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The Kerr black hole in thermal equilibrium and the U vacuum 
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Abstract. The U vacuum discussed recently by Fulling (1977) in his general study of 
alternative vacuum states in space-times with horizons is investigated specifically for the 
scalar and Dirac fields in Kerr space-time. An explicit evaluation of energy flux shows that, 
except for the effects due to super-radiance of scalar waves, this vacuum corresponds to a 
black hole in thermal equilibrium with its environment. 

1. Introduction 

It is by now well known that field quantisation in curved space is not in general unique, 
but depends on the definition of positive frequency and the specification of the vacuum 
state (DeWitt 1975, Unruh 1976). In a recent paper Fulling (1977) has reviewed and 
investigated alternative vacuum states in static space-times with horizons. In the 
context of black hole evaporation (Hawking 1975), the principal vacua of interest are 

( a )  The 7 vacuum, specified by the absence of ‘particles’ on the past null infinity and 
the past horizon with positive frequency defined via the Killing vector 7 = a/a?, 

(b) The 6 vacuum, which differs from the 7 vacuum in its definition of positive 
frequency for modes originating from the past horizon; the positive frequency in 
this case is defined via the null (Killing) vector 8 = a/aU, 

( c )  The Y vacuum defined by boundary conditions on the entire horizon, past and 
future. (See 0 2.) 

For the scalar field, it is known that the 7 vacuum is relevant to the case of a 
primordial black hole whereas the 6 vacuum is appropriate for the problem of a realistic 
black hole formed by gravitational collapse. In an earlier work (Iyer and Kumar 1978, 
1979) the q and 6 quantisation schemes were extended to the Dirac field in Kerr 
space-time, following Chandrasekhar’s (1976) separation of the massive spin-half 
equation in this metric. In particular it was shown that the 7 vacuum gives rise to the 
Unruh-Starobinsky effect for Dirac quanta whereas the 6 vacuum yields the thermal 
Hawking ”emission with appropriate fermion statistics. 

The purpose of this paper is to exhibit the Y quantisation scheme for scalar and Dirac 
fields in the Kerr space-time. An explicit evaluation of asymptotic energy flux shows 
that except for super-radiant effects of scalar waves in the Kerr metric, the Y vacuum 
represents a black hole in thermal equilibrium with its surroundings. The spin-half case 
corresponds to perfect thermal equilibrium as expected, since the Dirac wave does not 
super-radiate. 
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2. The v quantisation in Kerr metric 

2.1. The scalar field 

In the v quantisation scheme we define positive frequency for modes originating 
(entering) from the past (into the future) horizon via the null vector a/aU (a/aV) where 
U and V are the Kruskal like coordinates for the Kerr metric: 

U = -4M exp(-K+u) 

v = 4M exp(K+U) 
(2.1) 

with 

U = t - r’, U = t + r ’  

where 

dr’ldr = (r’ +a2)/A, 

ri = M * (M’ - 

K +  = (r+ - r-)/2(r: + a’), 

Here M is the mass and Ma the angular momentum of the black hole. The above 
coordinates span the usual exterior region (U<O, V>O) denoted by (+). The 
extended manifold contains another exterior region ( U  > 0, V < 0) denoted by (-). The 
positive-frequency v modes can be equivalently characterised by their analytic proper- 
ties in the U and V planes. The positive frequency v mode is one that on the past 
(future) horizon is analytic and bounded in the lower half U ( V )  plane. On the past 
horizon this definition is the same as for the 6 scheme. For the Y scheme, however, the 
boundary conditions are specified on the entire horizon, past and future, unlike the [ 
scheme where the surfaces of initial data are the past horizon and the past (null) infinity. 
The v vacuum is a state that is vacuous in the neighbourhood of the entire horizon. 
Thus the field expansion in the v scheme requires the construction of alternative modes 
satisfying the above boundary conditions. 

To construct the v modes consider the function in the extended manifold given by 

where 

(2.3) 
Cl = a/2Mr+. 

A is a separation constant appearing in the angular equation, (+) (-) labels the exterior 
region where the solution is confined. E = I, I1 denotes the two linearly independent 
solutions characterised by their behaviour at infinity and at the horizon: 

exp(-iwt) exp(im4)swmA (e) 
(27rlk h1/’r 

(exp(-ikr‘) +AI exp(ikr’)) 4 w m A I  - 
r-m . 

(2.4a) 
exp(-iwt) exp(im4)sWmA (e) ___, (BI exp(-Gr’)) 

r + r +  (2~Ik l ) ” ’ ( r~  +a2)”* 
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exp(-iwr) exp(im4)swmA ( 6 )  
( 2 , r l ~ l ) ~ ’ ~ r  (BI exp(ikr’)) 4 w m A I I  - 

r-m . . .. 
(2.4b) 

exp(-iwt) exp(im4)swmA (e) ___, (exp(i4r’) + AII exp(-iWr’)) 
r+r+  (2r I~1)”~(r2 ,  + a2l1I2 

where 

k = ~ ( l - p ~ / w ~ ) ’ / ~ .  

By construction of wave packets it is seen that the type I mode is localised at past infinity 
and evolves to an ingoing piece at the future horizon and another outgoing piece at 
future infinity. The type I1 mode emanates from the past horizon and evolves to an 
ingoing piece at the future horizon and another outgoing piece at future infinity. 

For E = I1 the Y mode is the same as the 5 mode. Employing equation (2.4b) for the 
behaviour of the solution near the horizon it is readily established (Iyer and Kumar 
1978) that on the past (future) horizon of equation (2.2) is the restriction near 
real U( V) in the lower half U (  V )  plane of an analytic and bounded function with a cut 
along the negative real U( V) axis for all values of W. For E = I the mode vanishes on the 
past horizon; however its piece on the future horizon again satisfies the required 
analytic property in the V plane. Thus equation (2.2) provides us with positive 
frequency modes satisfying the boundary conditions of the Y scheme. (Note that one 
could consider a v mode entirely localised on the future horizon. Such a mode, 
however, will correspond to two disjoint pieces in the past, one at the past horizon and 
another at past null infinity, and will obviously not be orthogonal to the type I1 mode.) 
It is seen similarly that d2mAf are the negative frequency Y modes for all W. 

We define the generalised inner product for scalar solutions in the extended 
manifold by 

(41, 42)=(41+r 42+)-(41-, 42-) (2.5) 
where 41*(4~*) are the restrictions of 41(42) to the (*) regions and ( , ) denote the 
usual inner product: 

(2.7) 
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12.8) 

Note the change in the identification of annihilation and creation operators for type 
I modes with 03 < 0 in equation (2.8). This follows from the change in sign of the norm 
for this case (see equation 2.7). Inverting equation (2.8) and using the definition of 
creation operators in the conventional r ]  scheme we obtain the following trans- 
formations: 

6 w m A  I = p (G )a w m h l t  - p(-&)b;mAI- ; w > o , 3 > 0  

(2.9) 

(2.10) 

Here bwmAr* are the corresponding operators in the usual r] scheme. For type 
11, the transformation between the v and r] operators is the same as between the 6 and 7 
operators (Iyer and Kumar 1979) and need not be written down here. The consistency 
of our construction can be checked by verifying that the v operators also satisfy the 
standard commutation relations. From equations (2.9) and (2.10) we obtain 

All other commutators vanish. 
The scalar Y vacuum i s  defined by 

i2.12) 
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2.2. The Dirac field 

This case differs crucially from the scalar case in that the norm of the Dirac wave is 
positive definite for both the positive and negative frequencies. We retain this feature 
in the extended manifold by defining the generalised inner product as 

(2.13) ($1, $2) = ($l+, $2+) + ($l-Y $ 2 4  

where the usual time-independent inner product is 

( $ 1 , 9 2 )  = I (-g)1'2&7r$2 d3x. (2.14) 

To obtain a positive frequency v mode for the Dirac field, consider, in the extended 
manifold, the spinor defined by 

where 

(2.15) 

(2.16) 

and $wmArh are the Dirac modes in the two exterior regions. In Chandrasekhar's 
representation the separated form of Dirac wave in the Kerr metric is given by 

= exp( - i d )  exp(imq5)( 2-1/2p *-IS-( t?)R -( r), A-'j2S+( B)R +(r), 

-A-1/2S-( B)R+(r), -2-'/'p-'S+( 8)R '(r))T (2.17) 

where 

p =r+iacos  t? 

Here S:,, (0) are the angular functions and R:mAE(r) the radial functions satisfying 
coupled equations. The asymptotic behaviour of the radial function R'(r) is: 

R: -NI[exp(-ia)-(w/p)[l - (1  -p2/w2)1/2]B~ exp(ia)] 
r+x 

where 
a = w ( 1 - p 2 / w  2 1 /2  [r I - p 2 ~ ( 0 2 - p 2 ) - 1 ~ n r ]  

NI ={2?T(o2/p2)(1 - p 2 / w 2 ) 1 / 2 [ 1  - (1  - p 2 / w  2 ) 1/2 I} -1/2 (2.18) 
NII = m-1'2 

R-(r) can be obtained from the coupled radial equations. The behaviour of RtI1(r)  
near the horizon can be similarly written down. (For complete details see Iyer and 
Kumar 1978). On the future horizon both type I and I1 modes behave as 

(2.19) 

where q5+ = q5 - f i r  and - denotes the spinor part. Using equation (2.19) in equation 
(2.15) it is readily established that on the future horizon d ( ~ ) ~ ~ ~  is the restriction near 

$-Me* -exp(im4+) exp[--(iG/K+) In] VI1 
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real V in the lower half V plane of an analytic and bounded function with a cut along the 
negative real V axis for all values of&.  Similarly on the past horizon the type I1 mode 
goes as 

$wmAII* -exp(im4+) exp[(iG/K+) lnIUl1 (2.20) 

(Type I vanishes here) from which a similar analytic property in the U plane can be 
established. Thus ( i ( l )wmAa for both E = I, I1 are positive frequency v modes for all (3. In 
the same manner $ ( 2 ) - w - m A e  defined by 

(2.21) 

are seen to be negative frequency v modes for all (3. 

constructed above satisfy the orthonormality relations 

( 4 ( a ) w m A s ,  $ ( b ) w ' m ' A ' e ' )  = a ( W  -w')amm8aAA'6ee'6ab ; 

With respect to the generalised inner product, equation (2.13) the Dirac v modes 

* ,. 
K =*I ,  a, b = 1,2.  

(2.22) 
An arbitrary Dirac field may now be expanded in terms of the v modes as 

from which, using equation (2.22), we obtain 

12 .24~)  

(2.24 b )  

Using equations (2.131, (2.15) and (2.21), the v operators â  and 6 are related to the 
creation and annihilation operators of the conventional 77 scheme by the following 
Bogoliubov transformations: 

6 w m k  = q ( G ) a w m ~ c +  +q(-G)bknAc--; K 

(2.25) 

The consistency of our construction is established by checking that equation (2.25) 
yields the canonical anticommutation relations for the v operators. 

A t  

{ a ^ w m A a  aw,m~A,s,l = a(w - w ' P m m , a A A & ;  

{6,,A,, 6 L , m s A * e , }  = ~ ( w  - ~ ' ) S ~ ~ . S A A , S , , ' ;  

K =*I, 

K =*I. 
(2.26) 

All other anti-commutators vanish. 
The Dirac v vacuum is defined by 

(2.27) 
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3. Asymptotic energy flux in the v vacuum 

3.1. The scalar field 

The stress-energy tensor density of a scalar field in an arbitrary curved space-time is: 

T”“ =~( -g) ’ / ’ [ (g””g”’  +g”’g““ -g”’g””) ap@+k2g””@t@] (3.1) 

The expectation value of T”” in the Y vacuum, in the usual exterior region, using the 
expansion of equation (2.8) and (2.12) is 

v(O~T~YIO)y =$( -g) ’ / ’ [  (gMagu’ +g”@g”“ -g””g””)  

From equation (3.2), using the asymptotic behaviour of the modes, equation (2.4), 

(3.4) 

we obtain 

dE/dt = --[ 1 dwp’(C;)[(kw/lkl)(l -lA11~)-(kw/liil)IB111~1] 
2?r m,A x = + l  

The Wronskian relations between the A’s and B’s following from the equation for 

(3.5a) 

(3.5b) 

the radial part of the scalar wave are 

1 - h ( w ,  m, A ) I 2  = (G/k)lB~(o,  m, A l l 2 ,  
kB&, m, A )  = GBdo, m, A ). 

Substitution of equation (3.5) in (3.4) yields 
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which, using equation (3.5a), shows that 

( 3 . 7 )  

We thus find that the scalar v vacuum has energy flux in the super-radiant modes. 
For a = 0 (Schwarzschild case), dE/dt = 0 and the v vacuum represents a black hole in 
thermal equilibrium with the surroundings. (For a general discussion on black holes in 
thermal equilibrium see for example Bekenstein and Meisels (1977), Gibbons and 
Perry (1976, 1978).) In the large mass limit of the Kerr black hole (temperature + 0 )  
equation (3.6) reduces to 

(3.8) 

The absence of thermal equilibrium for the scalar case in the classical super-radiant 
modes can be understood straightforwardly. For a Kerr black hole immersed in a 
thermal bath of scalar waves at the same temperature, the Hawking emission and 
absorption will be equal. However this will not include the (stimulated) amplification of 
scalar waves in the super-radiant modes and a net energy flux will result. If so, for a 
Dirac wave which does not exhibit super-radiance, the v vacuum should then give rise 
to a vanishing energy flux, leading to perfect thermal equilibrium in all the modes. This 
is precisely what we demonstrate in the next section. 

3.2. The Dirac field 

The energy-momentum tensor density for the spin-half field is given by 

T ~ , ,  = ii(--g)’”[Q yWv,,* + Q yvvp* - (v,Q) yu* - (vu*) yG*]. (3.9) 

Using the v expansion of the Dirac field equation (2.23) and equation 2.27, we have, in 
the usual exterior region: 

Going over to Chandrasekhar’s representation the vacuum expectation value can be 
obtained in a straightforward manner. The final result is 

(3.11) 
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From equation (3.3) we obtain 

(3.12) 

The ‘Wronskian’ relations following from the radial equations for R * ( r )  are 

1 - 1 ~ ~ 1 ’  = T ~ f  1 ~ ~ 1 ’  (3 .13a)  

T N ~ A I  = BrI (3.13b) 

which substituted in equation (3.1 l ) ,  proves that 

(3.14) 

thus establishing that the Y vacuum for Kerr spacetime is appropriate for the problem of 
a rotating black hole in thermal equilibrium with its surroundings. 
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