
PI-IO'TOELASTIC EFFECT I N  CRYSTALS 

1. INTRODUCTION 
A thorough and exhaustive account of Crystal Photoelasticity up to the 

year 19211 is given I,y Szivessy in his article in IJandbuch der Pliysik (62). Since 
111c.n nurncrous papers I~ave appeared on this subject, partly 1)ecause of its iniportnnt 
rr:l;itior~shil) to othcr plierlorneria ljlte the opticill effects arising fsom mccl~nnical 
oscillations in a crystal and the thermal diffusion of light. In this article an attempt 
is matle to summarise the present state of knowledge in this subject both from the 
tlieorctic.al and cxpc.rirncnta1 aspects. 

2. PIIENOMENOLOGICAL THEORY OF PHOTOELASTICITY 
I 

(a) EL'ASTQP AND PEIZO-OPTIC CONSTANTS :-The index ellipsoid 
for any crystnl can be represented by the' equation I 

where n,, 11, and n, are the three principal refractive indices for any wavelength A. 
?'tiis equation is not valid for all wavelengths for crystals exhibiting monoclinic 
and tricliriic symmetry. For these two cases, however, a transformation is ncces- 
sary leading to an equation for the index ellipsoid in terms of six parameters. For 
the sake of completeness we shall use the equation for the index ellipsoid, in the 
general form 

as our starting equation. 
I n  general, a mechanical stress both deforms and rotates the index ellipsoid 

with conseqrrcnt changcs in thc I~ireSringence and in the direction of the psincipal 
axes. In the dcveloprnent of the phenomenological theol-y of photoelasticity it is 
customary to assume that the Fresnel's laws hold good in a homogeneously deformed 
crystal and that tlie differenccs between the optical parameters in tlie dcfolmed and 
the original states are linear functions of the six stress components Xx, YY, Z z ,  YZ, 
ZX, Xy or of thc six strain components x,,y,, z,, yz,. xx, x,. 

If we express the optical parameters of the underformed crystal by ttil ( i ,  j = 1, 
2, 3) and the corresponding quantities in the deformed state by vij then 
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or in terms of stress 
+ .  1 1 ----- - 

[ ~ I I ~ X  + qlZYy + q13ZZ + q14YZ + ql6ZX f q16Xu] 

- 1 1 
'.. -- - -- _ _ - 

[qzlX% + 922 Y~ + qmZZ f qP4Yz + 

, The negative sign in equation (4) arises due to the convention according to 
which stress is taken to be positive when it is compressional and negative when 
extensional, while the strain components are positive for elongation and negative 
for compression. In other words a positive strain corresponds to a negative stress. 

The first group of constants Pi, are called the Pockels elasto-optic constants 
and the second group, qi, the Pockels piezo-optic constants. They are related as 
follo\vs. 

6 6 

pij = ?qikcs ; qij = ?jikskj ( 5 )  , 

where ckj and skj are the elastic constants and moduli respectively. The set of 
5t; constants composed of the Piiys and qij3s completely define the behaviour of a 
cr\.stal when subjected to known strains or stresses. Only in the crystals of lowest 
synlmetry do all the 36 constants have values differing from zero. The number 
decr~ases with increasing symmetry, becoming 20 for monoclinic, 12 for ortho- 
rhon:bic and so on. The number of independent constants and the scheme for the 
variovs crystal clnsscs are entered in Table I. The schemes given in Table I are 
thosc cjf Pockels wllich have been reviikd 1,y Bhagavantam (4). In the first scheme 
pub1isht.d by Pockels in 1897 some serious errors existed for the crystal classes 
C3, S,, qh, C,, Csh, C4, S4, Cdh, T and Th. These important corrections were made 
by Bhagavantam and have been confirmed by group theoretical mettotls (Bhaga- 
vantam 4, 7 ; Jahn 27) and zlso experimentally (5-13, 37, 38, 51). Here it may be 
mentioned that if one were to adopt Raman's (55) new theory of elasticity the num- 
ber of independent pllotoelastic constants for a triclinic crystal will be 54 instead 
of 36, and this number will again be reduced with ascending symmetry of the 
crystal. 

The first three equations in formulae (3) and (4) expresr changes in the principal 
velocities which the crystal experiences on deformation and these can be measured 
by the usual methods by making observations with the incident light having its 
electric vectors parallel to the three axes of the undeformed crystal. The Iast three 
equations represent a rotation of the principal axes of the ellipsoid on deformation. 
This rotation is determined by measuring the change in refractive index under stress 
with the incident electric vector perpendicular to any one of the axes and bisecting 
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the angle between the other two. From the change in length of the corresponding 
radius vector of the ellipsoid, the amount of rotation can be calculated. Thus by 
measuring the changes in the principal refractive indices and the rotation of the 
principal axes for various directions.of pressure and observation, one gets a system 
of linear equations in qi, in terms of measurable quantities, from which qi, and hence 
pi, can be evaluated. From a knowledge of qij and Pi* the three principal refractive 

- indices and the orientation of the principal axes of the deformed crystal can be evalua- 
ted as follows :- 

( h )  THE POSITION OF THE OPTICAL SYMMETRY AXES AND 
TEE PRINCIPAL REFRACTIVE INDICES OF THE DEFORMED 
CRYSTAL :-Let the direction cosines between the optical symmetry axes of tke 
undeforrned crystal X"Y"ZO and the axes XYZ, to which XOYOZO are transformed 
on deformation, be given by the adjoining matrix. 

IX Y z 
x0 / dl 81 Y l  
Yo dz 8z Yz 
zo 1 d:3 83 n 

I 
Then the six polarisation parameters - of the deformed crystal are given Ly 

phkL 

F ,r. 1 (7) and the orthogonality relations 

a,bl+n,b,+a,h3=0, n # b ( a , b = d , P , y )  (8) 
I a = b 

WL get 

1 1 1 1 1  1 ' 1 1 1  --- -- ,, - .--, are of the same order 
- * > - -  - - vIl2 nIl2 ' vZz2 n8, Y~~~ . n33a ' v~~~ ' Y31 p12 

of magnitude as the deformation and hence very small compared to 
1 1 1 -  

" ? ' Q ' s B '  
It  can then be shown that the direction cosines are given by 
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When the direction cosines have been determined as above, the principal refractive 
indices can be calculated from 

Denoting the small rotations which the principal polarisation axes experience 
with respect to XO, YG, 2" by +,, #y, qz  we get 

- - - - 
v31': 

'"a ; tan 2+, = I - tan 241, = ~ 1 2 ~  tan 241x = 1 1 '  1 1 ' (12) 

Through the combination of the three individual rotations (Eqn. 12) one obtains 
the total rotation which the principal axes of the crystal experience on deformation. 
In biaxial crystals &, 41y, +, are in general, very small and hence it is immaterial in 
which order the successive rotations are carried out. But in the case of uniaxial 
crystals the rotation about the optic axis (say +,) will be finite, due to the fact that 
the denominator and numerator are of the same order of magnitude in the equation 
for 4, (Eqn. 12); on the other hand, +, and 4,. will be small to a,first degree of 
approximation. In such cases the rotation about the optic axis +, must be carried 
out first. 

(c) BEHAVIOUR OF CRYSTALS UNDER UNIDIRECTIONAL PRES- 
SURE :-Let us now col~sider ill some detail the various optical properties of crystals 
under unidirectional pressure. To start with the simplest case namely cubic 
crystals of Td, 0 ,  O h  crystal classes equation (4) can 1,e written as 

where 

91 = 911 - 912 = ~ P I L  - 612) (s1z - SIB) 
4'3 = 912 = @11S12 f b12 ( ~ 1 1  f ~ 1 2 )  (I4) 
9s = 944 = P44 $44 - .  

C.P.-14 
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For any gcncral direction or pressure the crystal will become biaxial and the optic 
axial angle 2V is given by 

1 /vl') - JIY;~ 
sin V = 

1 /v lr  - 1 /vBL J- 
where y,, v,, v, are the principal refractive indices of the deforn~ed crystal. I t  is sren 
from equations (13) and (1 1) that ( I  /v,a - 1 /Y. ,~)  and (1 /vI2 - I/%?) are homogc- 
neous liltear functions of tllc prcssure. Their ratio and hence the optic axial 
angle and the position of the principal axes of the deformed crystal are 
independent of the magnitude of the pressure, for the same type of stress distribu- 
tion. Pockels (44) has sliown that as long as the direction of the principal axes 
and the optic axial angle are concerned the photoelastic bel~aviour of t h e ~ e  
crystals depends only on the direction of pressure and constant )( = q,/q,. According 
to Pockcls the cornplctc destription of the optical behaviour of cubic cxystals (of 
classes ?'a, 0 and Oh) ilridct ~~niclirectional preysures in different directions can bc h;~d 
if one allows tile I)rcss1lrc cli~cction P to run through firstly (i) hair a quadrant of a 

a cube face (say rronl [I001 direction to the [I101 direction) and thcn (ii) a quadrant 
froni the [ I  101 to the [OOlJ dircction. It is clear from symmetry as a150 from cqua- 
tion (13) that two principal axes of polarisation lie in the first case in the plane X",Y0 
and in the second case in the plane ( 110 ) . If we represent the various angles 
involved Ly the following symbols. I 

9 - the angle between the pressure direction P and Zo 
4 - the  angle between X" and the projection of P in the plane Xo Yo. 

E - the  angle between Xo and one of the principal axes of the deformed crystal 
in case ( i )  

q - the angle l~etwcen Z0 and one of the principal axcs of the dcrormed crystal 
i11 caw (iil 

then according to Pockels 
4% sin 2 9 - -- tan 2E = X tall 26  ; tan 2 7 = 1 - x .+. (3 .+ X )  cur 2 9  

When once and q are determined by this equation, the principal refractive indicrs 
and lience the optic axial angle can easily be determined as rxplaincd previously. 
The forrnulne for the latter are given in Table I1 along with 11!c corresponcli~lg 
positions o C  ttie 1)iaxi;ll plane for various values of X ,  4 and 9. It is clear that ttie 
optical clTc~t of unidirectional pressure on tl~ese cubic crystals depends on the magni- 
tude and sign of X. TIle [our possible cases havc been listed in l'i~l)lc IT. Furthrr 
from the expressions for 2V, we find that 2V vanishes for types (1) and (2) for 4 = 0 

1 
or + = 0 or 9 - COS-l --- cvl~ereas for typcs (3) and (4) 2V vanishes for 

4 3  
1 

I/P = cos-1 -- and becomes 180" for 9 = 0. In other words, these cubic crystals 
4 3  

of all the four types become uniaxial by unidirectional pressure parallel to a cube 
normal, or to an octahedral normal. 

One  sided pressure in any other direction makes the cubic crystal biaxial, and 
one of the principal axes of the strained crystal coincides with the pressure direction 
only if the latter is perpendicular to a dodecahedra1 face. Table I11 gives the optical 
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behaviour of four typical crystals, (belonging to the four different groups) for various 
' 

. directions of pressure. 

The phenomena in the case of the cubic crystals of T and Th crystal classes are 
slightly more complicated because for these crystals q,, and q,, are not equal to each 
other as in Td, 0, Oh classes. Consequently the crystal becomes biaxial even by 
a simple compression along a cube axis, with one of the principal axes coinciding 
with the pressure direction. From (4) it can be seen that for unidirectional pressure 

1 1  1 
along a cube axis (say XO), ,, -2 and vanish and hence the principal 

Y23 731 
axes do not experience any rotation. If q,, > q,, (as is the case with all  he crystals 
studied thus far in these crystal classes) the biaxial plane wilI be X 0 0 Y 5  and the 
optic axial angle 2V is given by 

sin V = 412 - (113 

411 - 413 
from (1 1). Again we see that this is independent of the magnitude of the pressure 
as in Td,  0 and O h  crystal classes. 

If now the crystal is stressed along the normal to a dodecahedra1 face, the crystal 
becomes biaxinl just as crystals of Td, O,'Oa classes, but with one important diEerence, 
in that the principal axis of the deformed crystal does not coincide with the direction 
of pressure as in the latrer crystal classes. And the angular displaceinent 8 of the 
principal axes from the direction of stress, can be shown to be 

- 
tan 20 = %...&3 

5 9 4 4  
(18) 

In fact Bllapvantam and Suryanarayana (10, 11) have used this tilt of the 
principal axes for ditinguishing T and T h  classes from the Td, 0, Oh classcs. 

By the methods outlined before it can be shown that crystals o f T  and Th  classes 
will I~ecome uniaxial only when the pressure is applicd along the normal to an octa- 
hedral face. For all other directions of pressure the crystal lxcomes biaxial. 

In  concl~rsion one can state the following as a general rule app1ical)le to all tile 
five classes of the cubic system. A pressure applicd along any trigonal or tctrngonal 
axis of symmetry makes the crystal optically uniaxial with the pressure direction as 
the unique axis and a pressure applied along any other axis makes the crystal biaxial 
(Bhagavantam and Suryanarayana 10). ' 

The above r~ l l r  is v;llid for ~~niaxial crystals as well. As car1 I)c srrli flo111 Tnl~lc I 
and (4) a ulliclirectional pressure along the Z-axis or ally uriiaxial crystal does not 
rotate the principal axes (since q4, = q,, = q,, = 0). Furtller as q,, = qI3 the 
principal refractive indices yl and y, of the deformed crystal will be maintained 
equal. I n  other words, under unidirectional pressure the uniaxial crystal becomes 
biaxial unless the pressure direction coincides with the optic axis. Let us now consi- 
der in detail the particular case where the pressure direction is normal to the optic 
axis 2". In addition if it were to coincide with one of the crystallographic axes 
(say X" axis) then the hiaxial angle of the deformed crystal, to a first approximation 
is given by 

sin V =. 
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where n, and n, are the ordinary and extraordinary refractive indices of the undeform- 
ed crystal. Unlike the cubic crystal we see that the biaxial angle is proportion.al 
to thc squarc root of the prcssure. For all crystals excepting those belonging to 
Group VII of Tal~le I one of tlie bisectrices would not coincide with tlie optic axis 
of  he urldcli)rmctl crystal, but would 11e rotated slightly from this position by an 
angle determined by the first two equations in (12). Further the position of the 
biaxial plane is determined by q,, q,,. If q,, < q12, the binormal plane is parallel 
to the prcssure direction for a positive uniaxial crystal and perpendicular to the 
pressure direction for a negative uniaxial crystal. When q,, > q,, the.behaviour 
~ o u l d  be the opposite. 

For biaxial crystals the pherion~cna are naturally more complex; but when 
once all the ,hij's or qilYs havc bcen determined, the position of the axes, the biaxial 
angle, etc. of the crystal under unidirectional pressure of any orientation can be 
worked out by the methods described in Sec. 2 ( b ) .  

(d) CRYSTALS UNDER HYDROSTATIC PRESSURE:- If in equation 
(4) we introduce the condition that Xx = Yy = Zz = P, Xy = Y ,  = Zx = 0 then 
the left hand side of the equation gives a measure of the change in the principal ' 

velocities and also of the rotation of the principal axes of the crystal under hydro- 
static pressure. Again, as outlined in Sec. 2 ( b )  the various properties of the de- 
formed crystal can be evaluated from a knowledge of P,,'s and q,,'s. 

I t  is interesting to note from the schemes given in Table I that all crystals 
excepting those belonging to the monoclinic and triclinic systems do not experience 
rotation of the principal axes on hydrostatic pressure. This is true in spite of the 
fact that some of these groups like IV, V, V I  and VII I  have coeilicients like q,,, 
q,,, q,, etc. One also notices that a cubic crystal remains cubic and a uniaxial 
crystal uniaxial under hydrostatic pressure. 

3. EXPERIMENTAL METHODS 

(a) OPTICALLY INACTIVE CRYSTALS 
The various methods that have been adopted for the complete determination 

of the pho~oelastic constants may be broadly classified as follows :- (i) Relative 
retardation methods, ( i i )  Interference method and (iii) Ultrasonic diffraction 
method. In the first two, the changes in the optical properties of the crystal under 
compression are measured, while in the third the ratios of the photoelastic constants 
are oljtained from a study of the polarisation characteristics of the light diffracted 
by ultrasonic waves in the crystal. As complete details of the experimental 
arrangements are given in various publications (10, 49, 52, 63, 66) only some 
general remarks are given below. 

ji) RELATIVE RETARDATION METHODS :- The crystal specimen of 
suitable orientation is subjected to a unidirectional stress and the change in the rela- 
. tive retardation producedby stress, between the rays with electric vectors parallel and 
perpendicular to the direction of stress, is measured by the usual techniques employing 
Babinet compensator etc. One important condition that must be satisfied to obtain 
reliable results from these measurements is that the stress distribution in the specimen 
must be uniform. This is usually achieved by making the length of the experimental 
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specimen, which is also the direction of pressure at least three times the breadth, 
and by confining the measurements to the middle of the specimen. Normally 
measurements are carried out at a large number of points and the average value 
is taken for the evaluation of the photoelastic constants. Lead spacers are sometimes 
employed on both sides of the specimen as the medium for the transmission of stress 
from the compressing apparatus to the specimen. Lead is found to introduce. 
additional shearing stresses in the specimen (Coker and Filon 18) while card board 
or paper is found to be very satisfactory (20). 

Stresses of the order of 100 Kg./cm.%re normally employed in these experi- , 

illents and within this range the law of proportionality (Brewster's law) is found to 
hold good in general except in a few cases like alkali halides, (Maris 32) AgCl 
(Goodman et a1 23). In  these cases even stresses of the order of 10 to 50 I ( g . / ~ m - ~  
produce translational gliding and thus lead to irreversible effects. 

Recently Ramaseshan and Chandrasekharan (57) have evolved a new method 
of measuring small birefringence usually encountered in photoelastic experiments by 
measuring the decrease in the apparent Fafaday rotation with stress. This method 
has been further eIaborated and perfected (54, 56j so that this method is now capa- 
ble of measuring the dispersion of the mechanical bireii-ingence very accurately 
even though the absolute values at any wavelength may not be as accurate as the 
Babiriet compensator measurements. The application of this method is however 
normally limited to cubic crystals. 

Theoretical expressions relating the birefringence produced by stress to the 
piezo-optic constants can I J ~  easily tlerivcd from equation (4). For cx:lmpIc, con- 
sider tlie case wllen t l~e  pressure is applied along [he X-axis and tlle di~ection of 
observation is 2. Then the relative retardation between the two rays polarised 
parallel and perpendicu1;ir to the direction of stress is given by 

The second term on the right liand side represents the birefringence introduced 
due to the change in thickness of the specimen due to the pressure P. I t  is seen 
that the mechanical birefringence is a linear function of the two constants q,, and q,,. 
Thus observations made purely on the birefringence produced by stress cannot 
yield the absolute values of q,, and qZl. In general similar reasonings hold for other 
q 's. il 

(ii) INTERFEROMETRIC METHODS:- In this two plane parallel crystal 
plates of the same orientation and dimensions are kept in the two beams of a Jamin 
interferometer. When one of the prisms is subjected to a unidirectional stress the 
interferellce fringcs shift due to the changes in the tliicluless and t l~c  refractive 
index of the specimen. From a study of the shift of the interference fringes for 
light polarised parallel and perpendicular to the direction of stress, the changes 
in the refractive index can be evaluated after making due allowarlce for the change 
in the thickness of tlie specimen. An important modification of this method has 
been described by Kamachandran (49) which has bcen used for all recent inter- 
ferometric measurements. In this, the shift of the localised Newtonian fringes 
formed between the two surfaces of the crystal specimen is measured for a knolvn 
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unidirectional stress. From this the photoelastic constants can be evaluated after 
taking into consideration the additional path retardation introduced due to the 
thickness change. 

Recently Vittoz (67, 68) has described a method of measuring optical path 
differences accurate to A/IOOO. The method of measurement is based on the explo- 
ration by means of a photoxnultiplier of the FraunhoEer diffraction pattern produced 
by three similar slits illu~rlinated I,y a monochromatic parallel beam. Before being 
incident on the slits the light traverses three identical cubes of the specimen, of which 
the central one is subjected to stress during a measurement. A comparison of the 
lumitlous fJ11x at a ccrtairl point of the diffraction pattern due to the thrce beams, 
with the inlcr~sity at the S T ~ C  plnce of the pattern due to the two lateral brnms 
alone, yields a very accurate measure of the variation of the optical path in the 
central hcnrn. 

In  all thcsc nlcthotls thc precautions to be observed for ol~taining uniforln 
stress (Iis~ril)~rtio~l in tht: ?~)c'(.il~lcn are t11e s;lIne xs d~scribed in Scction 3 (i). IIcre 
again the rc1;ltions 11ctn.cc.n th(: o1)scrved changes in refractive i~ldiccs and the . 
piczo-optic constants can easily 1)e tierived from any of the equations (4). For 
example l i~ r  the pxrticu1;tr case rnentioncd in Scc. 3 ( i ) .  

71322 An,, = 2- q,,P ; anz2 = -- qI2P. 2 

'Thus by measuring the absolute changes in ~efractive indices for various directions 
of pressitre and observation, one obtains a number of linear relatiorls between qi,'s 
in terms of measurable quantities,from which all qil7s and hence Pij's can be evaluated. 

(iii) ULTRASOMC DIFFRACTION METHODS :- An elegant method 
in whic!i the uncertainty of nonluniform stress distribution is altogetller eliminated 
has been devised by Muellei- (35). In this method plane polariscd light of suitable 
orientation is diffracted by progressive or stationary ultrasonic >vaves in a crystal ; 
and the azirnutl~ of the polarisation of the diffracted beam with respect to that of 
the incident beam is determined by an analysing nicol. From a study of the rotation 
of the plane orpolarisation of the diffracted light and its dependence on the amplitudr 
or the intensity of the sound wave, the ratios of the elasto-optic constants can be 
evalrratcd [Mrrcller (35), Galt (22), Vedam (63)]. In recent years the rnetl~od has 
been cxtcnsivcly used for the case of cubic crystals. For the less symmetric crystals 
upto orthor11omt)icsystenl this method can also be used lor a few particular directions 
of obscrvntion and propagation of ultrasonic waves in the crystal. For any general 
direction of pro1~ag;~lion of the r~ltrr~sonic waves and observation the rquatioxls 
illvolvcd arc too complicated to 1)e of any use even in the case of cubic crystals. 

( b )  OPTICALLY ACTIVE CRYSTALS 
It is obvious that the above methods cannot be directly used in the case 

of circularly or elliptically birefringent crystals. This is because, in these crystals 
the only vibrations that are propagated without change are circularly or elliptically 
polarised vibrations and not linearly polarised vibrations as in the case of linearly 
birefringent crystals. The actual computation of the changes of the optical 
characteristics of these crystals on deformation, are extremely complicated if one 
were to use the electromagnetic theory of the propagation of light in crystals. Even 

. -- .-. - 
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so, using this method, Pockels (40), who was .the first to study the photoeIastic 
' 

. behaviour in such crystals, did succeed in evaluating all the constants for quartz. . 

Recently Ramachandran and Chandrasekharan (52) have determined the 
photoelastic constants of NaCIO,, making use of the PoincarC sphere concept of the 
propagation of light in an optically active crystalline medium. This method com- 
pletely obviates the necessity to use extremely cumbersome algebraic formulae. 
Swce does not permit us to give a full description of the Poincard sphcre and its 
particular utility in photoelastic studies in optically active media but rrfcrcnce may 
be made to the various publications on this topic (52, 54). 

Here again the method essentially consists in (i) determining the linear bi- 
refringence produced by a kno~:.i~ stress by measuring the changes in the polarisation 
characteristics of the light transmitted by the deformed crystal (ii) and by measuring 
the ratios of the ?hotoelastic constants by the ultrasonic method. For the latter, 
Mueller's theory and also the experimental technique have to be suitably modified 
to take into effect the optical activity of the medium (Vedam and Ramachandran 66). 

I n  the relative retardation measurements the accuracy obtainable is chiefly 
dependent on the uniformity of stress distribution. However, under favourable 
conditions one can get results accurate to 1 % or even better. On the other hand, 
in the interferometric method, tlie accuracy of the results is rather discouragingly 
poor for the li)llowing reasons. In  this method, the major contril~ution to tlte 
path retardation is due to the change in the tllickness of the specimen and 
hence the change in refraction which is the object of the investigation, is obtained 
as a snlall cliff<-rcnce betwccn two large quantities. Further, the tl~ickncss cl~ange 
itself cannot be evaluated accurately, for the elastic moduli st! (i,j  = 1,2,3) on which 
the thickness change depends, are usually had with an error of 10% or more. Thus 
evcn tllough one can determine the absolute path retardation to h/1000 (Vittoz 68) 
the value of the piezo-opfic constants evaluated is susceptible to a quite large error. 
However, since this error due to the thickness will be constant, for a study of the 
dispersion of the photoelastic constants the method described by Vittoz would be 
found very suitable. Using the ultrasonic method measurements have so far becn 
carried out visually and the accuracy obtainable is not very high. However, with 
the aid of photoelectric devices, one can obtain the ratio of the photoelastic constants 
to within 0.5 % or even better. 

4. DISCUSSION OF RESULTS 

A glance a t  the tables reveals immediately the marked disagreenlent between 
the values of various authors for the same crystal. As has been mentioned before, 
the accuracy obtained in the values of the absolute constants is not very high- 
But one might expect tolerable agreement within reasonable limits of error at least 
between the values of (PI, - plr), andpd4 which are determined directly from relative 
retardation measurements. Again we find the discrepancies between the results 
far exceed the experimental errors. From a series of experiments carried out in 
this laboratory (Vcdam) it is found that the experimental values are dependent on 
(a) the inequality of the stress distribution in the specirnen during static measure- 
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ments (6) conditions under which the crystals were grown and annealed (c) previous ' 

thermal and elastic history of the specimen and (d) the impurities, defects and dis- 
locations present in the crystals. In this connection, mention may be made of the 
observations of Ballard et a1 (1) on the large variations of the mechanical and optical 
properties of air grown and vacuum grown LiF crystals. The refractive index and 
optical dispersion of KBr is also found to vary markedly from specimen to specimen 
(Rodney and Spindler 59). Further, it is well known that the values of the elastic 
constants of any crystal determined by various authors, do not agree amongst them- 
selves. As the values of the elastic constants used in photoetastic studies by 
different workers are different from one another, it is not surprising to find that 
discrepancies are exhibited in a pronounced form in the photoelastic constants. 
It  would have l~een prercral~lc if each observer had mentioned in his paper the 
actual values of the elastic constants used in the evaluation of the photoelastic 
constants. In spite of thc limitations mentioned above, a few general observations 
can be made regarding the pliotoelastic beliaviour ofcrystals. 

As was mentioned earlier, Pockels (42), purely from the phenomenologicai theory . 
predicted that four possible types of cubic crystals of Td, 0, Oh classes exist (Table 
11) depending on the sign and magnitude of X. He could get experimental evidence 
for the existence of crystals belonging to the second, third and fourth groups. Mueller 
(34) on the other hand classified cubic crystals af these classes into four possible 
groups purely from the signs of (PI, -PI,) and P,, as is shownin Table XI. Tlie 
classification of Pockels is also given in the same table for comparison. There seems 
to 11e a tendency amongst workers in this field to identify the four groups ofMueller 
with the four proposed by Pockels. From Table XI, one notices that Pockels' classi- 
fication not only dependson the signs of (PI, - PI,) and!,, but also on their respective 
magnitudes, and on the magniiudes of the elastic constants. This difference 
in the classification is brought out very clearly in NH4C1 which belongs to group I11 
according to Mueller but to group (4) of Pockels since for this substance (p,, - PI,) 
= -0.095, ~44=0~025,s.,4/(sl,-s,,f = 147131.6 and hence% =-1.2. It  seems that 
as far as the complete description of the optical behaviour of crystals under stress 
is concerned PockeIsY classification is more useful. 

Purely from some arbitrary limits of a few parameters pet from data on crystals 
like MaC1, KC1 and glasses Mueller (34) made some very general concIusion~ about 
the claqsification of cubic crystals by photoelastic means. He predicted that crystals 
of the NaCl type, such as K, Rb, NH, halides and the bivalent salts BaO, CaO, etc. 
would belong to group IV while the Li and Na halides would belong to group 11. 
Recent measurements on KBr, KI, LiF, AgC1, have confirmed the above predictions. 
He also stated that the crystals of the CsCl and CaF, type should belong to group 
111. This has been found to be true in NH,CI, a crystal belonging to the CsCl 
type. However, West and Makas (69) have found that thallium halides (CsCI 
type) actually belong to group I, i.e., they behave like positive uniaxial crystals when 

_ strained along the [I001 and [I 11) directions. These crystaIs belong to group (1) 
of Pockles as well and indeed are the only examples for this group for which experi- 
mental evidence was lacking so far. Since lead glasses of high refractivity are known 
to show positive birefringence, one could naturally expect a similar behaviour in 
such highly refracting substances lik 

\ 
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: Further, according to Mueller, all crystals of the ZnS and Na,O type should 
belong to group I11 irrespective of whether the binding is homopolar or ionic. The 
existing data for the photoelastic constants of diamond and for fi, of ZnS do nqt 
support Mueller's predictions which need some modification (Burstein and smith 
15). However, the agreement in the case of NH,Cl tuggests that more experimental 
data are necessary to clarify this question. It is not out of place to point out here % 

the enormous discrepancy between the two experimental determination? of p,, of 
ZnS. While West and Makas (69) using Schramm's (61) data find the p,, value 
to be the largest on record, Kara, Mathieu and Poullet (29) find it to bc the least. 

Some of the other interesting results that one notices is that the values of 
(PI1- Pis) and p,, for KCI>I<Br> KI. I t  is very interesting to note that as AgCl 
resembles KC1 (as the radii of Ag and ]EL ions are nearly the same), photoelantically 
it behaves like KC1 and KBr and b e l o n ~  to group IV. MgO is the only crystal 
which has negative values of both p,, and PI, while diamond has a -ve value for 
only PI,. The exact significance of these results will become apparent when they 

'are examined from the point of view of Mueller's theory as has been done in the 
next section. 

Amongst the isomorphous nitrates of Ba, Sr and Pb, (PI, -PI?) and (pll - p13) 
are much higher for the Ba salts than for the others. But this type cf anomaly 
is found to exist in other properties like melting point, elastic constants, thermal 
expansion, solubility, magnetooptic anomaly, etc. The reason for this behaviour is 
probably due to the presence of slight covalent binding in Ba(N03), wi~ich is indi- 
cated by the appearance of the lattice lines in its Raman spectrum more intensely 
than those for Pb and Sr nitrates, (Couture and Matllieu 19). 

In  potassium alum, where the refraction is mainly due to the oxygeiis of SO, 
ions, the symmetry of this group comi~incd with t l ~ c  small elastic ani~otropy makes 
the ptlotoela~tic anirotropy very small. Amongst the crystals of Th class thallium 
alum alone has positive values of p,;. 

A comparison of the results of NaCl and NaCIO, shows that the magnitudes of 
tile photoelastic constants are very similar to each other. This is obviously due to 
the fact that the NaCIO, structure is based on slightly distorted NaCl lattice and 
the refractive indices of the two are also nearly the same. 

Even though five out of the seven qij7s of the tetragonal system (group 7 of 
Table I) and also a linear term involving the remaining two constants can be deter- 
mined purely from relative retardation measurements, values are reported for only 
two crystals, namely ADP and KDP. Further as all the qilys have not been 
measured, the Pij's could not be evaluated and hence only ql> have been reported 
in Table VI. 

- .  Beryl of the hexagonal system, quartz and caIcite of the trigonal system are 
the only uniaxial crystals for which complete data are available. The various pre- 
dictions deduced from the phenomenological theory mentioned in Sec. 2 have been 
experimentally verified in all these crystals by Pockels. For a unidirectional pressure 
applied normal to the optic axis, these crystals become biaxial. In  addition, if the 
directions of applied pressure coincides with one of the crystallographic axes, the 
biaxial angle 2V can be calculated using eqn. (19) and for a pressure of 1 Kglmm.2 

c.P.--15 
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they have the following values:-beryl 6'1 5', quartz 5'54', calcite In 30'. The  optic 
axial angle in the case of deformed quartz has been directly measured by Pockels 
(40) and Beaullard (3) and the values are in very good agreement with the calculatcd 
values. 

Amongst the optically biaxial crystals the photoelastic behaviour of topaz (21) 
and halite (64) both crystallising in the orthorhombic holohedral class has been 
reporttd. I t  is wen from Table (IX) that the wide disparity between the elastic 
constants of these two crystals is reflected in the phbtoelastic behaviour as well. 
The pir$ of topaz are in general much smaller than those of barite. On applying 
hydrostatic pressure, tile principal refractive indices of both these crystals are found 
to increase. In topaz tlle optic axial angle increases on hydrostatic presmre while 
the opposite effect is found in barite. I t  may be pointed out that while the acute 
bisectrix in topaz is the c-axis that in barite is the a-axis. 

A survey of the results given in ~ a b i e s  (IV to I?() for all systems reveals that 
Phb (h ,  k = I ,  2,3) of ionic crystals are in general, of the same order of magnitude 
and are much larger than ( I  -- 4, 5, 6) ; but such differenccs in values do not 
exist in covalent crystals like, diamond, topaz and MgO. 

An exceedingly interesting point that has emerged from the studies on quartz 
by Pockels (40) and on NaClO, by Ramachandran and Chandrasekharan (52) is 
that the rotatory power of the substance is sensibly constant in the range of stress 
usually employed in photoelastic studies. 

We shall next mention, in passing, the relationship of the photoelastic proper- 
ties of crystals with other closely allied phenomena. Since both on the application 
of compressive stress and on lowering of the temperature, the specific volume of a 
substance diminishes, i t  vuo~$d be interesting to enquire whether the changes in 
refractive index for identical change? in volume produced by these effects would be 
the same. Calculations show that they are not and in fact in some crystals even 
the signs of the refractive index changes are opposite in the two cases. This indicates 
that a factor affecting the refractive index purely caused by a change in temperature, 
is operative in addition to that due to a change in the lattice dimensions. The 
existence of this factor was discovered as early as 1902 by Pockels but a satisfactory 
explanation of the phenomenon has been developed only recently by Ramachandran 
(49, 50, 53). 

The phcnomcnon of photoelasticity plays a significant role in thermal scattering 
of light in crystals. [M~tellcr ( 3 9 ,  Chandrasekharan (17a)l. Due to the existence 
of elastic waves of thermal origin in a solid, say in a cubic crystal, each element of 
volume gets deformed and hence the optical polarisability of each ion in the element 
becomes anisotropic. The numerical computation of this anisotropy factor intro- 
duced in the polarisability of each ion by both longitudinal and tran'sverse waves 
in NaCl has been worked out by Marck and Taurel (31) using the elasto-optic con- 
stants of Pockels. 

5. THEORY OF PHOTOELASTICITY 
No review on the subject of phatoelasticity would be complete without a 

=ference to the various theories that have been put forward to explain this pheno- 
menon. In this section we shall briefly deal with the general theory deveIoped 
- d ? L - -  - - -. 



by Mueller (34) of which earlier attempts by Banerjee (2) and Herzfeld and Lee 
(24,25) form a part. When a solid is stressed its symmetry is altered and the calcu- 
lation of photoelastic constants is based on the evaluation of the changes in (1) the 
Coulomb field, (2) the Lorenz-Lorentz field and (3) the intrinsic polarisability of 
the ions. As these computations are extremely complicated for cry~tals of lower 
symmetry, the theory has so far been worked out only for isotropic solids and cubic 
crystals. 

The contribution of the ~bulornb  field to the refractive index of an undeformed 
cubic crystal is zero by virtue of its symmetry and wauld be significant only when 
the crystal is deformed anisotropically. The changes in the Lorentz field, however, 
are dependent on the alteration of both the density and the symmetry. For example 
when a cubic crystal is subjected to hydrostatic pressure, while the contribution of 

.the Coulonlb field lo the change in the refractive ipdex would be zero, that due to 
the Lorentz field cannot be neglected. When a cubic crystal is unidirectionally 
stressed along the cube normal, the deformation reduces the crystal symmetry to a 
tetragonal one, causing anisotropy in the Coulomb and the Loientz fields. The 
effects of these can be evaluated by using Bragg's method of calculating the 
birefringence (Banerjee) or the Lattice sum method of Madelung (Herzfeld and 
Lee) or from Born's theory of crystal lattices (Mueller). 

However, the third effect, namely, the changes in the intrinsic s~tomic polarisabi- 
Iities due to the strain cannot be computed so easily since it requires a knowledge 
of the optical strengths, the polarisabilities and also strain-polarisability constants 
of the ions. While attempts have been made to evaluate the former two, there is 
no way as yet for obtaining the strain-polarisability constant from fundamental 
considerations. This is because, in an elastically deformed solid, there is a distortion 
of the arrangements of the atoms, which strengthens some of the chemical bonds 
while weakening some others. 1 t . i ~  most natural to expect that this in its turn 
would alter the electronic configuration of each atom. I t  should be possible in 
principle, to calculate the changes in the optical polarisability with the aid of quan- 
tum mechanics. Unfortunately- this has not been possible as we do not know the 
state of the electronic atmosphere even in a simple undeformed crystal. However, 
an estimate of the strain-polarisability constant can be had from the measured values 
of the photoelastic constants and from the values of Lotentz and Couiomb contri- 
butions calculated from Mueller's theory. 
' We shall give below in the briefest outline the results of Mueller's theory. 

(a)  LORENTZ FIELD IN STRAINED D* LATTICES :-In a D lattice 
let the elementary cell contain seyerd different atoms at positions r l ,  rk ...... etc. 
When a light wave is incident let the components of the moments induced in the 
ions be pix, pkx ...... ; ply, ttky .-.... ; mz, p k ~  .. . .. . etc. along the x,g and z direc- 
tions. The field at the atom i due to all the other dipoles, in the undeformed state 
is given by 

437 
Fix = Ex f - I: Likx Nlrx pkx 

A k 
(20) 

----  - - . - -  - - - - -p 

* In diagonal or D lattices the atoms of thc elcmeniary cell arc located on the body diagonal 
of the elementary cubc. The farc ant1 bocly ccnttcd cul~tc l a ~ ~ i c c s  01 NaC:l, CaCI, C.rIZ,, ZnS and 
Jianlond arc D lattices. 
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where A is the volume of the elementary cell, Nk the number of atoms of the kfnd 
kin it and xLikx is the Lorentz factor which would be 113 for the crystal in the un- 
deformed state. When the lattice is deformed by a strain 2, the above equation 
becomes 

L 47: 
Fix = Ex i - 2 Nkx pxk (113 + s i k ~  ~ z )  n (21) 

Lix which to a first degree of approximation, is where six = - -- 
d z z  

Similarly for a shear, 

x x P  =; - y y l  = xy/2 

Mucllcr llas nurricrically cvaluatcd the valucs of Likx, sjkx, siIrxf for various D 
lattices for kriown valucs of slriall deformation. I t  must be mentioned that no ' 

account is tnken here of thc " irirler displaccmel~ts " of atoms of the crystal which 
are responsi1,le for the piczo-clectric effect and also for the invalidation of the well- 
known Cauchy relationships. This effect has been neglected as the mngnitucle of 
these displacements are not known. 

( b )  THE COULOMB FIELD :-Under the influence of the light wave with 
the electric vector in the X direction the atom i becomes an oscillator which can be 
considered as a vibrating electron with charge f ie. The forces acting on the electron 
are the binding forces of.the at?m i, the Lorentz force of the light wave, and the 
Coulomb'forces of all the ions. -' 

In an elasticalIy deformed D lattice, we get Coulomb field as 

where fk is the valence of the ion k. 

(c) STRAIN-POLAIRISABILITY EFFECTS :-As has heen mentioned ear- 
lier, this problem can be tackled only from the phenomenological point of view. 
One could assume for small deformations a linear proportionality between polari- 
sability and the strain. If the molar refraction of the kth atom is represented by Rr 
in t l ~  undchrlncd state and by Rkx, Rky, Rkz in the deformed state we have for a 
strain 

Here dk represents the polarisability of the kth atom and A the Avagadro's 
number, and hr is the strain polarisability w atomic anisotropy factor. 

SimiIarIy for a shear 

Rkxt = Rr (1 + Xbl x,') ; RkY' = Rk (1 -t Aklr' xX' )  

- -. - -.. - 
(25b) 



due to strain polarisability is given by 
Ao = 113 (Az + 2Ax) (26) 

Under the influence of the Lorentz and Coulomb forces only, the dipole moments 
induced in the atom i is 

L C 
p i x  = d i x  ( F i x  + Fix) (27) 

If the strain polarisability effect is also conside:ed the altered value of the polarisabi- 
lity di is given by equation (25). Taking this and substituting the values of 
L C 

Fi, and F i x  from (21) and (24) in equation (27) the moment induced in the 
ion is given by 

_t P i x  ZZ 
. f in  2 zk Nk ha] (28) 

This with 
n2, = P P ,  - I 

4i7 E x  2 Nk P X / E X  v 9 )  
yields the requisite equation for the refractive indices of the deformed solid. For 
z, = 0 this equation reduces to the familiar Lorentz-Lorenz equation. On differen- 
tiation of this equation for the deformed solid we get 

L C -4 

P x  =:pa + p x  + p x  + p x  1 
L C A 

Pfx'  = Px' -t Px' -I- Px' 

where 
J 

and pa is the contribution due to the change in density and is given by 
pd = (n2 + 2)/3 (n2 - 1) (32) 

p i ,  and are respectively the contributions due to the anisotropy of the Lorentz 
force, Coulomb force and the strain-polarisabiiity effect and have the following values 

P f. = - z s i k x  N I N ~ R ~ R ~ / [ Z N ~ R ~ ] "  
ik (33) 

and Ax = 2 iix N ~ R ~ / s :  N ~ R ~ .  
Equations analogous to these can bc written fork, and$',,. 



In equation (30), p, is kilown experimentally from (32). The quantities pd, 

p: and p: can be calculated from formulae (32, 33 and 34) using the values of s i b  
data given by Mueller. The strain polarisability constant A, can therefore be evalua- 
ted. I t  must, however, be borne in mind that values computed for p:, pfi, PC, and 
p: are not very accurate as one has to use empirical values off and the molar refrac- 
tion of the ions in the solid state. 

If one is interested only in the birefringence produced by a strain z, we get from 
(6.11) 

where 

pL = -3p t  ; pC= -3p: ; and p A =  X (n2 $ 2)/3(n2 - 1) 
and X = A, - A,. 

Similarly the birefringence inrroduced by a shear is given by 

P' = 14 + PE + ptA 
wllcl c ~ I ' A  = - A' (1z2 -t 2)/3(n2 - I )  
and A' = '5: 4 [Xrx' - Xiy'I NiRi/ZNiRi 

We shall now llriefly discuss the experimental data on cubic crystals ill the light 
of the above theory. It is well known that the refractivity of a substance is less in the 
solid state than in the liquid or gaseous states. Recent computations by Shockley 
(60) have shown that the polarisability of a negative ion decreases and that of a 
positive ion increases as they go from an independent gaseous state to the solid state. 
011e could therefore expect further changes in the polarisability of the ions in the 
same direction when the lattice constant of the crystal is reduced by stress. As the . 
contril~ution to the refractive :?idex by the anions far exceed that of the cations the 
net effect would be to reduce the polarisability, i.e., p$ in equation (30) would iri 
general be -ve which is actually found to be the case. 

No such general conclusion can be drawn as regards the Lorentz and Coulomb 
contributions. The magnitudes and signs of these are dependent on the directions 
of stress and observation and also on the particular crystal. Finally the density 
contribution p d  is always positive and in most D lattices it overwhelms the combined 
effects of pi;, pz and p-: thereby yielding positive values of pll and PI,. This is not 
a general rule ; for example, in MgO, since theatornic anisotropy effect is much 
larger than the cornl~incd eirect of the other three one gets negative values for P,, 
and PIP' 

One notices from equations (30) and (37) that the density effect pd does not 
play any role in the l~ircfringence produced by unidirectional or slleari~~g stresses. 
Hence the magnitude and the sign of the birefringence are determined by the relative 
magnitudes and signs of the contributions pt,  p: and pk.  Actual computation 
of pi, p: etc. have been carried out by Mueller for NaC1, KCI, and CaF, making 

- the assumption that the f values of the ions are the same as those of the corresponding 
inert gases. The values of X evaluated by him for these substances are given in Table 
(XII). The X values of CaF, h 
questionable value off had$o be 



cally covalent crysral like diamond have also been calculated making use of the 
revised data of the photoelastic constants (Ramachandran 51) and are included 
in the table. 

I t  is seen from the Table (XII) that NaCl and KC1 in spite of having completely 
'., different photoelastic properties, have practically identical values of A =  ( A ,  -A,) .  . 

This is as is to be expected since the refraction of these substances is largely due to C1 
ions. One notices that in ionic crystals A is very much greater than A'. Mueller 
explains this as dur to the fact that strain alters the distance between the nearest 
neighbouw, while in a shear the Na-C1 or K-C1 distance remains unchanged. On 
the other hand in the completely homopolar crystal Diamond A' is greater than A. 
For stress along [I 1 11 or [I 101 directions corresponding to the measurements of the 
shear constant p,, one notices from the structure of diamond that the C-C bond 
lengths and angles are altered to a maximum degree. Hence it is not surprising to 
find that the polarisability changes are very much larger for a shear than for a linear 
strain for diamond. In the calculation of A for diamond the Coulomb field has 
naturally been taken as zero. I n  the case of a partly co-valent crystal like MgO 
one is faced with the serious problem of assigning proper values for c and f in the 
determination of the Coulomb contribution and thence the final evaluation of A. 

Here it may be mentioned that Mueller, setting arbitrary limits for the values 
of the atomic anisotropy factor obtained from NaCI, KCI, and a few glasses, was 
able to predict the photoelastic behaviour of various cubic crystals depending on 
their values of Ri and fi. As has been remarked earlier many of these preclictions 
have been found to 1)e true. 

The uncertainties introduced in the numerical evalu;ltions of $2, pg etc. due to 
the use of empirical values of Ri and fi. are eliminated if one considers the refractive 
index change due to hydrostatic pressure. In  the case of hydrostatic pressure, since 
the symmetry of the crystal is not altered, both and pg which are dependent 
on the anisotropy, are zero. The change in the resractive index with dcnsity may 
be obtained as (from 26,30,32,35). t 

while the value calculated from the experimental data is given by 

From these two equations, the value of X, can be evaluated. Table (XIII) giver 
the values of dn/dp observed and calculated and the values of &, for different cubic 
crystals. In  most crystals the calculated values of dr~ldp are much higher than the 
observed values showing the negative contribution of the strain-polarisability effect. 
Further it is seen that diamond and MgO stand apart in having -ve values of dnldp, 
i.e., an increase in density actually decreases the refractive index. Similar anoma- 
lous behaviour is exhibited by these crystals in the variations of their refractive 
indices with temperature, v i ~ . ,  dnldt is positive (48) (50). I t  will be most interesting 
to investigate whether ZnS which is another cubic crystal exhibiting +ve dtl/dt 
also shows a similar behnviour in dnldp. 
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Before we proceed to the discussion of the significance of A, in different crystals 
it must be remembered that much importance should not be attached to individual 
values of X, as they have been derived from not too accurate data of PI,, p,, and f,. 

One notices that the A, value for most ionic crystals is much less than that for 
cryztals that are known to be covalent. In other words the changes in polarisability 
with density in covalent crystals are much larger than those for ionic crystals. Even 
amongst ionic crystals one notices that LiF, has the largest value of A,,. This is quite 
in accord with the fact that it exhibits the maximum covalent character amongst 
the alkali halides (vide solubility, melting point, elastic constar:ts, etc.). 

According to Burstein and Smith (16) the decrease in the polarisability of an 
ion with interatomic distance in ionic crystals is primarily due to a change in the 
ion overlap and consequently to a change in the relative amounts of ionic and homo- 
polar binding. One could, therefore, expect these effects to depend on the ionic 
and homopolar binding already present in the crystal in the undeformed state. 
Thus X, can be considered to be a measure of ionic overlap and the hon~opolar 
binding in crystals. This accounts for the large variation of A, from crystal to 
crystaI. Burstein and Smith have also shown in a comparative table the parallelism 
between the values of A, for various crystals and pliysical constants like C,,/C,,, 
volume expansion melting point and Debye temperature which are also considered 
measures of the ionic overlap and homopolar binding. 

One notices from Table (XIII)  that ammonium alum, thallium alum and lead 
nitrate are the only crystals that exhibit negative values of A,. The reason for this 
is not far to seek. 111 these crystals, the polarisability of the cation is of the same 
order of magnitude or sometimes even much larger than that of the anion. As 
discussed earlier a decrease in the lattice parameter, while diminishing the polarisabi- 
lity of the anions increases that of the cations. I t  is quite evident that in these 
crystals the latter effect more than compensates that of the former thus yielding 
negative values of A,. 

The calculated values of - and A, in Table XI11 are on the basis of the (3 
Lorentz dispersion formula. The values of (dnldp) and A, calculated using a formula 
of the Drude type have also been entered in the Table [Burstein and Smith (16), 
Vedam (65).] One notices that while the actualvalue of A, is dependent on the 
type of the dispersion equation used, thr n~agnitude and sign of A, show in general 
the same trend. Hence the conclusions drawn above will hold equally ~vell for the 
Drude type offormula. 

In the case of K-alum one notices that while A, cnlculated from the Lorentz 
formula is positive, the Drude formula gives a negative value of A,. This indicates 
the importance of the correct type of dispersion equation to be used in these ~tudies. 
We shall not take up this, question in this present review. 

6. DISPERSlON OF PHOTOELASTIC CONSTANTS 
. From what has been said in the previous section it is clear that the effect of 
the change in the Lorentz field, Coulomb field and the atomic anisotropy would be 
to alter the energy levels -and the transition probabilities of the electrons for any 

I - *  
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particular substance: Henc 
optic cmffjcient and not in the indiviiual effects one could asiuwe (Rarnaseshan 
and Sivaramakrishnan 58) that the stress alters the three parameters Ni the number, 
fi the .transition probability and ~2 the frequency of the dispersion electron. For 
a cubic crystal if one starts with a dispersion formula of the type 

then for unidirection:ll pressure the changes in the refractive index for light with 
electric vector pnrnllel to the direction of pressure is obtained by differentiating 
equation (38) as 

where [Ki] ' , , [Ki]" , and [Ki] "' ,, are respectively 
1 dv 1 dfi 1 d N  I dp . The last term -- - is equal to - - - 

N dP P dP 
which can be calculated from the elastic constant data. Since the sum of 
the transition probabilities must necessarily be equal to unity, we get 

[Kiln fi = 0 in equation (391. 
An equation similar to 39 is valid for dnlj'd). From these two formulae one can 

easily calculate the dispenion formula for the birefringence produced by unidirectio- 
nal pressure and for changes in the refractive index due to hydrostatic pressure. 
The values of K will naturally depend on the direction of observation and pressure. 
The extension of this theory to crystals of lower symmetry is obvious. Using accu- 
rate dispersion formulae, the photoelastic dispersion of some glasses [Ramaseshan 
and Sivaramakrishnnn (58)] and of fused quartz (Jog 28) have been explained 
satisfactorily with the aid of the above formula. 

The only data on cubic crystals available are those of Iyengar (26) which are 
given in Table (XIV). As the measurements are confined to only three wavelengths 
in the visible region, the verification of the dispersion formula could not be under- 
taken. I t  may be mentioned that the dispersion of the photoelastic constants of 
most of these substances is of the order of magnitude to be expected from the above 
formula. The values of the dispersion of p,, of LiF, however, whose absorption 
wavelength responsible for dispersion is much below 0.1 p seems to be inordinately 
large. 

Eppendahl (21) has also recorded the dispersion of some df the photoelastic 
constants of topaz in the region A 6880 - A 44.70. 

7. PHOTOELASTIC CONSTANTS DATA 

In  the following Tables the data on the elasto-optic constants of the various 
' crystals belonging to different crystal classes have been collected. The references 
of the authors whose elastic constants data have been used for the calculation of 
the constants have also been included in the Table:. All these values unless other- 
wise stated are for X 5893. Galt (22) has measured the ratios of the photoelastic 
constants by the ultrasonic method for XaC1, KCI, KBr and his values are given 
in Table X. 

c.P.--16 
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The photoelastic constants of most o. t h ~  cubic crystals given in Tables (IV &,  
V) have been evaluated by combining the measurements of (p,,-pi,) and ( ~ ~ ~ - f i ~ ~ )  by 
relative retardation methods and of P1,/Pl2 and p11/p13 b y  ultrasonic method. 
As the errors involved in these measurements may be about 2-3%, the absolute 
values of p,,, p,, and p13 are accurate to only within 5-10%. In some cases the 
errors involved may be even as much as 20%. 

TABLE I 

GROUP 1. TRICLINIC SYSTEM, Cl, C1 (1, i) (36 Constants) 

P i 1  P i 2  P 1 3  P14 P16 P l 8  911  412 913 414 1 916 

P Z l  P 2 2  P23 P 2 4  P26 P26 921 922 923 924 425  926 

P31 P32 P33 P34 P35  P36 931 932 933 934 436 q30  

P 4 1  P42  P43 P44  P 4 5  P4(1 941  442 443  q44 446 946 

GROUP 2. MONOCLINIC SYSTEM, C,, C,, C2h (m, 2, 2/m) 
(20 Constants) 

PI I  PIZ P i 3  0 -- --. 0 A s  qii 112  913 0 o 4'1s 

Pzl  P22  P 2 3  O o P-6 921 922 423 O 0 q26 

P31 P32 P33 O 0 h a  931 932 933 0 o 436 

0 0 0 P44  P 4 5  O 0 0 0 q44 945  0 

0 0 O P54  P 5 5  O 0 0 0 q54 9 5 5  O 

Psi Pa2  Pas 0 0 Pse 961 qsz 463  o o Qss 

GROUP 3. ORTHORHOMBIC SYSTEM, CZYy V, Vb (mm, 222, mmm) 
(12 Constants) 



("' -'13 ,-962 462 0 925 . 914 (ql l -q l2)  -Pel Psn 0 Pza  PI^ 2 - 

GROUP 5. TRIGONAL SYSTEM, C3,, D3, D 3 d  (3 m y  32, 5 m )  
(8 Constants) 

GROUP 6. TETRAGONAL SYSTEM., C,, S4, C4b (4, 4/m) 
(10 Constants) 

P l I  PlZ P13 O o P l 6  411 912 913 O 0 416 

PI2  P l 1  P13 O o -Pl6 912 911 913 O O -916 

p31 p31 ,!33 O 0 0 931 931 433 O 0 0 

0 0 0 P44 PPS 0 0 0 0 944 945 0 

0 0 -P45 P44 O 0 0 0 -945 944 0 

P a  -Pet O o 0 Pae 461 -9ei Q 0 -  o 96s 
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GROUP 7. TETMGONAL SYSTEM 

Va, C4,, D,%, D4h,-(g2 m, 4 mm, 42, 4lmmm) (7 Constants) 

GROUP 8. HEXAGONAL SYSTEM, Cab, Coy Ceh (6; 6,6/m) (8 Constants) 

Prz $11 P13 ' 0 0 PGI 412 911 913 0 2q61 

GROUP 9. HEXAGONAL SYSTEM, 
D3h, Csv, D6, D6h (6 2 m, 6 mm, 62, 6/mmm) (6 Constants) 

jJIZ P13 O O O 911 912 413 0 0 



0 0 0 D a $41 0 0 0 0 0 q?4 

GROUP 11. CUBIC SYSTEM, Td, 0, Oh (&my 43, m3m) (3 Constants) 



Pressure direction 
Type parallel to cube 

face 

Pressure direction parallel to 
dodecahedral face 

Biaxial planc paral- Biaxial plane paral- Biaxial plane 
lel to the cube face lel to dodccahedral perpendicular to 

face dodecahedra1 face 

x >  1 si112 v == = ski2 V = 
c o s 2 4 - c o s 2 E  s i n v . s i n ( q - q )  tanr].tan(\C.-7) 

2 cos 2 4 cos 9 - 

Biaxial plane per- Biaxial plane per- Biaxial plane paral- 
pendicular to cube 'pendicular to dode- lel to dodecahedral 
face cahedral face face 

O < x < 1  s i n P V =  - sin2 V = sin" = 

tan(++E).tan(+ - E )  tan 77 . tan (9 - 1) sin 77 sin ( q  - 9) 
cos q- 

-1 < x <  0 Biaxial plane and Biaxial plane and Biaxial plane and 
sin2 V as in Type 2 sin2 V as in Type 2 sin2 V as in Type 2 

q > ? i f  77 < 3 for 
9 < cos-l 4 4 ;  + > cos-' (4%) 

x < - 1 Biaxial plane and Biaxial plane and Biaxial plane an 
sin2 V as in Type 1 sin2 V as in Type 1 sin2 V as in Type Id 



PHOTOELASTIC EFFECT IN CRYSTALS 

DOUBLE REFRACTION OF CUBIC CRYSTALS UNDER UNIDIRECTIONAL 
PRESSURZ 

' Pressure TIBr-I NaCl KC1 
Direction Type (4) 
- . .- -. -. - . .- - -. . . 
Cube normal +ve uniaxial I / -ve uniaxial / -: uniaxial i 

. . - - 

+ve uniaxial 

I Octahedral +ve uniaxial I -ve uniaxial I -ve uniaxial 
normal I 

Dodecahedra1 ( + ve biaxial 
normal 

lacute bisectrix is 
paraI1el to the pres- 
sure direction. 

-se biaxial 

biaxial plane is the biaxial plane is the 
cube facr normal to' dodecahedral face 
the pressure direc-! perpendicular to the 
tion. I pressure direction. 

I I 
1 direction. I I direction- 

acute bisectrix is 
parallel to the pres- 
sure direction. 

-ve-biaxial 

acute bisectrix is acute biscctrix is 
the dodecahedral the dodecahedral 
normal, perpcndi- normal, perpendi- 

+ve biaxial 

biaxial plane is the 
dodecahedral face 
perpendicular to the 
pressure direction, 

cular to the pressure cular to the pressure 

biaxial plane is the 
cube face parallel to 
the pressure direc- 
tion. 



TABLE IV N - 
STRAIN-OPTICAL CONSTANTS OF CRYSTALS BELONGING TO CUBIC SYSTEM (T,, 0, Oh, Classes) Q 

1 No. Crystal fill P 1 2  P11-f'12 1 4 4  R~~ Elastic constants 
Reference Remarks 

----- - - --- -- 

1. Ammonium Chloride 0.145 0.24 -0.095 0.025 (37) 8 7 
2. Calcium Fluoride 0.056 0.228 -0.172 0.024 (41) 88 a - 
3. Diamond -0.31 0.09 -0-40 -0.12 (51) 7 7 1 4. Lithium Fluoride 0.02 0.128 -0.108 -0.064 (14) - 

I -0.107 -0.045 (69) 79 = 560 mp Cd 
j w 

0.02 0.130 -0.1 1 -0.045 (26) 0 
1 -0.16 (47) X = 550 mp 

Q 
-0.12 (65) 7 5 w 

1 5. Magnesium Oxide -0.32 -0.08 -0.24 (14) - 
I '-0.253 -0.096 (69) 7 9 A = 560 mp 

0, 

6.  Potassiunl Bromide 0.22 0.171 0.049 -0.026 (14) - 
0.043 -0.029 (69) 7 9 h = 560 nip 

z 
- n 

0.212 0-165 0,047 -0.022 (26) 
0 050 -0.021 (65) 2 2 ?: 
0 0595 -0.0276 (42) 8 8 

wl 7. Potassium Chloride 
0.17 0.124 0.046 (14) - 
0.215 0.159 0.056 -0 024 (26) - 

0.065 (65) 22 

E 
'-a 

8. Potassium Iodide 0.210 0.169 0.041 
0.203 0.164 0.038 

(14) 
(65) 80 

I z 
9. Silver Chloride 0.134 -0.056 (69) 73 n 

0.225 -0.075 (23) 73 
V> 

10. Sodium Chloride 0.1372 0.178 -0.0408 -0.0108 (42) 88 
0.110 0.153 -0.043 -0-010 (14) - 

- 
1 1. Thallium Bromo-Iodide (KRS 5) 
12. Thallium Chloride 
13. Thallium Chloro-Bromide (KRS 6) 
14. Zinc Sulphide 

-0.045 (65 j 2 2 
0.08 0.157 (69) 74 J = 610 nzp 
0.03 0.06 (14) 7 4 Values approximate 

0.096 (69) 74 X = 610 m p  
-0.84 (61\&(69\ 76 



TABLE V 

n STRAIN OPTICAL CONSTANTS OF CRYSTALS BELONGING TO CUBIC SYSTEM (T, T h  Classes) 

? 
I 

Elastic 
,No. Crystal 611 A z  P13 P44 Pll-612 PII-~I~ Author Constants Remarks 
w Reference Reference 

1. ALUMS -0.006 -0.064 (46) 

(a)  Ammonium alum 0.38 0.46 0.43 -0.009 -0.08 -0.07 (13) & (26) 85 

(6) Chromium alum -0.009 -0.082 -0.07 (9) 84 

(c) Potassium alum -0.004 -0.06 (46) 84 

0.26 0.34 0.33 -0.005 -0.08 -0.07 (10) 6 (26) 84 
M 

(d) Potassium ammonium - 5 ~ 0 6 x 1 0 - ~ ~ - 4 ~ 5 1 x 1 0 - U - 1 ~ 0 2 ~ 1 0 - u  (9) qrj's only 
alum are available. 8 n 

(e) Thallium alum 0.43 0.58 0.57 +0.007 -0.088 -0'072 (9) & (30) 83 el 

2. Barium nitrate -0-019 -0.96 -0.72 (1 1) 78 
2 
n 

3. Lead nitrate -0.019 -0.28 -0.17 (8) 78 
td s 

0,309 0.608 0.476 -0.039 -0.299 -0.167 (26) 7 8 3 
4. Strontium nitrate -0.02 -0.409 -0.289 (9) 78 

!G 

* 5. Sodium bromate . 0.185 0.218 0.213 -0.0139 -0.033 -0.028 (38) 86 

6. Sodium chlorate 0.173 0.258 0.223 -0.0187 -0.083 -0,050 . (52) 82 
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TABLE VI 

TETRAGONAL SYSTEM 

(Only piezo-optic constants are known. Values are given in units of 
Brewsters 10-13cm.2/dyne.) 

. . 
No. Crystal Author and 

412 431 444 466 413-433 &ference 

1. NH,H,P04 -17.7 West & Makas (70) 
(ADPI 

-12.1 Willard (72) 

8.6 7-9 12.3 -5.8 -12.2 -1.6 Cxrpcnter (17) 
. . . - 

2. KH,P04 O>(q,;-q,,)>-0.3 . ' -11.25 West Pr Mnkxs 
. . 

I , . . . 
(71) 

. . . . .  ; 1 

z .  I . .  



TABLE VII 
HEXAGONAL SYSTEM 

Author and . Elastic Constants 
Reference ' Reference 

1 1. Beryl 0,0099 0.023 0.0175 0.191 0.313 -0.152 Pockels (43) (B8) 

, 
1 TABLE VIII 
I TRIGONAL SYSTEM 
I 

I Author Elastic 
No. Crystal I,, kaa PLZ Pi3 /;11 Is1 P 4  1 Pat and Constants 

erence Reference , 
- - - -- - -- - 

Ref 
-- 

, . 
I .  Calcite 0.095 - 0.178 0.189 0.215 -0.006 0.309 0.01 -0.090 Pockels (45) (88) : 
2. d-Quartz 0.138, 0.098 0.250 0.259 -0.029 0.258 -0.042 -0.0685 Pockels (40) P8) 

' '. TABLE IX- . I  

ORTH~RHOMBIC SYSTEM 

No. Crystal PII P Pas P i r  Pi3 Pel P ~ S  P ~ I  Pas 4 P s 5  Pee Elastic Con- R$$nce stants Reference 
-. . -. - - -- -- 

1 .  Rarite 0.21 0.24 0.31 0.25 0-16 0-34 0.19 0.275 0.22 0.002 -0.012 0.037 Vedam (64) (75, 87) 

i. Rochelle -0.009 0.006 -0.015 Pockcls (44) (86a) 
salt 

3. Topaz -0.085 -0.120 -0.083 0.069 0,052 0.093 0.065 0.095 0.085 -0.095 -0.031 -0.098 Eppendahl (87) 
(21) 
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TABLE X 

RATIOS OF PHOTOELASTIC CONSTANTS 

TABLE XI 

CLASSIFICATION OF CUBIC CRYSTALS OF Td, 0 ,  Oh CLASSES 

Mueller Pockeis 
-- 

> 1 

I1 < 1 

+ - (3) - 
I 

< 1 

l IV i 

P44/(P11 + h z )  

TABLE XIT; 

STRAIN POLARISABILITY CONSTANTS 

PMIPII Crystal Pl,/Pn 

NaCl 

KC1 

I .  
1.35 + -03 1 -0.099 -0.042 + -004 

- 
X' 

0.06 

-0.09 

0-76 f -01 

KBr 0.77 & .01 
f 

0-18 

0.11 

Substance 
-- 

NaCL 1 1.24 

-0.12 -0.069 f .004 

-0.12 1 -0.067 5 .005 

KC1 

( Diamond 

1.20 

1.60 1 1.16 1 2-88 - 



TABLE XIII 

(y) AND A,, OF CUBIC CRYSTALS 

Crystal 

-- 

Lip 

NaCl 

KC1 

KBr 

KI 

CaF, 

also 
Diamond 

NH,CI 

NaC10, 

NaBrO, 

K alum 

NH, alum 

T1 alum 

Pb(NO3) 2 

L-L Equation Drude Equation 

calc. 
I 

I 

0.34 , 0.7 
I 

0.45 1 0.47 

I 
0.1 I 0.44 

I 

0.24 0.66 
I 

-- - -- -- 

0.7 

0-63 

0.23 1 0.58 

0.35 0.68 

0-44 0.85 

0.25 , 0.50 

0.44 

0.48 0.24 

0.48 / 0.53 0.19 

0 32 

-0-40 0.97 1 1.4 1 0.52 1 8  

1.00 1.28 

0.52 , 0.12 

0.42 ' 0.10 

0.48 I 0.12 

0.38 , -0.28 

0-39 i -0-72 

1.1 

0-43 

0.38 

0.43 

-0.28 

0.46 

0.38 

0.42 

0.4'3 

0.67 

2.62 

0.81 

0.61 

0.73 

0.92 0.58 -0.44 0.42 ' - 1.2 

1.31 1 1.05 -0.25 



TABLE XIV 

PHOTOELASTIC DISPERSION IN CUBIC CRYSTALS 

I 
P11 P l 2  P l 3  1 4 4  

Crystal - - - - - - . - - -- - -- - -- - 

4358i  5893i 54611'1 43586; 5893i  

--- - - --  - - - -  - - I 01  -- - 

0.020 

0.211 

0.208 

0.403 

LiF 1 0.020 

I 
KC1 10.215 

Potassium Alum 0.342 

Lead Nitrate 0-666 

0 020 

0.182 

0-194 

0.418 

KBr 

Ammonium Alum 

0.130 

0.156 

0.162 

0.496 

0.130 

0.159 

0.165 

0.465 

0.212 

0.378 

0.342 

0.613 

I I I I 
0,130 I ' 0.045 I 

0.134 1 

0.151 1 ::::: 
0.332 

0.537 

0.345 

0.742 

0.051 j 0.068 

/ 0-026 ::::: 0.024 

0.514 0.479 

0.321 

1 
0-476 

0.009 
i 

0.497 1 0.009 0.01 1 
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92. Giardini A. A. ... J. Oft. Soc. Amer. 47, 726, 1957, 
" Stress optic study or strontium titanate." 
The stree optical coefficients, q,,, q,,, 

q,, have been determined for strontium 
titanate. The piezo birefringence (q,,-q,,) 
and q,, was measured between 4200 and 
7700i while the individual constants were 
determined at  5400i. The apparatus 
employed, methods of measurement and 
sources of error are discussed. 

Strontium titanate becomes an optically 
negative uniaxial crystal when stressed along 
a crystallo-graphic axis and an optically 
negative biaxial crystal when under a 
crystallo-,graphic diagonal stress. 


