and A thc Avagadros
number, and Ay is the strain polansablhty or atonnc amsotropy factor

Smnlarlyforashcar _ SR o
ka = Ry (1 + Akx J'fx) 5 Rky = Rk(l +?&ky xx) - (25Db)
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For a hydrostatic deformatzon thereforc, thc change in thc refracuvc mdcx
due to strain polarisability is given by I R o
A =1/3(A +2) Lt ‘ (26)
Under the influence of the Lorentz and Coulomb forces only, the dipole moments
induced in the atom i is

L c .

prix = olix (Fix + Fix) (27)

If the strain polarisability effect is also considered the altered value of the polarisabi-
hty ol is glven by equation (25). Takmg this and substituting the "values of

Fix and Fix from (21) and (24) in equation (27) the moment induced in the
ion is given by

' E
pix = 3Ry (1 + dig 2) A [+ & 3Neme (18 + s z)

+;"‘ zz S Zu Ni sm] (28)

* This with

n’y — 1 Py
X = S NupfEs (29)

yields the requisite equation for the refractive mchces of the deformed solid. For
zz = 0 this equation reduces to the familiar Lorentz-Lorenz equation. On differen-
tiation of this equation for the deformed solid we get

px = b8+ py + b + 1

L ; 30
pr=pl b pd pe A by b .
, L c A
P x' =/’x’ ‘*‘ f’xl +P-‘t' J
where .
" —2n  dnx )
bx = (n-—v,; Z_,zi— = nipp/(n* — 1)* .\*
_2 d 7 a9 2
bz = (n:‘_ln)_;z Z'Zi.—z = niy/(n* —1)* } (31)
—2n dng’ ' l

?'x' = m@ = 2nipy[(n* — 1)?
and p¢ is the contribution due to the change in density and is given by
p8 = (n* - 2)/3 (02 — 1) . (32)
£%, p$ and p% are respectively the contributions due to the anisotropy of the Lorentz
force, Coulomb force and the strain-polarisability effect and have the following values

pL = —-Ssikx NiNkRiRx/[ S NkR«]? ' (33)

py = - RN szzkrm/[szRk]‘ - 9
£ -

by =gm=™ E (35)

and Ax = 3z NiRj/SIN{R,. ' (36)

Equations analogous to these can be written for g and p'y. .
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In equation (30) » Px is kuown experimentally from (32). The quantities p4,
#% and pZ can be calculated from formulae (32, 33 and 34) using the values of sy
data given by Mueller. The strain polarisability constant Ay can therefore be evalua-
ted It must, however, be borne in mind that values computed for pZ, pL 2 2% and

25 are not very accurate as one has to use empirical values of f and the molar refrac-
tion of the ions in the solid state.

If one is interested only in the blrefrmgcncc produced by a strain z; we get from
“(6-11) .
1 — 4 . '
p=pz—px=’1—(<§,_,—n:T§lﬁ’=pL+pc.+pA~ (37)
where : -

= —3p%; °= —3ﬁx; andl’ =A (ﬂ2+2)/3(n‘— 1)
a.nd/\—)\z—/\,L

Slmllurly thc birefringence introduced by a shear is given by

| p=pd F S+t
where pA = — N (02 +2)[3(n — 1)
and M=%} [Ax’ — Ay TNIRYZENIRy

We shall now briefly discuss the experimental data on cubic crystals in the light
of the above theory. It is well known that the refractivity of a substance is less in the
solid state than in the liquid or gaseous states. Recent computations by Shockley
(60) have shown that the polarisability of a negative ion décreases and that of a
positive ion increases as they go from an independent gaseous state to the solid state.
Oune could therefore expect further changes in the polarisability of the ions in the
same direction when the lattice constant of the crystal is reduced by stress. As the
contribution to the refractive ifidex by the anions far exceed that of the cations the
net effect would be to reduce the polarisability, i.e., p2 in equation (30) would ixi
general be —ve which is actually found to be the case. :

No such general conclusion can be drawn as regards the Lorentz and Coulomb
contributions. The magnitudes and signs of these are dependent on the directions
of stress and observation and also on the particular crystal. Finally the density
contribution g4 is always positive and in most D lattices it overwhelms the combined
effects of p%, pS and p2 thereby yielding positive values of p, and p,. This is not
‘a general rule ; for example, in MgO, since the atomic anisotropy effect is much
larger than the combined effect of the other three one gets negative values for g,
and p,.

One notices from equations (30) and (37) that the density effect p¢ does not
play any role in the bircfringcn(‘e produced by unidirectional or shearing stresses.
Hence the magnitude and the sign of the blrefnngence are determined by the relative
magmtudes and signs of the contributions Pl pS and A Actual computation
of pL, % etc. have been carried out by Mueller for NaCl, KCl, and, CaF, makmg
the assumption that the fvalues of the ions are the same as those of the corresponding ‘
" inert gases. The values of A evaluated by him. for these substances are given in Table "~ .
(XII). The A values of CaF, have not been mcluded in this table, as a rather -
questlonable value of, f had to bc used in the computatlon The 7\ values of a typl—




cally covalent crystal like diamond have al<o been calculated makmg use of the
revised data of the photoelasmc constants (Ramachanclran 51) and are included

in the table.

It is seen from the Table (XII) that ‘\TaCl and KCl in sp1tc of having c0mpletely

different photoelastic properties, have practically identical values of A= (3; — Ax).
"This is as is to be expected since the refraction of these substances is largely due to Cl

ions. One notices that in ionic crystals A is very much greater than A’. Mueller
explains this as due to the fact that strain alters the distance between the nearest
neighbours, while in a shear the Na-Cl or K-Cl distance remains unchanged. On
the other hand in the completely homopolar crystal Diamond )’ is greater than A.
For stress along [111] or [110] directions corresponding to the measurements of the
shear constant p,, one notices from the structure of .diamond that the C-C bond

 lengths and angles are altered to 2 maximum degree. Hence it is not surprising to

find that the polarisability changes are very much larger for a shear than for a linear
strain for diamond. In the calculation of A for diamond the Coulomb field has
naturally been taken as zero. In the case of a partly co-valent crystal like MgO
one is faced with the serious problem of assigning proper values for 2 and f in the
determination of the Coulomb contribution and thence the final evaluation of A.

Here it may be mentioned that Mueller, setting arbitrary limits for the values
of the atomic anisotropy factor obtained from NaCl, KCl, and a few glasses, was
able to predict the photoelastic behaviour of various cubic crystals depending on
their values of Ry and fj. As has been remarked earlier many of these predictions
have been found to be true. ' ‘

The uncertaintics introduced in the numerical evaluations of p¥, p% ctc. due to
the use of empirical values of Ry and f. are eliminated if one considers the refractive
index change due to hydrostatic pressure. * In the case of hydrostatxc pressure, since
the symmetry of the crystal is not altered, ‘both £ and pL which are dependent
on the anisotropy, are zero. The change in the refractive index with density may
be obtained as (from 26, 30, 32, 35). . .

P49) (1)
6np

= -

while the value calculated from the experimental data is given by

d p—

P
From these two equations, the valué of A, can be evaluated. Table (XIII) gives
the values of dn/dp observed and calculated and the values of A for different cubic
crystals. In most crystals the calculated values of dnfdp are much higher than the
observed values showing the negative contribution of the strain-polarisability eflect.
Further it is seen that diamond and MgO stand apart in having —ve values of dn/dp,

6; (?11 =+ b1e + Pm)-

i.e., an increase in density actually decreases the refractive index. Similar anoma-

lous behaviour is exhibited by these crystals in the variations of their refractive
indices with temperature, viz., dn/df is positive (48) (50). It will be most interesting
to investigate whether ZnS which is another cubic crystal cxhxbmng +ve dn/dt
also shows a similar behaviour in dn/dp. ‘ . .
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Before we proceed to the discussion of the significance of A, in differént crystals
it must be remembered that much importance should not be attached to individual
values of Aq as they have been derived from not too accurate data-of f,;, £, and fig.

One notices that the A, value for most ionic crystals is much less than that for
crystals that are known to be covalent. In other words the changes in polarisability
with density in covalent crystals are much larger than those for ionic crystals. Even
amongst ionic crystals one notices that LiF, has the largest value of 2,. This is quite
in accord with the fact that it exhibits the maximum covalent character amongst
the alkali halides (vide solubility, melting point, elastic constants, etc.).

According to Burstein and Smith (16) the decrease in the polarisability of an
ion with interatomic distance in ionic crystals is primarily due to a change in the
ion overlap and consequently to a change in the relative amounts of ionic and homo-
polar binding. One could, therefore, expect these effects to depend on the ionic
and homopolar binding already present in the crystal in the undeformed state.
Thus A, can be considered to be a measure of ionic overlap and the homopolar
binding in crystals. This accounts for the large variation of 2, from crystal to
crystal. Burstein and Smith have also shown in a comparative table the parallelism
between the values of Ay for various crystals and physical constants like C,,/Cy,,
volume expansion mchmg point and Debye temperature which are also considered
measures of the ionic overlap and homopolar binding.

‘ One notices from Table (XIIT) that ammonium alum, thallium alum and lead

nitrate arc the only crystals that exhibit negative values of A;. The rcason for this
is not far to seek. In these crystals, the polarisability of the cation is of the same
order of magnitude or sometimes even much larger than that of the anion. As
discussed earlier 2 decrcase in the lattice parameter, while diminishing the polarisabi-
lity of the anions increases that of the cations. It is quite evident that in these
‘crystals the latter effect more than compensates that of the former thus yielding
negative values of A, -

The calculated values Of(g%) and A, in Table XIII are on the basis of the

Lorentz dispersion formula. The values of (dn/dp) and A, calculated using a formula
of the Drude type have also been entered in the Table [Burstein and Smith (16),
Vedam (65).] One notices that while the actual value of A, is dependent on the
type of the dispersion equation used, the niagnitude and sign of A, show in general
the same trend. Hence the conclusions drawn above will hold equally well for the
Drude. type of formula. .

In the case of K-alum one notices that while A; calculated from the Lorentz
formula is positive, the Drude formula gives a negative value of A;. This indicates
the importance of the correct type of dispersion equation to be used in these studies.
We shall not take up thlS questxon in thxs present r review.

6. DISPERSION OF PHOTOELASTIC CONSTANTS

From what has been said in the prevmus section it is clear that the effect of

- the change in the Lorentz field, Coulomb field and the atomic anisotropy would be

" to alter the energy levels and 'the‘tranvsmqn probabilities of the electrons for any
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partlcular substance: Hence if one is just interested in the dxspcrsmn of the stress
optic coefficient and not in the individual effects one could assume (Ramaseshan
and Sivaramakrishnan 58) that the stress alters the three parameters Nj the number,
J1 the transition probability and y; the frequency of the dispersion electron. For
a cubic crystal if one starts with a dispersion formula of the type

Ay Ny fy
—l=32 =% e — ¥
then for unidirectional pressure the changes in the refractive index for light with
electric vector parallel to the dxrcctxon of pressure is obtained by differentiating
equation (38) as
dn 1 v A I A{Nify - vrts
T Pl F B R+ Sl K 09)
where [Ki]'y., [Ki]*y and [Ky]"’’, are respectively ) o
(%1 o ( 11 ag; and (NIT ‘% - The last term N ﬁ: is equal to — -~ %ﬁ
which can be calculated from the elastic constant data. Since the sum of
the transition probabilities must necessarily be equal to unity, we get
3 [Kil” f1 = 0 in equation (39. :

An equation similar to 39 is valid for dn 1 /dp. From these two formulae one can
easily calculate the dispersion formula for the birefringence produced by unidirectio-
nal pressure and for changes in the refractive index due to hydrostatic pressure.
The values of K will naturally depend on the direction of observation and pressure.
The extension of this theory to crystals of lower symmetry is obvicus. Using accu-
rate dispersion formulae, the photoelastic dispersion of some glasses [Ramaseshan
and Sivaramakrishnan (58)] and of fused quartz (Jog 28) have been explained
satisfactorily with the aid of the above formula.

(38)

The only data on cubic crystals available are those of Iyengar (26) which are
given in Table (XIV). As the measurements are confined to only three wavelengths
in the visible region, the verification of the dispersion formula could not be under-
taken. It may be mentioned that the dispersion of the photoclastic constants of
most of these substances is of the order of magnitude to be expected from the above
formula. The values of the dispersion of py of LiF, however, whose absorption
wavelength responsible for dispersion is much below 0-1 2 seems to be mordmately
large.

Eppendahl (21) has also recorded the dispersion of some of the photoclashc
constants of topaz in the region A 6880 — A 4470.

7. PHOTOELASTIC CONSTANTS DATA

- In the following Tables the data on the elasto-optic constants of the various
"crystals belonging to different crystal classes have been collected. The references
of the authors whose elastic constants data have been used for the calculation of
the constants have also been included in the Tables.  All these values unless other~
wise stated are for A 5893. Galt (22) has measured the ratios of the photoelastic
constants by the ultrasonic method for NaCl, KCl, KBr and his values are given
in Table X.

c.p.—16
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The photoelastic constants of most o. the cubic crystals given in Tables (IV & |
V) have been evaluated by combining the measurements of (p;; —p;;) and (p;; —£15) by
relative retardation methods and of p,,/p;s and p,,/p,s by ultrasonic method.
As the errors involved in these measurements may be about 2-39,, the absolute
values of p,;, f,» and p,, are accurate to only within 5-109,. In some cases the
errors involved may be even as much as 209.

TABLE I

GROUP 1. TRICLINIC SYSTEM, C,, C; (1, I) (36 Constants)

1 b2 Pia P1a P15 Pre u T12 13 d1a 15 T1e
Pex P2 P P P Do a1 Qa2 Q23 faa G5 Qe
P P2 Pm P:# b Pas 9 G2 qm 93¢ 935 e
Pu Dae baa bas bas ) 9 a2 qa3 94 qas e
Ps: Psz Pss .Pm Pssl Pse 951 Js2 gsa 954 Jss Zse

Pa P2 Pes  Pus  Pes  Pes . Ga  Gee ez - ez Jes  es

GROUP 2. MONOCLINIC SYSTEM, C;, C,, C;; (m, 2, 2/m)
(20 Constants)

P Pz P 0 - 0 bhis g G2 a0 0 T1e
j 251 Pae Do 0 o 28 921 g2z EX o o 928
Pax Pa2 Pz 0 0 P36 31 G2 faz O 4 36
o o o b Pus o o0 o o 9aa 945 o
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GROUP 3. ORTHORHOMBIC SYSTEM, C,y, V, Vi (mm, 222, mmm)
' (12 Constants) ' ‘

Puu Pz bis 0 o 0 gu Q12 Gua  © o 0
25 b b 0 o 0 g1 q22 9o o 0 0
Pn P2 B3 o 4 0o I 52 a3 0 o 0
a 4 4 Pas 14 o 0 ) 0 ' 0 0
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GROUP 4. TRIGONAL SYSTEM, cs,

Pu P P Plv4
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'GROUP 5. TRIGONAL SYSTEM, C,y, D,, D;q (3 m, 32, 3 m)
R (8 Constants)

pu P b P
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51 (3, 3) (12 Constants)
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GROUP 6. TETRAGONAL SYSTEM C,; S, Cpp (4 4, 4/m)
(10 Constants)
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GROUP 7. TETRAGONAL SYSTEM
Vas Cyvs Dyy Dyny (42 m, 4 mm, 42, 4/mmm) (7 Constants)
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GROUP 9. HEXAGONAL SYSTEM,
Dyns Covs Py Dy (6 2 m, 6 mm, 62, 6/mmm) (6 Constants)
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' GROUP 8. HEXAGONAL SYSTEM, C,u, Gy Can (6, 6, 6/m) (8 Constants)
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_ GROUP 10. CUBIC SYSTEM T Th (23 m3) (4 constants)
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GROUP 11. CUBIC SYSTEM, Ty, O, Oy (43m, 43, m3m) (3 Constants)
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TABLE II

Pressure direction
Type parallel to cube
face

Pressure direction parallel to
dodecahedral face

0<d <nfd 0<\{r<c‘os—1‘\/% cost Wi < <mf2

I 0< <4 0 <9 <cos~iy/} cos /i< np<nf2
£> ¢ 1> ¥ 7>V

Biaxial planc paral- Biaxial plane paral- Biaxial plane
lel to the cube face lel to dodccahedral perpendicular to

face dodecahedral face
x> 1 sin? Vo= sin? V = sin®? V=
cos2¢d —cos2 ¢ sin n .sin (9 — ) tan 7.tan (\f — 1)
2cos 24 cos ¥
2 0<E < w4 0<y<cos v/} cosly/i< g <nf2
E<¢ <V 7>

Biaxial plane per- Biaxial plane per- Biaxial plane paral-
pendicular to cube ‘pendicular to dode- lel to dodecahedral

face cahedral face face
O<x<l sin? V.= - sin? V = sin?’ V = ’
tan(¢+&).tan(d~—E) tanq.tan (Y — 1) sin g sin (g — )
cos
3 0>&>—n/4 #2>75>cost 4/} cosi4/}>9>0
—&<4¢ (72— ) < ¥ <7 7< ¥

—1 < x< 0 Biaxial plane and Biaxial plane and Biaxial plane and
sin?V as in Type 2 sin?V asin Type 2 sin?V as in Type 2

4 0>&>—n/4 0< 43 poos1. EED
< % cos? ) (x—=1)
- x—1 < V<2
—E>¢ 2> 79 a2 } tan-1 \/—-xl\/2w“
>jtan=! =t —(1 + %)
—(1+2) <7 <2
g >V if 7 < \p for :
V¥ < cos™! /33 yr > cos— (/)
< —1 Biaxial plane and Biaxial plane and Biaxial plane an

sin? V asin Type 1 sin2 VasinType! sin?V asin Type Id
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TABLE IO
DOUBLE REFRACTION OF CUBIC CRYSTALS UNDER UNIDIRECTIONAL
PRESSURE : ‘
Pressure TIBr—I NaCl CaF, KClI
Direction Type (1) Type (3)

Cube normal

Qctahedral
normal

Dodecahedral
normal

+ve uniaxial

+ve biaxial

biaxial plane is the
cube face normal to]
the pressure direc-!
tion.

acute  bisectrix is

parallel to the pres-
sure direction.

2V=2sin—1/\/ x=1
2x

— 81°327

-+ve uniaxial i

Type (2)

—ve uniaxial

—ve uniaxial

—ve biaxial

biaxial plane is the
dodecahedral face
perpendicular to the
pressure direction.

acute  bisectrix is
parallel to the pres-
sure direction.

) —lav=
9V=2sin-A /T=% —
g e (n~25in—1 Lt")
1—x

—49°20 =72°10°

_ {+ve uniaxial

—ve uniaxial

—ve _biaxial

biaxial plane is the
dodecahedral face
perpendicular to the
pressure direction.

acute  bisectrix is
the dodecahedral
normal, perpendi-

cular to the pressure
direction.

Type (4)

+ve uniaxial

—ve uniaxial

-+ ve biaxial

biaxial plane is the
cube face parallel to
the pressure direc-
tion.

acute Dbisectrix - is
the dodecahedral
normal, perpendi-

cular to the pressure
direction.

2V =
(w—25in—1
= 66°46"

x—1

x+1




TABLE IV

STRAIN-OPTICAL CONSTANTS OF CRYSTALS BELONGING TO CUBIC SYSTEM (T4, O, Op, Classes)

Elastic constants

No. Crystal Pu P12 Pun—bi Pas Ref. Reference Remarks
1. Ammonium Chloride 0145 024 - —0-095 0025  (37) 87
2. Calcium Fluoride 0-056 0-228 --0-172 0024  (41) 88
3. Diamond —0-31 009 —040 —0-12 (51) 77
4. Lithium Fluoride 0-02 0-128 —0-108  —0-064 (14) —
—0:107  —0-045 (69) 79 A = 560 mu
0-02 0-130 —0-11 —0.045  (26)
—0-16 (47) A = 550 mp
—0:12. (65) 75
Magnesium Oxide —0-32 —0-08 -0-24 (14) —
: —0:253 —0096  (69) 79 A = 560 mu
- 6. Potassium Bromide 0-22 0171 0049 —0-026 (14) —
0-043  —0'029 (69) 79 A = 560 myu
0-212 0-165 0.047 —0022 (26) — '
0-050 —0-021 (65) 22
7. Potassium Chloride 00595 —00276 (42) 88
0-17 0124 0046 (14) —
0215 0159 005 —0024 (26) —
0-065 (65) 99
8. Potassium Iodide - 0210 0-169 0-04! (14)
0203 0-164 0.038 (65) 80
9. Silver Chloride 0134  —0056  (69) 73
: 0225 —0:075  (23) 73
10, Sodium Chloride 0-1372 0-178 —0-0408 —0-0108 (42) 88
-0-110 0153 —0-043 —0-010 (14) —
—0-045 -(63) 22
11, Thallium Bromo-Iodide (KRS 5) 0-08 0-157  (69) 74 A=610mp
12. Thallium Chloride 0-03 006 (14) 74 Values approximate
13. Thallium Chloro-Bromide (KRS 6) 0-096  (69) 74 A=6l10mp -
- 14, Zinc Sulphide —0-84 (61)&(69) 76
—0-0044 (29) 76 A = 546 mu

8ql
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TABLE V

STRAIN OPTICAL CONSTANTS OF CRYSTALS BELONGING TO CUBIC SYSTEM (T, T Classes)

:3 . Elastic
_LNo. Crystal hu F 20 P13 Das Pu—pPz PP Ré}:::}:lx?ge Constants Remarks
< Reference
1. ALUMS —0-006  —0-064 (46) |
(4) Ammonium alum 038 046 045  —0009 —008  —007  (13) & (26) 85
(6) Chromium alum ~0-009 ~—0-082 —0:07 (9) 84
(¢) Potassium alum ‘ ~0-004 —0:06 (46) 84
0-26 0-34 0-33 ~0-005 —0:08 —0-07 (10) & (26) 84
(d) Potassium ammonium —5:06x 10— —4-51% 10 ~19—1-02x J0-13 9) gi’s only
alum ~ are available.
(¢) Thallium alum 0-43 0-58 0-57 +0-007 —0088 —0:072  (9) & (30) 83
2. Barium nitrate —0-019- ~096 —0-72 (11) 78
3. Lead nitrate —0-019 —0-28 ~0-17 (8) 78
0309 0608 0476 ~—0-039 ~0-299 —0-167 (26) 78 :
4. Strontium nitrate ~002  ~0409 —0-289 9) 78
*5,  Sodium bromate 0-185 0218 0-213  —0-0139 —0-033 —0-028 (38) 86
6.  Sodium chlorate 0173 0258 0-223 —0.0187 —0-083 —0-050 (52) 82
0162 024 0-20 —0-0198 —~—0-078 | —~0-058 (38) 86

¢
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TABLE VI

TETRAGONAL SYSTEM

(Only piezo-optic constants are known. Values are given in units of
Brewsters 10-%cm.?/dyne.)

No. Crystal /381 12 ‘13—1 m 966  T13—qa3 pi{léf}‘g;n?: d
1. NH,H,PO, o - - =177 West & Makas (70)
(ADP) - : : -
—12-1 Willard (72)
8-6 7-9 12.3 —~5-8 —12.2 —1-6 Carpenter (17)
9. KHPO, 0>(di—g)>—03 ~ —11.25 West & Makas
. L (71)




. TABLE vII
HEXAGONAL SYSTEM

; ’ Author and Elastic Constants
No. Crystal pn fas bre Pis Pu n Rueferrer?ce : Reference
1 Beryl 0-0099 0-023 0-0175 0-191 0-313-  —0-152 Pockels (43) (88)
TABLE vl
TRIGONAL SYSTEM
. . - Author - Elastic
No. Grystal  py, D3 bre F1a fu bn Pu fom ; Constants
' . Reference Reference
1. Qalcite 0-095 -+ 0-178 IO-189 0-215 —0-006  0-309 0-01 —0-090 Pockels (45) (88) '
2. o -Quartz 0-138. 0098 0250  0-259 —0-029 0-258 —0:042 —0:0685  Pockels (40) (88)
TABLE IX
ORTHORHOMBIC SYSTEM
Author .
Elastic Con-
No. Crystal py P12 bas b ba bn §2% ba bDaz Pas b5y Des Re?er:'gncc stan?ss llgefe(;:nce
1. Barite 021 024 0-31 0-25 0-16 0-34 019 0275 0-22 0002 —0-012 0:037 Vedam (64) (75, 87)
2, Rochelle —0009 0006 ~—0015 Pockels (44)  (86a)
salt
3. Topaz -—0085 —0-120 —0-083 0069 0:052 0-093 0-065 0-095

0-085 —0-095 —~0:031 —0-098 Eppendahl  (87)
[€29) ,
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TABLE X

RATIOS OF PHOTOELASTIC CONSTANTS

Crystal Pn/ﬁu f’u/ﬁu ‘ Daal (P + D)
]‘ .
NaCl 1-35 & 03 —0-099 | —0-042 4 -004
KCl 0-76 & -01 —0-12 | —0-069 - -004
KBr [ 077 4+ .01 —0-12 l —0-067 4+ -005
TABLE XI

CLASSIFICATION OF CUBIC CRYSTALS OF Ty, O, O, CLASSES

Mueller ' Pockels .

G , G ' ——

&E’;{P (Pr1—p12) Pas Dul(bri—b.2) Ir\IOOITP Sign of X z;%n;( ude
! + + (1 C o+ > 1
! - + @ | + | <1
111 n B . R
v _ _ @) _ o

TABLE XIt

STRAIN POLARISABILITY CONSTANTS

Substance A A A
NaCl 1-24 0-18 0-06
Kl 1.20 | 011 —0-09
Diamond | 1.00 | 1.16 | 288
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(

p.dn

dp

TABLE XIII

) AND ), OF CUBIC CRYSTALS

133

Crystal
LiF

NaCl
KCl

KBr

KI

CaF,
MgO
Diamond
NH,CI
NaClO,
NaBrO,
K alum
NH, alum
Tl alum
Pb(NOQ,),

np

1-392
1-544
1-490

. 1.559

1-667
1-434
1.736
2417

1:642

1-513
1-594
1-456
1-459
1-498
1.782

(

)

01
0-24
0-23
0-35
0-44
0-25

—0-40

—0-28
0-46
0-38
0-42
0-49
067
0-92
1-31

obs. |

|

L-L Equation

Drude Equation

Ao

0.7
0-63
0-61
048"
0-48
0-50
14
1-1
0-43
0-38
0-43
0-06
—0-25
—0-44
—0-25

(g?) calc. A
0-34 ( 0-7
0-45 1 0-47
0-41 0-44
0-46 | 024
0-53 0-19
0-37 0-32
052 18
100 . 128
0-52 | 0-12
042 | 010
048 | 012
038 | —0-28
039 | —0-72
042 |—12
061 | —1-1




TABLE X1V

PHOTOELASTIC DISPERSION IN CUBIC CRYSTALS

Crystal

)

- LiF

KCi

KBr

Ammonium Alum
Potassium Alum

Lead Nitrate

P

589 3A| 5461A

| 0:020 | 0-020 | 0.020
0-215 | 0211 | 0-182
0-212 ! 0208 | 0-194
0-378 | 0-403 | 0-418
0-250 | 0-259 | 0-268
0-309 | 0-348 | 0-398

4358A 5893A

0-130
0159
0-165
0-465
0-330
0-608

bas

br2 2t

5461A | 4358A  5893A ) 54614 | 43584 ¢ 58934
0130 | 0-130 ' l f0.045
0-156 | 0-134 0-024
0-162 | 0-151 0-022
0496 | 0-514 | 0454 | 0479 | 0-497 | 0-009
0-342 | 0-345 | 0-321 | 0-332 | 0-342 | 0-005
0-666 | 0:742 | 0-476 | 0-537 | 0-613 | 0-039

5461A | 4358A

0-051
0-024

'0-022

0-009
0-005
0-045

i 0-068

| 0026 '

0-024

0-006

0-070

0011

e
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*“ Stress optic study of strontium titanate.”
The stree optical coefficients, ¢y;, gqo
gss have been determined for strontium
titanate. The piezo birefringence (g(;-¢5,)
and ¢, was measured between 4200 and
- 7700A while the individual constants were
determined at 5400A. The apparatus
employed, methods of measurement and
sources of error are discussed.

Strontium titanate becomes an optically
negative uniaxial crystal when stressed along
a crystallo-graphic axis and an optically
negative biaxial crystal when under a
crystallo-graphic diagonal stress.




