
711RESONANCE  August 2010

GENERAL  ARTICLE

Keywords

Rotations, spinors, reflections.

Mirrors and Merry-Go-Rounds

Joseph Samuel

K. V. Rashmi is currently an M. E. student at the Indian Institute of Science. She received her B. Tech.

degree from the National Institute of Technology Karnataka, Surathkal. Her current research

interests are in coding theory, error-correction in networks and wireless communication.“

Joseph Samuel is a

theoretical physicist at

Raman Research Institute,

Bangalore. He is interested

in geometric and topologi-

cal aspects of physics

including general

relativity, soft condensed

matter and the geometric

phase in quantum

mechanics and optics. Of

late he has been pursuing

analogies between the

cosmological constant in

quantum gravity and the

surface tension of fluid

membranes. It’s hard work

and he likes to relax by

making exquisitely

textured lacy appams for

his friends.

This is an elementary introduction to rotations in
three dimensions, using re°ections to naturally
introduce spinors. It provides a stepping stone to
higher mathematics and some new perspectives.

1. Introduction

If you look around you, you will see rotations every-
where. Wheels on cars, fans, spin on cricket balls, gi-
ant wheels, merry-go-rounds.... Your head rotates when
you look around. The Earth rotates and it's a very
good thing that it does! But for the rotation of the
Earth, our days would be long indeed and our lives cor-
respondingly short! Some of us would get roasted and
the others frozen. The Sun rotates, as do black holes, the
solar system, the galaxy and our local cluster of galax-
ies. Looking down in scale instead of up at the sky,
some bacteria have rotary engines to propel themselves.
Molecules rotate. Electrons and many other elementary
particles have spin. Nuclei have spin and this leads to a
life-saving medical probe: Magnetic Resonance Imaging
(MRI).

Scientists encounter rotations in many areas of research.
In physics we deal with the mechanics of rotations (of
galaxies, stars, black holes, nucleii or elementary parti-
cles) and with the mathematics of rotations. Mechan-
ics is a wide term including classical mechanics, quan-
tum mechanics and statistical mechanics and rotation
is studied in all three branches of mechanics. This ar-
ticle will focus on some mathematical aspects of rota-
tions, trying to understand the `space of rotations'. As
you will see, re°ecting on rotations can make your head
spin! Prerequisites for following this article are a fa-
miliarity with complex analysis, trigonometry, vector
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Rotations can be

broken up into

reflections.

1 Another example is the Dirac

Belt trick, which has the same

intellectual content. See

http://www.gregegan.net/

APPLETS/21/21.html

calculus, google to look up unfamiliar terms and most
importantly some paper and pencils to supply missing
steps.

2. Topology

Here is a simple experiment which you can do: take a
glass of water in the palm of your hand and, keeping
it upright (so the water doesn't spill) rotate it by 360±

anticlockwise (2¼ in radians). You will ¯nd that your
arm is twisted uncomfortably. Continue the anticlock-
wise rotation and you ¯nd that your arm untwists after
720± (4¼ radians)!1 There is a sense in which 4¼ rota-
tion is trivial but 2¼ is not. Understanding this simple
experiment leads us naturally to topology and higher
mathematics.

Let's now set ourselves to understand rotations in three
dimensions. Consider ordinary three-dimensional space
and ¯x an origin so that the coordinates of points in
space are described by three real numbers (x; y; z). These
form a vector and we will sometimes denote it by ~r. Ro-
tations are linear transformations of space that preserve
the lengths of vectors: ~r:~r = x2 + y2 + z2 is invariant
under the transformations. But not all linear transfor-
mations that preserve length are rotations. Re°ections
also preserve length, as you can see in a plane mirror.
Re°ections are relatively clean operations { they reverse
some components of a vector and preserve others. The
main point of this article is that two re°ections lead to
a rotation and so rotations can be broken up into re°ec-
tions. Re°ections are in some ways simpler than rota-
tions. (Mirrors are \silver and exact" to borrow words
from the poet Sylvia Plath!) We will use re°ections to
understand rotations. The turning of a giant wheel or a
merry-go-round at a fair can be understood from quite
abstract points of view. One would not have expected
higher mathematics to lurk in such a commonplace phe-
nomenon as rotation.
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Euler studied rigid

body motion and in

the process

anticipated

spinors.

Box 1. Leonhard Euler

(1707–1783)

Euler had many theorems,

one has to be specific about

which theorem of Euler one

is referring to. Apart from

the theorem on rotations

used in the text, Euler has

theorems in several

branches of mathematics

and physics, from number

theory to fluid mechanics.

He had phenomenal pow-

ers of concentration and

could work while dandling

a child on his knee! He left

behind a stack of manu-

scripts which kept math-

ematicians busy till re-

cently – sorting, annotat-

ing and publishing them.

They have now given up

on this task and are just

scanning the rest of Euler’s

manuscripts and uploading

them on the web.

Consider linear transformations of IR3(~r ² IR3)

~r 0 = R~r; (1)

which preserve length:

~r 0 ¢ ~r 0 = ~r ¢ ~r: (2)

From (2) it follows that R satis¯es

RTR = 1; (3)

where RT is the matrix transpose of R. We say that R
is an orthogonal matrix. It also follows by considering
~r(¸) = ~r1 + ¸~r2, (where ¸ is an arbitrary real number),
and its transformation, that R preserves inner products
(and therefore angles) between vectors

~r 01 ¢ ~r
0
2 = ~r1 ¢ ~r2: (4)

From (3) it follows that (detR)2 = 1 or detR = §1.
Transformations with detR = +1 are called rotations.
These preserve the handedness of frames. Those trans-
formations with detR = ¡1 are called re°ections. These
reverse the handedness of frames and are called im-
proper. The transformations which preserve length form
a group called O(3), which includes rotations as well
as re°ections. (O means orthogonal (see equation (3)).
The 3 in O(3) tells us the dimension we are in, which
is three dimensions. Rotations form a subgroup called
SO(3). (S stands for special, which means detR = 1).

Euler's theorem on rotations (see Box 1) states that ev-
ery rotation leaves some direction invariant. Euler's the-
orem can be proved by noting that over the complex
numbers the characteristic equation

det(R¡ ¸I) = 0

of R is a cubic polynomial with real coe±cients. From
(3), (re-written as RyR = 1, since R is real), we see that
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We want a ‘map’

of the space of

rotations. Such a

map has to be

threedimensional.

R is unitary, which implies j¸j = 1 and the eigenval-
ues lie on the unit circle. Since the coe±cients of the
characteristic equation are real, if ¸ is an eigenvalue, so
is its complex conjugate ¹̧. The three roots must be
of the form (eiµ; e¡iµ; 1) since their product has to be
unity from detR = 1. The eigenvector corresponding to
¸ = 1 is the direction that is left invariant by the ro-
tation. This proves Euler's theorem: Every rotation in
three dimensions has an axis n̂ which is unchanged by
the rotation. (Note that Euler's theorem is true in all
odd dimensions and not true in all even dimensions).

What are all the rotations? In other words what is the
space of rotations? We want to ¯nd a space so that
each point of the space corresponds to a rotation and
each rotation is represented by one point. We know that
rotations are characterised by an axis n̂ (which needs two
numbers to specify it) and an angle µ which needs one
number. The space of rotations is three-dimensional.
So, we will not be able to represent the space of rotations
on a sheet of paper, but we can use points of three-
dimensional space. We use the tip of the vector

~VR = µn̂

to represent a rotation. If µ = 0, ~VR = 0, and the rota-
tion by zero about any axis is represented at the origin.
This is the identity of SO(3). Rotations by non-zero
angles are represented by non-zero vectors in the direc-
tion of the axis. What is the range of µ? We remember
that rotation by ¼ about n̂ is the same as rotation by
¼ about ¡n̂. Thus, µ goes from 0 to ¼. The picture of
the rotation group SO(3) looks like a solid ball. The
centre of the ball is the identity. (We must remember

though that adding two ~V vectors doesn't make sense.
The solid ball is just a representation of the rotations.
To compose rotations we have to do more work. Sim-
ply adding the corresponding vectors is de¯nitely wrong,
because rotations don't commute!) Although the solid

The space of

rotations is a solid

ball with antipodal

points identified.
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Figure 1. The space of rotations is a sphere

with opposite points identified (declared to be

the same or glued together). The center of the

sphere is marked O and represents the zero

rotation. The vector shows a particular rota-

tion whose direction is the axis of rotation and

whose length represents the angle. The radius

of the sphere is . Also shown is a curve that

starts from O, goes to A at the edge of the

sphere and returns to O from the antipodal

point, which is also labelled A. This is a closed

curve in the space of rotations which cannot

be continuously shrunk to a point.

ball has a boundary, we must remember that opposite
points on its surface represent the same rotation.

This last remark leads to an interesting observation.
There are closed curves in SO(3) that start from the
origin, go to a point VR = ¼n̂ at µ = ¼ and return from
its antipode ¡¼n̂ to the origin (Figure 1). The total
angle of rotation as one traverses this curve is 2¼. Such
curves cannot be shrunk to a point. We say that SO(3)
is `multiply connected'.

However, transversing this loop twice (rotating by 4¼)
leads to a curve which can be shrunk to a point! 2¼
rotations are topologically non-trivial. 4¼ rotations are
topologically trivial. This is the mathematics behind the
simple experiment with a glass of water that we started
with.

SO(3) can be represented as a ball with opposite points
of the boundary identi¯ed, i.e., to be regarded as the
same point. Equivalently, consider a sphere in four di-
mensions (x1; x2; x3; x4) all real with x2

1+x
2
2+x

2
3+x

2
4 = 1.

If we suppose x4 positive, the set of points on the four-
sphere can be identi¯ed with the ball in three dimen-
sions x2

1 + x2
2 + x2

3 < 1. Similarly, supposing x4 negative
we get another copy of this ball. For x4 zero, we must
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The space of

rotations is the

boundary of a four-

sphere with

antipodal points

identified.

remember the original identi¯cation of opposite points.
Thus SO(3) has the same structure as a sphere in four
dimensions with opposite points identi¯ed. This space
is called IRP 3 or real projective space. Such a space is
easier to visualise in lower dimensions: IRP 2 is a sphere
with opposite points identi¯ed. Such spaces come up in
physics quite naturally. In liquid crystals, (look at your
wristwatch or mobile to see them) there are long rod-
like molecules that align to produce interesting optical
properties. These molecules are long but do not point in
any direction since both their ends are the same. Unlike
vectors, these molecules do not have an `arrow'. The pa-
rameter that describes the ordering alignment in liquid
crystals is a headless vector, (a line segment) or a point
in IRP 2.

Using the four-sphere to represent rotations is a natural
trick in view of the topological ideas we went through.
Such methods were used to understand tops by Cayley
and Klein (the `Cayley{Klein' parameters) long before
the quantum mechanical `spin' of elementary particles
was discovered. Notice that there are two antipodal
points in the four sphere which represent the same rota-
tion. This number two is closely related to spinors. We
will see that re°ections also bring in this number two
naturally and lead us to spinors.

3. Re°ections

Euler used improper elements of O(3) to understand ro-
tations. We will write ~R for re°ections. Two re°ections
give a rotation since det ~R1

~R2 = (¡1)2 = 1. This is easy
to visualise in two dimensions. Re°ecting the plane ¯rst
in the line P1 and then in the line P2 leads to a rotation
by 2Á. This is easy to see for vectors lying in either of
the two lines P1 or P2. With some work you can con-
vince yourself that it is in fact true for all vectors. You
can also place two mirrors at an angle Á and see that
the net e®ect of two re°ections is a rotation by µ, which
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Place two mirrors

at an angle  and

see that two

reflections cause a

rotation of 2.

is twice the angle Á between the mirrors. Equivalently,

Á = µ=2:

This appearance of half angles is a characteristic of spi-
nors! As we will see, spinors are objects that return to
themselves only after a 4¼ rotation, unlike vectors, that
return after a 2¼ rotation.

In three dimensions, we re°ect in a plane P whose unit
normal is p̂. The vector p̂ is perpendicular to all vectors
in P . The re°ection operation is

~r 0 = ~r ¡ 2(~r ¢ p̂)p̂ (5)

and it reverses the component of ~r perpendicular to P ,
while preserving its parallel component. Note that re-
placing p̂ by ¡p̂ does not change matters since re°ection
is bilinear in p̂. Re°ecting twice in the same plane gives
back the original vector

~r 00 = ~r 0 ¡ 2(~r 0 ¢ p̂)p̂ = ~r:

But re°ection ¯rst in plane P1 and then in plane P2 gives
a rotation whose axis is n̂ and angle is µ. Evidently, the
angle of rotation is twice the angle between the planes.

cos (µ=2) = p̂1 ¢ p̂2:

The axis must lie in the intersection of planes P1 and
P2, since this direction is unchanged in both re°ections.
The axis must be perpendicular to both p̂1 and p̂2 and
therefore lies along p̂1 £ p̂2 (which is non-zero unless
p̂1 / p̂2).

For example, a re°ection in the xy plane takes
0

@
x
y
z

1

A !

0

@
x
y
¡z

1

A :

It simply reverses one of the coordinates of the vector
(x; y; z). Instead of arranging (x; y; z) as a vector we
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Rearranging the

components of a

vector as a matrix

leads to spinors. This

rearrangement was

known to L Euler

(1770) and

O Rodrigues (1840).

could arrange it as a matrix (X = ~¾ ¢~r = ¾1x+¾2y+¾3z,
i.e.,

X =

µ
z x¡ iy

x+ iy ¡z

¶

;

where ¾1; ¾2; ¾3 are the Pauli matrices. You can ¯nd
explicit forms for these in any quantum mechanics book,
but we will not need these forms. They satisfy ¾2

1 =
¾2

2 = ¾2
3 = 1, ¾1¾2 = i ¾3, ¾2¾3 = i ¾1 and ¾3¾1 = i ¾2.

The di®erent ¾ anticommute with each other (¾1¾2 =
¡¾2¾1 and so on). Re°ection in the xy plane is just

X 0 = ¡¾3X¾3:

This follows because ¾3 anticommutes with ¾1; ¾2 and
when the second ¾3 is moved through X to cancel the
¯rst we end up reversing only z. More generally, re°ec-
tion in the plane perpendicular to p̂ is simply

X 0 = ¡pXp

with p = p̂ ¢ ~¾. Since p2 = 1, X 00 = X as expected for
re°ections. If you re°ect about P1 followed by a distinct
plane P2, the result is a rotation. X ! +p2p1Xp1p2,
where p2p1 is

p2p1 = (p̂2 ¢ ~¾)(p̂1 ¢ ~¾) = p̂2 ¢ p̂1 + i(p̂2 £ p̂1) ¢ ~¾ :

The angle of rotation is given by (we can suppose 0 µ ¼)

cos (µ=2) = p̂2 ¢ p̂1 :

The axis is given by (p̂2 £ p̂1). The size of the vector
p̂2 £ p̂1 is the square root of

(p̂2 £ p̂1) ¢ (p̂2 £ p̂1) = (p̂1 ¢ p̂1) (p̂2 ¢ p̂2)¡ (p̂1 ¢ p̂2)
2

= 1¡ cos2(µ=2) = sin2(µ=2):

Writing n̂ = (p̂2£ p̂1)= sin(µ=2) (assuming that µ 6= 0; ¼)
we have

p2p1 = cos (µ=2) + i sin(µ=2)n̂ ¢ ~¾:

 



719RESONANCE  August 2010

GENERAL  ARTICLE

This useful formula can also be written as

p2p1 = ei(µ=2)n̂¢~¾ :

To see this simply expand the exponential as a power
series and collect terms remembering that (~¾ ¢ n̂)2m = 1.
Composing rotations is easy

(cos (µ2=2) + i sin (µ2=2)n̂2 ¢ ~¾) £

(cos (µ1=2) + i sin (µ1=2)n̂1 ¢ ~¾)

= cos (µ2=2) cos (µ1=2)¡ sin (µ2=2) sin (µ1=2) n̂1 ¢ n̂2

+ i cos (µ1=2) sin (µ2=2) n̂2¢~¾+ i cos (µ2=2) sin (µ1=2) n̂1¢~¾

+ i sin (µ2=2) sin (µ1=2) (n̂1 £ n̂2) ¢ ~¾ :

From this we can read o® the axis and angle of the com-
posite rotation (n̂; µ)

cos (µ=2) = cos (µ1=2) cos (µ2=2)

¡ sin (µ1=2) sin (µ2=2) cos (Ã) ;

sin (µ=2) n̂ = cos (µ1=2) sin (µ2=2) n̂2

+ cos (µ2=2) sin (µ1=2) n̂1

+ sin (µ2=2) sin (µ1=2) n̂1 £ n̂2 ;

where we write Ã for the angle between n̂1 and n̂2.

4. Conclusion

The Pauli matrices ¾j are normally introduced as gen-
erators of rotations, satisfying commutation relations

£
¾i; ¾j

¤
= ¾i¾j ¡ ¾j¾i = 2i²ijk¾k;

where ² is a completely antisymmetric tensor with ²123 =
1. In the present case what we used to represent re°ec-
tions was the anticommutation relation

©
¾i; ¾j

ª
= ¾i¾j + ¾j¾i = 2 ±ij:

In mathematics, objects that satisfy such anticommuta-
tion relations are called Cli®ord algebras. Starting from

Pauli matrices can

be viewed as

generators of

rotations or as

elements of a

Clifford algebra.
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very elementary ideas, we step towards Cli®ord algebras
and spinors.

In three dimensions we found that a 4¼ rotation can be
deformed to the identity. This is an example of a gen-
eral topological characterisation of spaces. In any space
one considers di®erent ways in which a rubber band can
be placed. Let us mark a point on the rubber band and
keep its location ¯xed. We regard two con¯gurations
of the rubber band equivalent, if one can be deformed
to the other continuously. We consider two con¯gura-
tions and multiply them by traversing them in succes-
sion. This forms a group in the mathematical sense,
called the fundamental group of the space. What we
saw from the experiment is that the fundamental group
of SO(3) has two elements, f1;¡1g. Examples of the
¡1 element are 2¼ rotations. Elements of the ¯rst are
4¼, 6¼ or 0¼.

Earlier ~r which was a vector in three-dimensional real
space was replaced by X, a matrix in a two-dimensional
complex space. Vectors in this two-dimensional complex
space are called spinors. The study of elementary parti-
cles demands the use of spinors to describe particles like
electrons, which have half-integral spin. Spinors form a
representation of the group SU(2), which can be iden-
ti¯ed with the sphere in four dimensions. This sphere
`wraps around' the space of rotations twice. We say it
gives a double cover.

We learn in quantum mechanics that the wave function
of a spin s object acquires a phase of exp(isµ) when
it is rotated by µ. For a spin-half particle it takes a
720± rotation (or a 4¼ rotation) for the wave function to
return to itself. This is closely related to the experiment
with the glass of water we started with: 4¼ rotations are
trivial in a topological sense.

In 2 dimensions it turns out that 4¼ rotations cannot
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Twp dimensions

are special: spin

does not have to

be half integral.

be shrunk to a point. Note that we essentially needed
the third dimension to shrink a 4¼ rotation to nothing.
The space of 2-d rotations is a circle and its fundamen-
tal group consists of integers, the number of times the
rubber band winds around the circle. In two dimensions
spin does not have to be half integral and can take any
value. This has implications in two-dimensional physics,
which is currently an exciting area of research.

In relativity we have four-vectors
0

B
B
@

x
y
z
t

1

C
C
A

instead of three-vectors
0

@
x
y
z

1

A :

These four-vectors are easily accommodated.

Simply extend X as

X =

µ
t+ z x¡ iy
x+ iy t¡ z

¶

:

The earlier discussion goes through. We now have spinors
of the Lorentz group SO(3; 1) instead of the rotation
group SO(3). We can also write

X = t+ ix+ jy + kz;

where i; j; k satisfy i2 = ¡1; ij = k and cyclic. These
de¯ne the quaternions introduced by Hamilton (Box 2).

In closing we remark that mathematics is not a spectator
sport. While it is fun to read, mathematics enters your
system only if you struggle with it. To help you do this
here are some exercises.

The idea of a

spinor carries over

to relativity theory.
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Box 2. William Rowan Hamilton (1805–1865)

Hamilton invented quaternions while trying to generalise complex numbers. In Dublin, you can find a bridge

(now Broom bridge, earlier Brougham bridge) on which William Rowan Hamilton carved their defining

relations. Hamilton’s quaternions are closely related to spinors and now very much a part of a good theoretical

physics education. However at the time they were invented, their relevance to the physical world was seriously

doubted. The great physicist Lord Kelvin (earlier known as William Thomsom) took a dim view of quaternions:

“Quaternions came from Hamilton after his really good work had been done; and though beautifully ingenious,

have been an unmixed evil to those who have touched them in any way... Vector is a useless survival, or

offshoot from quaternions, and has never been of the slightest use to any creature.”

Lord Kelvin may have been a great physicist, but he was a poor prophet! He did not foresee how important

Hamilton’s ideas would turn out to be in the microscopic world.
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Exercises

1. Let R be a rotation. It can be expressed as a product
of two re°ections in more than one way. How many ways
can this be done?

R = ~R1
~R2 :

2. Given rotations R and S, we can write

R = ~R1
~R2 ;

S = ~S1
~S2 :

Use the freedom in 1. above to choose ~R2 = ~S1 so that
these re°ections cancel out. We ¯nd then

RS = ~R1
~S2 :

Use this trick to derive the formula for composing rota-
tions. Look up Hamilton's theory of turns on the web
to see the connection.




