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Abstract. In the quantum measure approach, quantum theory is viewed as a generalisation
of classical stochastic theory rather than of classical deterministic theory. An observable or “be-
able” is thus a quantum measurable set in an appropriate event algebra. Thus, the observables
in quantum cosmology are covariant quantum measurable sets. In a quantum system with a
strongly positive quantum measure or decoherence functional one can construct a vector valued
measure whose domain is the algebra of events or physical questions. Using results in the
literature, this allows us to specify when a vector valued measure on finite time events can be
extended to a measure over infinite time, or equivalently, covariant events. For the class of
complex percolation dynamics we show that there is a generic obstruction to this process and
that covariant observables can be constructed only for a very restricted class of dynamics.

The Copenhagen interpretation of quantum theory imposes, at the most fundamental level,
a dichotomy between the classical measuring device and the observed quantum system. This
dichotomy is drawn into sharp and uncomfortable relief in quantum cosmology where there
is no external measuring device that can collapse the wave function of the universe. Unlike
most areas of physics where this problem can be shelved as a conceptual or philosophical issue,
it is an unavoidable stumbling block in constructing a physical theory of quantum cosmology.
Quantum cosmology, in addition, requires covariant observables, and is hence best suited for
a sum-over-histories or path integral formulation, rather than “moment-of-time” formulations
using operators and Hilbert spaces.

A typical example of the class of questions of interest to quantum cosmology is the “bounce-
question”: how likely is it for the universe to have undergone a cosmic bounce? In a sum-
over-histories framework, the “bounce event” is the set of all possible spacetimes apyynce Which
undergo a bounce. Is this class of spacetimes typical? For this we need to be able to put
something like a measure on Qpeynce- A classical or probability measure is required to satisfy
the classical Kolmogorov sum rule

P(y1Ux2) = P(m1) + P(7), (1)

for distinct pairs of histories. However, we know that this rule does not work in quantum theory
because of quantum interference. Instead one requires a generalised quantum measure on the
set of covariantly defined events.

Of course, obtaining the probability of events analogous to apounce In a classical stochastic
system is fairly straightforward. For example, the “return event” agetyrn: “the random walker
who begins her walk from the origin eventually returns to the origin” is the set of paths that
return to the origin, and can be assigned a probability. This return event bears more than a
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fleeting resemblance to the bounce event in quantum cosmology and suggests a deep parallel
between quantum theory and classical stochastic theory. This is the viewpoint adopted in the
quantum measure approach, where quantum theory is taken to be a generalisation of classical
stochastic theory, rather than classical deterministic theory [1, 2, 3, 4, 5, 6]. Classical stochastic
theory has a precise mathematical framework which we can generalise to quantum theory. In this
framework the analogy between the return event and the bounce event manifests itself clearly.

Classical stochastic theory is most elegantly described in the language of of measure theory.
It is defined by the triple (2, A, u), where  is a sample space of histories or spacetime
configurations, A is an event algebra or set of propositions about the system, and u is a
probability measure p : A — [0, 1] satisfying Eqn (1). The event algebra A is a set of subsets of
Q closed under the finite set operations of union, intersection and complementation. A is said
to be a sigma algebra if it is also closed under countable set operations.

A quantum measure space is, in analogy, defined by the triple (2, A, 1) , where  and A are
defined as above, and the quantum measure u : A — RT is required to satisfy, instead of Eqn
(1), the weaker Quantum Sum Rule (QSR) [1]

plaUBUY) = plaUpB) +puleUy) + p(BUy) — pla) — p(B) — u(y) (2)

for mutually disjoint sets «, 3,7 € A. How is one to interpret u? To begin with if y(a) = 0
for some a € A then it is possible to say with certainty that the event a does not happen,
independent of whether the system undergoes a measurement or not. In order to make more
definite post or pre-dictions, however, a more full fledged interpretation is required, and this is
provided by the Anhomomorphic logic or Coevent interpretation [7, 8]'. We will not discuss
this interpretation here, since we are concerned with the more primitive task of constructing a
covariant quantum measure space.

Let us return to the example of the classical random walk. Since we wish to ask questions that
are not limited to a certain final time, the sample space € is the set of all future-infinite paths,
starting out at the origin, say, at time ¢ = 0. The dynamics is constructed by assigning transition
probabilities from some initial state (z;,%;) to a final state (xf,¢;). A transition probability is
obtained by simply summing up the probability P(-y;) of each path +; with the same initial and
final states. This gives a “classical” sum over histories for the transition probability. For the
return event, however, one needs to consider paths of indefinite time. This event is obtained
by taking the union of all paths 4! that return to the origin for the first time at some time ¢,
I = Ujeryy) (where I(t) indexes the set of returning paths at time t), and then taking the
union U° T, i.e., over all possible times ¢. Is such a set measurable?

In order to be able to frame this question precisely, one needs to first define the event
algebra more carefully. The measure we have described is defined on finite time paths which
are not subsets of Q. However for each finite time or “truncated” path 4’ we can assign a
cylinder set cyl(y?) = {y € Qly(t') = v*(#')V0 < t' < t} which is a subset of Q. The set of
cylinder sets generates an event algebra A over which the probability measure p is defined,
ie., u(cyl(y?t)) = P(y'). However, since A is constructed purely out of finite set operations,
the return event does not belong to A but rather to S4, which is the (unique) “sigma-algebra
completion” of A [10, 11]. Indeed, all events which are independent of truncation time belong
to S4 but not to A. This is an important point, since independence from truncation time is one
of the main ingredients required for constructing covariant observables in quantum cosmology.
In order to construct observables from S 4, however, y must extend from A to a measure on Sy,
and in order for this extension to make sense, it should be unique. Thus, we can ask the precise
question: does the rule Eqn (1) still hold for countable unions? For classical measures, the

! Tt is useful to point out that in a certain approach to classical proability theory based on the so-called “Cournot
principle” [9], events with vanishing probabilities are used to determine all events of interest.
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Caratheodary-Hahn theorem ensures that a finitely additive probability measure p : A — [0, 1]
extends to a wunique countably additive probability measure z : S4 — [0,1], thus making it
possible to give an unambiguous answer to the return question.

X—

Figure 1. The cylinder set cyl(y?) constructed from a truncated history 7 is a subset in the space of
all future infinite paths. We show an example of this set for the classical random walk.

In a theory of quantum cosmology, any infinite time event like the bounce event has no time-
label attached to it and is hence a candidate for a covariant observable, so long as the measure
itself is invariant. It is therefore of importance to know whether analogs of the Caratheodary-
Hahn extension theorem exist for quantum measures. In order to be able to address this in a
precise manner, we find it useful to consider only those quantum measures which are derived
from a decoherence functional D : A x A — C. Here, D is (i) Hermitian (ii) finitely bi-additive
and (iii) strongly positive [4]. This last condition is the statement that the eigenvalues of D
constructed as a matrix over a set of histories {a;} are non-negative. The quantum measure for
any a € A is then given by u(a) = D(«a, @) > 0. Strong positivity of D means that a histories
Hilbert space H can be constructed from A, via the GNS procedure, with the inner product
given by the decoherence functional [4, 12]. As we now show, the quantum measure can be
expressed as a finitely additive vector measure over 7. This is an important technical step since
it brings the quantum measure back into the folds of standard measure theory.

We briefly review the construction of H from [12]. Let V be the space of complex valued
functions on A which are non-zero only on a finite number of elements of A. V' is the free vector
space over A, with inner product

(u,v)y = Z Z u*(a)v(B)D(a, B)- (3)

acABeA

The histories Hilbert space # is then constructed by taking the set of Cauchy sequences {u;} in
V and quotienting by the equivalence relation

{ui} ~{vi} if  lim || u;—v; [[y=0, (4)
1—00
where the norm is given by the inner product. Thus,

{wl + (o] = [{ui+ o]
Nl = il
(il Hot) = Jim (s 0y (5)

Il
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for all [{u;}],[{vi}] € H, A € C. In [12] it was shown that for a large class of examples, this
Hilbert space is canonically isomorphic to the standard Hilbert space.
The quantum vector measure u, : A — H is given by

(@) = [xal € H, (6)

where [-] denotes the equivalence class under (4) and x, denotes the constant Cauchy sequence
{Xa} for the indicator function x, : A — {0,1}

w6 ={ 4y Hhse (7
Thus,
(1u(0), 1 (8)) = D(ex, B) ®

with the inner product taken in H. The finite bi-additivity of D implies that u, is finitely

additive
n n
Ky (U ai) = Nv(ai)a (9)
=1

i=1
for n mutually disjoint sets «; € A. Hence pu, is a vector measure on A.

The pre-fix “quantum” for the above vector measure refers only to the range H, which is the
histories Hilbert space. This vector measure does indeed satisfy additivity, i.e., Eqn (1) and is
thus a “bonafide” measure.

We can thus express the quantum measure space as the triple (2,4, py), and our quest
for infinite time or covariant events reduces to the question — is there a unique extension of
the measure to (€2, S4,%y)? The answer is, in general, no. However, if u, satisfies sufficiently
stringent convergence properties, then uniqueness is guaranteed by the Caratheodary-Hahn-
Kluvanek theorem (see [13] for a complete statement). For a finite dimensional #, one of these
conditions refers to the total variation:

| (@) = S?I;Z I v (ep) |l (10)
ma) p

where the supremum is over all finite partitions 7(a) = {a,} of @ € A. |u,| is itself a non-
negative finitely additive pre-measure on A and is countably additive iff u, is (Prop. 9, Chapter
1.1, [13]). For finite H, a necessary condition for an extension is that u, be of bounded variation,
ie., |pv(a)| < oo for all a € A.

We will now focus on a concrete example of quantum cosmology, namely a complex percolation
dynamics for causal sets. In the causal set approach to quantum gravity, the spacetime
continuum is replaced by a locally finite partially ordered set, the causal set [14]. In the
continuum approximation of the theory, the order relation corresponds to the causal ordering
and on an average, the number of discrete events in any causally convex region of the causal set
corresponds to the continuum volume. We refer the reader to the literature for a more detailed
introduction to causal sets [14, 15]. For the purpose of our analysis all that we will require is a
measure theoretic characterisation of the dynamics.

We give a brief description of the classical sequential growth models of [16, 17]. Sequential
growth means that a labelled causal set is grown element by element starting from a single
element. Every new element is added with some probability either to the future of an existing
element or left unrelated to it. This process generates labelled causal sets, but the probabilities
can be chosen in a label independent way. In classical sequential growth, the probabilities
are required to be Markovian, label independent and also satisfy a local causality condition
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Figure 2. Transitive percolation dynamics for causal sets.

called Bell causality. Figure 2 shows an important example of sequential growth, the transitive
percolation model, which will be our starting point for a quantum percolation model. Here,
p € [0,1] is the probability that the new element is to the immediate future of an existing
element and ¢ = 1 — p is then the probability that it is unrelated. If the growth continues for
infinite time, it generates causal sets that are past finite.

Since the growth process generates causal sets that are labelled by the sequence in which
each element is born, the sample space 2 is the set of past finite labelled causal sets. As in
the classical random walk, associated with every finite labelled causal set C™ is a cylinder set
cyl(C™) which is a subset of © containing labelled past finite causal sets whose first n elements
form the sub-causal set C™. These cylinder sets form an event algebra A, with measure given by
taking the product of probabilities in constructing C™ via the above sequential growth process.
The covariant observables of the classical dynamics are, however measurable sets in the space
of unlabelled past finite causal sets — in other words, the time foliation or labelling that is given
by a specific growth process should not matter. One way to obtain these covariant observables
is then to extend the measure from A to S4 on 2 and then consider the quotient sigma algebra
S', over relabellings [19]. Thus, in order to get covariant observables from a a labelled growth
dynamics, the extension from (2,4, u) to (€2, S4,1z) is crucial before one can take the quotient
(&, 8"y, i') over relabellings. While the Caratheodary-Hahn theorem guarantees this for the
classical stochastic growth, as we will see, it is not always guaranteed for a quantum growth
process.

In direct analogy with classical transitive percolation, we define a complex percolation model
as follows. We allow p € C which then gives an amplitude for transition, rather than a probability.
In addition, we assume that

D(cyl(C™),eyl(C™)) = 4*(C™)9(C™) (11)

where 1(C"™) is the amplitude for the transition from the empty set to the n-element causal
set C™. 1 is thus a complex measure on A, and hence also a vector measure. The associated
histories Hilbert space H can be shown to also be one-dimensional, so that the quantum vector
measure 4, on A is simply a complex measure. In this case, standard results in measure theory
[18] imply that in order for u, to extend uniquely to a u! on Sy, it must have a bounded
total variation. This corresponds to an unconditional convergence of the vector measure over
all partitions.

Using simple properties of the sequential growth dynamics it is possible to show that p+¢ =1
and that for p, ¢ not real, p+¢ = 14+ where ¢ > 0 [20]. The Markov sum rule is then used to show
that the total variation is bounded only for p, ¢ real. These are the, somewhat oddly labelled,
“real” complex-percolation models. In these models, even though the quantum measure is not
additive, the observables of the theory are identical to those of classical transitive percolation. In
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particular, the observables can be entirely characterised by “stem sets”. A stem is the causal set
analog of a “past set” and a stem set is a subset of the set of unlabelled causal sets containing all
causal sets which have the same stem [19]. Thus, for example, it is possible to assign a measure
to the event, “the causal set is originary”, i.e., the set of all causal sets in {2 with an “initial”
element to the past of all other elements.

The lack of an extension for generic complex percolation models however suggests that these
models cannot take on covariant robes in a straightforward way. In classical sequential growth
models, the extension to the full sigma algebra is guaranteed, and one can then use this to
define a quotient measure space that is fully label invariant. Without an extension, it is not
clear that there is a well defined or canonical procedure using which covariant questions can
be extracted. One lesson that can be learned from this example is that breaking covariance
by introducing a time foliation may not always allow a fully quantum covariant theory to be
constructed. Of course, if one could begin with a quantum measure on an event algebra over
unlabelled causal sets, then even if some classical events are not quantum measurable, the set of
covariant observables would be non-trivial. However, to find a simple set of manipulable rules
with which to define such a measure seems intrinsically harder without first using the set of
labelled causal sets as an intermediary. Admittedly, this is a poorly investigated area, and it
may be that an appropriate choice of label invariant event algebras (for example the stem sets
of [19] described above) will reveal potentially new and interesting dynamical rules with which
to construct covariant observables.
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