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We present an algorithm for finding the probabilities of rare events in nonequilibrium processes. The algorithm
consists of evolving the system with a modified dynamics for which the required event occurs more frequently.
By keeping track of the relative weight of phase-space trajectories generated by the modified and the original
dynamics one can obtain the required probabilities. The algorithm is tested on two model systems of steady-state
particle and heat transport where we find a huge improvement from direct simulation methods.
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I. INTRODUCTION

A rare event is one which occurs with a very small
probability. However, when they do occur they can have a
huge effect and so it is often important to estimate the actual
probability of their occurrence. Examples where rare events
are important are in banking and insurance, in biological
systems where important processes such as genetic switching
and mutations occur with extremely small rates, and in
nucleation processes. Rare events are also of importance in
nonequilibrium processes such as charge and heat transport
in small devices and transport in biological cells. The func-
tioning of nanoelectronic devices can be affected by rare
large-current fluctuations and it is important to know how
often they occur.

In this paper our interest is in predicting probabilities of rare
fluctuations in transport processes. A number of interesting
results have been obtained recently on large fluctuations
away from typical behavior in nonequilibrium systems. These
include results such as the fluctuation theorems [1–7] and
the Jarzynski relation [8]. In the context of transport one
typically considers an observable, say Q, such as the total
number of particles or heat transferred across an object with an
applied chemical potential or temperature difference. This is a
stochastic variable and for a given observation time τ this will
have a distribution P (Q,τ ). The various general results that
have been obtained for P (Q,τ ) give some quantitative measure
of the probability of rare fluctuations. Analytic computations
of the tails of P (Q,τ ) for any system are usually difficult.
This is also true in experiments or in computer simulations
since the generation of rare events requires a large number
of trials.

For large τ the probabilities of large fluctuations show scal-
ing behavior P (Q,τ ) ∼ e−τ f (Q/τ ), where the function f (q) is
known as the large deviation function [9,10]. For a few model
systems exact results have been obtained [5–7] for either f (q)
or its Legendre transform μ(λ), which can be defined in terms
of the characteristic function as μ(λ) = limτ→∞ τ−1 ln〈e−λQ〉.
Recently an algorithm has been proposed [11] to compute
μ(λ). However, as has been pointed out in Ref. [12] there
may be problems in obtaining the tails of μ(λ) using the
algorithm of Ref. [11]. The algorithm proposed in this paper
is complementary to the one discussed in Ref. [11] in the
sense that we obtain P (Q,τ ) directly. Our algorithm, based on
the idea of importance sampling, computes P (Q,τ ) for any

given τ and accurately reproduces the tails of the distribution.
Algorithms based on importance sampling [13] have earlier
been used in the study of equilibrium systems [14,15] and in
the study of transition rate processes [16–18]. However, we are
not aware of any applications to the study of large fluctuations
of currents in nonequilibrium systems and this is the main
focus of this paper. Here we choose two prototype models of
transport, namely, heat conduction across a harmonic chain and
particle transport in the symmetric simple exclusion process.
We illustrate the implementation of importance sampling in
the computation of large fluctuations of currents in these two
nonequilibrium systems.

Consider a system with a time evolution described by the
stochastic process x(t). For simplicity we assume for now that
x(t) is an integer-valued variable and time is discrete. Let us
denote a particular path in configuration space over a time
period τ by the vector x(τ ) := {x(t)|t = 1,2, . . . ,τ } and let Q

be an observable which is a function of the path x(τ ). We will
be interested in finding the probability distribution P (Q,τ )
of Q and especially in computing the probability of large
deviations about the mean value 〈Q〉. As a simple illustrative
example consider the tossing of a fair coin. For τ = N tosses
we have a discrete stochastic process described by the time
series x(N ) = {xi} where xi = 1 if the outcome in the ith trial
is heads and xi = −1 otherwise. Suppose we want to find the
probability of generating Q heads (thus Q = ∑N

i=1 δxi ,1). An
example of a rare event is, for example, the event Q = N . The
probability of this is 2−N and if we were to simulate the coin
toss experiment we would need more than 2N repeats of the
experiment to realize this event with sufficient frequency to
calculate the probability reliably. For large N this is clearly
very difficult. The importance sampling algorithm is useful in
such situations. The basic idea is to increase the occurrence of
the rare events by introducing a bias in the dynamics. The rare
events are produced with a new probability corresponding to
the bias. However, by keeping track of the relative weights
of trajectories of the unbiased and biased processes it is
possible to recover the required probability corresponding to
the required unbiased process.

II. THE ALGORITHM

We now describe the algorithm in the context of evaluating
P (Q,τ ) for the stochastic process x(τ ). We denote the
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probability of a particular trajectory by P(x). By definition

P (Q,τ ) =
∑

x

δQ,Q(x)P(x). (1)

For the same system let us consider a biased dynamics for
which the probability of the same path x is given by Pb(x).
Then we have

P (Q,τ ) =
∑

x

δQ,Q(x)e
−W (x)Pb(x), (2)

where

e−W (x) = P(x)

Pb(x)
. (3)

Thus in terms of the biased dynamics, P (Q,τ ) is the average
〈δQ,Q(x)e

−W 〉b and in a simulation we estimate this by
performing averages over M realizations to obtain

Pe(Q,τ ) = 1

M

∑
r

δQ,Q(xr )e
−W (xr ), (4)

where xr denotes the path for the rth realization. For M → ∞
we obtain Pe(Q,τ ) → P (Q,τ ) which is the required probabil-
ity. Note that the weight factor W is a function of the path. In
a simulation we know the details of the microscopic dynamics
for both the biased and unbiased processes. Thus we can
evaluate W for every path x generated by the biased dynamics.
A necessary requirement of the biased dynamics is that the
distribution of Q that it produces [i.e., Pb(Q,τ ) = 〈δQ,Q(x)〉b]
should be peaked around the desired values of Q for which
we want an accurate measurement of P (Q,τ ). As we will
see the required dynamics can often be guessed from physical
considerations.

We first explain the algorithm for the coin tossing experi-
ment. In this case we consider a biased dynamics where the
probability of heads is p and that of tails is 1 − p. If we
take p ≈ 1 then the event Q = N , which was earlier rare,
is now generated with increased frequency and we can use
Eq. (4) to estimate the required probability P (Q = N,N ).
For any path consisting of Q heads the weight factor is
simply given by e−W = (1/2)N/[pQ(1 − p)N−Q]. Choosing
p = 0.95 it is easy to see that for N = 100 we can get
the required probability P (Q = N,N ) with more than 1%
accuracy using only M = 107 realizations as opposed to at
least M = 1030 required by the unbiased dynamics. Note that
for this example W has the same value for all paths with the
same Q. In general, of course, W depends on the details of
the path phe.g. for a random walk with a waiting probability.
We will now illustrate the algorithm with nontrivial examples
of computing large deviations in two well-known models in
nonequilibrium physics. These are the (i) symmetric simple
exclusion process (SSEP) with open boundaries and (ii) heat
conduction across a harmonic system connected to Langevin
reservoirs.

III. SYMMETRIC SIMPLE EXCLUSION PROCESS

This is a well studied example of an interacting stochastic
system consisting of particles diffusing on a lattice with the
constraint that each site can have, at most, one particle. Here
we restrict ourselves to one-dimension and study the case of

an open system where a linear chain with L sites is connected
to particle reservoirs at the two ends. The dynamics can be
specified by the following rules: (a) A particle at any site
l = 1,2, . . . ,L can jump to a neighboring empty site with unit
rate; (b) at l = 1 a particle can enter the system with rate α

(if it is empty) and leave with rate γ . At site N a particle can
leave or enter the system with rates β and δ, respectively. The
biased dynamics can be realized in various ways, for example,
by introducing asymmetry in the bulk hopping rates or by
changing the boundary hopping rates.

For SSEP, the configuration of the system at any time
is specified by the set C = {n1(t),n1(t), . . . ,nL(t)} where
nl(t) (0 or 1) gives the occupancy of the lth site. The
dynamical rules specify the matrix element W(C,C ′) giving
the transition rate from configuration C ′ to C. We write
W(C,C ′) = W1 + W−1 + W0 where W1 and W−1 correspond
to transitions whereby a particle enters the system from the
left bath or leaves the system into the left bath, respectively,
while W0 corresponds to all other transitions. At long times
the system will reach a steady state with particles flowing
across the system and we are here interested in the current
fluctuations in the wire. Specifically, let Q be the net particle
transfer from the left reservoir into the system during a time
interval τ . For a fixed τ we want to obtain the distribution
P (Q,τ ) of Q, in the steady state of the system. It is useful
to define the joint probability distribution function R(Q,C,τ )
for Q number of particles transported and for the system to
be in state C, given that at τ = 0 the system is in the steady
state. Clearly P (Q,τ ) = ∑

C R(Q,C,τ ). We also define the
characteristic functions R̃(z,C,τ ) = ∑∞

−∞ R(Q,C,τ )zQ and
P̃ (z,τ ) = ∑

C R̃(z,C,τ ). It is then easy to obtain the following
master equation [4]:

dR̃(z,C,τ )

dτ
=

∑
C′

[
zW1(C,C ′) + W0(C,C ′)

+ 1

z
W−1(C,C ′)

]
R̃(z,C ′,τ ). (5)

The general solution of this equation for arbitrary L is difficult
but for L = 1 an explicit solution can be obtained for R̃(z,C ′,τ )
and P̃ (z,τ ). We will here first discuss a special case α = β =
γ = δ for which P̃ (z,τ ) can be inverted explicitly. The choice
of steady-state initial conditions gives the solution P (Q,τ ) =
(e−2ατ /2)[I2Q−1(2ατ ) + 2I2Q(2ατ ) + I2Q+1(2ατ )]. In Fig. 1
we plot the exact distribution along with a direct simulation
of the above process with averaging over 5 × 108 realizations.
As we can see the direct simulation is accurate only for events
with probabilities of O(10−8). Now we illustrate our algorithm
using a biased dynamics. We consider biasing obtained by
changing the boundary transition rates. We denote the rates of
the biased dynamics by α′,β ′,γ ′,δ′ and these are chosen such
that Pb(Q) has a peak in the required region. In our simulation
we consider a discrete-time implementation of SSEP. For every
realization of the process over a time τ (after throwing away
transients) the weight factor W is dynamically evaluated. For
instance, every time a particle hops into the system from the
left reservoir, W is incremented by − ln (α/α′). In Fig. 1 we
see the result of using our algorithm with two different biases.
Using the same number of realizations we are now able to
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FIG. 1. (Color online) Plot of P (Q) for τ = 15 for the one-site
SSEP model with α = β = 3.0,γ = δ = 3.0. MC refers to direct
Monte Carlo simulations. Left bias corresponds to α′ = β ′ = 3.8,

γ ′ = δ′ = 2.2 and right bias to α′ = β ′ = 2.2,γ ′ = δ′ = 3.8.

find probabilities up to O(10−16) and the comparison with the
exact result is excellent.

We next study the case with L = 3 with rates chosen such
that the system reaches a nonequilibrium steady state with
〈Q〉 > 0. Finding R̃(z,C,τ ) analytically involves diagonal-
izing an 8 × 8 matrix. We do this numerically and after an
inverse Laplace transform find P (Q,τ ). In Fig. 2 we show the
numerical and direct simulation results for this case and also
the results obtained using the biased dynamics; in this case
we consider a biased dynamics with asymmetric bulk hopping
rates. Again we find that the biasing algorithm significantly
improves the accuracy of finding probabilities of rare events
using the same number of realizations (5 × 108).
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FIG. 2. (Color online) Plot of P (Q) for τ = 15 for the three-site
SSEP model with α = β = 4.0,γ = δ = 2.0. MC refers to direct
Monte Carlo simulations. For left (right) bias simulations, the
particles in bulk hop to the left (right) with rate 4 and to the right
(left) with unit rate. The boundary rates are kept unchanged.

IV. HEAT CONDUCTION

Next we consider the problem of heat conduction across
a system connected to heat reservoirs modeled by Langevin
white-noise reservoirs. Here we are interested in the distribu-
tion of the net heat transfer Q from the left bath into the system
over time τ . First let us consider the simple example of a single
Brownian particle connected to two baths at temperatures T1

and T2. This model was studied recently by Visco [6] who
obtained an exact expression for the characteristic function of
Q. The equation of motion for the system is given by

v̇ = −(γ1 + γ2)v +
√

2D1 η1 +
√

2D2 η2, (6)

where η1,2 are Gaussian delta-correlated noises with zero mean
and unit variance, thus 〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′) and Di =
γiTi . The heat flow from the left bath into the system in time τ

is given by Q(τ ) = ∫ τ

0 (−γ1v
2 + √

2D1η1v) dt . For the single
Brownian particle in this problem it is sufficient to specify the
state by the velocity v(t) alone. If we choose T1 > T2 then
P (Q,τ ) will have a peak at Q > 0. It is clear that to use the
biasing algorithm to compute probabilities of rare events with
Q < 0 we can choose a biased dynamics with temperatures of
left and right reservoirs taken to be T ′

1 and T ′
2 with T ′

1 < T ′
2. The

calculation of the weight factor W is somewhat tricky since
computing P[v(t)] from P[η1(t),η2(t)] is nontrivial. Also one
cannot eliminate η1 to express Q as a functional of only
the path v. To get around this problem we note the following
mapping of the single-particle system to the over-damped dy-
namics of two coupled oscillators [19] given by the equations
of motion ẋ1 = −γ1(x1 − x2) + √

2D1η1,ẋ2 = −γ2(x2 −
x1) − √

2D2η2. The variable x1 − x2 = x12 satisfies the same
equation as v in Eq. (6). Thus with the same definition for Q

as given earlier we can use the above equations for x1 and x2 to
find P (Q,τ ). In this case we do not have the problem as earlier
and both Q and W can be readily expressed in terms of {x1,x2}.
Let us denote by γ ′

i ,T
′
i ,D

′
i the parameters of the biased system.

Also let η′
1,2 be the noise realizations in the biased process that

result in the same path {x1,x2} as produced by η1,2 for the origi-
nal process. Choosing Di = D′

i for i = 1,2 it can be shown that

W =
∫ τ

0
dt

[(
η2

1

/
2 + η2

2

/
2
) − (

η′2
1

/
2 + η′2

2

/
2
)]

. (7)

Using the equations of motion we can express η1,2,η
′
1,2 in

terms of the phase-space variables and this gives

W = 1

4D1

∫ τ

0
dt

[
2(γ1 − γ ′

1)ẋ1x12 + (
γ 2

1 − γ ′2
1

)
x2

12

]

+ 1

4D2

∫ τ

0
dt

[
2(γ2 − γ ′

2)ẋ2x12 + (
γ 2

2 − γ 2
2

)
x2

12

]
,

Q =
∫ τ

0
dtẋ1x12.

Thus W and Q are easily evaluated in the simulation using
the biased dynamics. In Fig. 3 we show results for P (Q,τ )
obtained both directly and using the biased dynamics. Again
we see that for the same number of realizations (109) one
can obtain probabilities about 108 times smaller than using
direct simulations. The comparison with the numerical results
obtained from the exact expression for 〈e−λQ〉 [6] also shows
the accuracy of the algorithm.
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FIG. 3. (Color online) Plot of P (Q) for τ = 200 for heat
conduction across a single free particle with γ1 = 0.8, γ2 = 0.2,
T1 = 1.1875, and T2 = 0.25. The parameters have been chosen to
correspond to a region in parameter space where the fluctuation
theorem is not satisfied [6]. MC refers to direct Monte Carlo
simulations. The left bias corresponds to γ ′

1 = γ1, γ ′
2 = γ2/20, T ′

1 =
T1, T ′

2 = 20T2.

It is easy to apply the algorithm to more complicated cases.
For example, consider a one-dimensional chain of L particles
connected to heat reservoirs at the two ends with the following
equations of motion:

mlv̇l = fl + δl,1[−γ1v1 +
√

2D1 η1]

+ δl,L[−γ2vL +
√

2D2 η2], l = 1,2, . . . ,N, (8)

where fl = −∂xl
U and U ({xl}) is the potential energy of

the system. The net heat transfer from the left bath into
the system is given by Q = ∫ τ

0 (−γ1v
2
1 + √

2D1η1v1) and
using Eq. (8) this can be expressed in terms of {xl,vl}
as Q = ∫ τ

0 dtv1(m1v̇1 − f1). To apply our algorithm we
consider a biased dynamics where the Hamiltonian evolution
is unchanged while the bath dynamics has new parameters
γ ′

1,γ
′
2,T

′
1,T

′
2 which are chosen so that Pb(Q) has a peak in the

required region. Choosing D′
i = Di we again find W by using

Eq. (8) in Eq. (7), as for the single particle case. Thus both Q

and W can be expressed in terms of the path and so are readily
evaluated for every realization of the biased dynamics.

As an example, we study the case L = 2 with
U = (x1 − x2)2/2 and with m1 = m2 = 1. For the spe-
cial parameters γ1 = γ2 = √

2 we use the results in
Ref. [7] to obtain 〈e−λQ〉 ∼ eμ(λ)τ with μ(λ) = √

2{1 − [1 +
β−1

1 β−1
2 λ(
β − λ)]1/6}. This can be inverted to numerically

compute P (Q,τ ) at large τ . In Fig. 4 we give the comparison
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FIG. 4. (Color online) Plot of P (Q) for τ = 100 for heat
conduction across two particles connected by a harmonic spring
with unit spring constant and γ1 = γ2 = √

2,T1 = 10,T2 = 12. MC
refers to direct Monte Carlo simulations. The left bias corresponds
to γ ′

1 = γ1,γ
′
2 = γ2/2,T ′

1 = T1,T
′

2 = 2T2 and right bias to γ ′
1 = γ1/2,

γ ′
2 = γ2,T

′
1 = 2T1,T

′
2 = T2.

between the analytical distribution and that obtained by the
biasing method.

V. CONCLUSION

In conclusion, we have presented an algorithm for comput-
ing the probabilities of rare events in various nonequilibrium
processes. The algorithm is an application of importance
sampling and consists in using a biased dynamics to generate
the required rare events. This algorithm is straightforward to
understand and also to implement. The error in the estimate
of P (Q,τ ) is ≈ 〈e−2WδQ,Qx〉1/2

b /[MPb(Q)]1/2. In the systems
that we have studied we find that the error can be made small by
choosing the biased dynamics carefully. We have applied the
algorithm to two different models of particle and heat transport
and shown that in both cases it gives excellent results. We note,
however, that, in general, the fluctuations in W grow with τ and
with the system size, hence the errors are large and finding an
appropriate biased dynamics is not always easy. Further work
is necessary for improving the efficiency of the algorithm for
general systems.
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