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The Celestial Mechanics of Newton

Dipankar Bhattacharya

Newton’s law of universal gravitation laid the
physical foundation of celestial mechanics. This
article reviews the steps towards the law of gravi-
tation, and highlights some applications to celes-
tial mechanics found in Newton’s Principia.

1. Introduction

Newton’s Principia consists of three books; the third
dealing with the The System of the World puts forth
Newton’s views on celestial mechanics. This third book
is indeed the heart of Newton’s “natural philosophy”,
which draws heavily on the mathematical results derived
in the first two books. Here he systematises his math-
ematical findings and confronts them against a variety
of observed phenomena culminating in a powerful and
compelling development of the universal law of gravita-
tion.

Newton lived in an era of exciting developments in Nat-
ural Philosophy. Some three decades before his birth Jo-
hannes Kepler had announced his first two laws of plan-
etary motion (AD 1609), to be followed by the third law
after a decade (AD 1619). These were empirical laws
derived from accurate astronomical observations, and
stirred the imagination of philosophers regarding their
underlying cause.

Mechanics of terrestrial bodies was also being developed
around this time. Galileo’s experiments were conducted
in the early 17th century leading to the discovery of the
laws of free fall and projectile motion. Galileo’s Dialogue
about the system of the world was published in 1632.
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Newton’s Principia is

not merely a
collection of brilliant
mathematical
solutions of
numerous problems
in mechanics, it also
represents a tour de
force in objectivity
and rational thought.

René Descartes, in his Principia philosophiae (1644), at-
tempted to provide a physical basis to many observed
phenomena including planetary motion. He proposed
ten physical laws, the first two of which were nearly
identical to the first two laws of Newton, but the rest
were inaccurate. Descartes echoed the prevalent view
that forces may act on a body only by contact with an-
other body, and proposed that the planets are carried
along in their orbits by “corporal vortices” in an aethe-
real medium revolving around the Sun. This view must
have gained a fair degree of popularity, because New-
ton spends a significant amount of effort to demonstrate
that this could not be the case.

Newton’s Principia is not merely a collection of bril-
liant mathematical solutions of numerous problems in
mechanics, it also represents a tour de force in objec-
tivity and rational thought. The Principia establishes
gravity as a force that “acts at a distance” and not by
contact. Yet Newton was, personally, deeply uncom-
fortable with the notion of action at a distance. He did
not let these personal views interfere with the deductive
logic of the Principia, as he abided by the self-imposed
“rules for the study of natural philosophy”, with which
Book 3 of the Principia begins. These are very much
the same rules which govern our scientific method till
today. For example, his rule 4 states that “In experi-
mental philosophy, propositions gathered from phenom-
ena by induction should be considered either exactly or
very nearly true notwithstanding any contrary hypothe-
ses, until yet other phenomena make such propositions
either more exact or liable to exceptions”. To make the
inductions from observed phenomena precise, Newton
had a very powerful tool at hand — his mathematical
genius. It is therefore not surprising that he chose to
name his book after that of Descartes, but paraphras-
ing it Philosophiae Naturalis Principia Mathematica, or
“Mathematical Principles of Natural Philosophy”.
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2. Route to the Law of Gravitation

It may be said that the most important steps in the
discovery of the law of gravitation were the following.

2.1. Expression of Centripetal Force for Circu-
lar Motion

Till the late 1670s, Newton did not formulate a clear
idea of a centripetal force. For bodies in circular motion
he, like many others of his time, believed in the exis-
tence of an ‘outward’ or centrifugal force, an idea con-
tained in the work of Descartes. The discovery of the
expression v?/r for the centrifugal acceleration is cred-
ited to Christiaan Huygens, who published this result
in his book Horologium Oscillatorium in 1673. New-
ton, however, had independently worked this out in the
1660s. Newton was triggered to think in terms of cen-
tripetal rather than centrifugal forces by an exchange of
letters with Robert Hooke in 1679-80. By the time of
the publication of the first edition of the Principia in
1687, Newton’s derivation of this result took the follow-
ing form.

In Figure 1, let bodies B and b, revolving in the circum-
ferences of circles BD and bd, describe the (infinitesi-
mal) arcs BD and bd in the same time. In absence of
centripetal force the bodies would have described tan-
gents BC and be respectively. Motion due to centripetal
forces are then represented by the nascent spaces CD
and cd respectively, executed in the same time by the
two bodies. These displacements are directed towards
the centre of the circle and since both are described in
the same interval of time, starting from zero initial ve-
locity in that direction, they must be proportional to
the centripetal force at the respective locations. Let fig-
ure tkb be similar to the figure DCB. Then CD/kt =
arc BD/arc bt and also kt/cd = (arc bt/arc bd)?>. The
latter follows from a lemma proved by Newton, using a

Newton was
triggered to think in
terms of centripetal
rather than
centrifugal forces
by an exchange of
letters with Robert
Hooke in 1679-80.
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Figure 1. Centripetal force
in uniform circular motion.

known property of the circle: (chord BD)? = BSxCD
(Figure 1), and taking limits to infinitesimal displace-
ments. Hence CD/cd=(arc BD xarc bt)/(arc bd)?. Now
arc bt=(Sb/SB)x (arc BD), and therefore the ratio of
forces becomes that of (arc BD)?/SB to (arc bd)?/Sb.
Since arcs BD and bd are described in the same time
interval, their lengths are proportional to the respective
velocities, giving centripetal force oc v?/7r.

2.2. The 1/r* Force Law

Once the expression for centrifugal acceleration was
known, it was a simple matter to combine this with
Kepler’s third law to derive that for the planets, the
centrifugal force varies inversely as the square of their
distance from the Sun, since orbital speed v = 27r /T,
and T?% oc 73 (here T is the orbital period of the planet).
Eliminating 7' one finds v o 1/r/2, and hence v?/r
1/r%. Indeed this was done by several people in the late
1670s/early 1680s, including Robert Hooke, Christopher
Wren and Edmund Halley. Newton, on the other hand,
had discovered this result much earlier, in the 1660s,
since he had already derived the v?/r law before its pub-
lication by Huygens. At this time he even estimated that

38

Vv\N\lV RESONANCE | December 2006



GENERAL | ARTICLE

the centrifugal force at the Earth’s surface is much smaller
than the gravitational force and that at the Moon’s or-

bit, the centrifugal force measures about 1/4000 that

of the Earth’s surface gravity. The true significance of

these results, however, was clear to Newton only after

he realised that the force needed to keep bodies in orbit

is centripetal, not centrifugal.

2.3. Kepler’s Laws

While several contemporaries of Newton had arrived at
the 1/r? dependence of the centripetal forces acting on
planets, none except Newton had the mathematical mas-
tery to demonstrate that all the laws of Kepler follow
from a centrally directed force that varies in magnitude
inversely as the square of the distance. Newton showed
that Kepler’s first law, stating the constancy of areal
velocity, follows from the fact that the force is central in
nature. This proof is reproduced in the article by H S
Mani in this issue. Kepler’s second law, that the orbits
of planets are ellipses with the Sun at the focus, was
derived by Newton in his characteristically ingenious
fashion. First, he inverted the problem to show that
if a body moves in an elliptical orbit around a centre of
force located at its focus, the centripetal force required
is proportional to 1/r%. He provided two different sets
of proofs, one of which is outlined below.

To start with, the expression for centripetal force (C.F.)
directed towards any arbitrary point within a circular
orbit is computed. In the diagram of Figure 2, if P
be the particle executing the orbit and S be the centre
of force, then the magnitude of centripetal force is in-
versely proportional to SP?xPV? (the proof of this has
been reproduced in the article by H S Mani in this is-
sue). Newton then draws the following corollary. If the
particle executes the same circular motion due to the
action of a centripetal force directed towards a different
centre R, then the ratio of these two forces would be

Figure 2. Ratio of centrip-
etalforces directed towards
different centres within a
circular orbit.
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Figure 3. Diagram to com-
pute centripetal force di-
rected to the centre or the
focus of an elliptical orbit.
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(1)

Here SG is a line parallel to RP which intersects at G the
tangent drawn through P. The above result follows by

noting that triangles PSG and TPV are similar, giving
PT/PV = SP/SG.

Newton remarks that this result is applicable to any
curved orbit, not just a circle. Since we are describing
just the instantaneous motion at P, the result for a cir-
cle would hold for any curve with the same radius of
curvature.

Newton then estimates the centripetal force directed to
the centre of an elliptical orbit. In Figure 3, let P be the
particle moving in the elliptical orbit sketched, under the
action of a force directed towards its centre C. Let RPZ
be the tangent at P and PG, DK be conjugate diameters
(DK parallel to RPZ). Let Q be the point on the orbit at
a later time. Complete parallelogram QuPR and drop
perpendicular QT on PC. Also drop perpendicular PF
on DK. Now for any curved trajectory the centripetal
force is proportional to QR/(PC*xQT?) (lim PQ—0),
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as Newton had already shown (see equation (6) in the
article by H S Mani in this issue). Newton now uses
two properties of the ellipse: Pv x vG /Quv? = PC?/CD?
and CD x PF = BC x CA. Using similar triangles QuvT
and PCF one finds Qu?/QT? = PC?/PF?. From these
relations and noting that Pv=QR, it is evident that

QR pC? B pC?
QT? x PC?  CD? x PF?2xvG BC%x CA%x0G’

As PQ—0, vG—PG = 2PC. Hence the centripetal force
is proportional to PC?/(BC ?x CA 2x 2PC). But since
BC and CA for the ellipse are given, the force is < PC,
or the distance from the centre.

Finally, Newton derives the force directed towards the
focus of the ellipse by using the corollary quoted above.
In Figure 3, let S be the focus to which the force is
directed. E is the point of intersection of SP with the
diameter DK drawn parallel to the tangent RPZ. A line
parallel to SP from C intersects the tangent RPZ at
point O. By (1),

C.F.g co? PE?

C.F.¢c CPxSP? (P xSP? (2)

But since PE = AC = constant (property of an ellipse),
and C.F.¢c o< CP, one concludes that C.F.g 1/SP27 or
the force is inversely proportional to the square of the
distance from the focus.

Newton then extends this proof to hyperbolic and par-
abolic figures and also solves the inverse problem show-
ing that the shape of the orbit under inverse square force
is a conic.

Another important result he derives is that the major
axis of the elliptical orbit is stationary only if the force is
strictly inverse square. Any departure from this would

An important result
derived by Newton
is that the major
axis of an elliptical
orbit is stationary
only if the force is
strictly inverse
square.
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The centripetal
force that keeps
the Moon in its
orbit is the same
gravity we
experience at the
Earth’s surface.

Galileo’s law of
free fall and
Newton’s third law
of motion laid the
foundation for the
universal theory of
gravitation.

lead to apsidal motion (revolving orbit). He was able
to quantitatively estimate the amount of apsidal motion
expected, given a degree of departure from the inverse
square law.

2.4. The Moon Test

As mentioned above, Newton already knew that the cen-
tripetal acceleration at the orbit of the Moon is about
1/4000 the acceleration due to gravity at the Earth’s
surface. The distance to the Moon from the centre of
the Earth was known to him to be about 60.5 Earth
radii which would imply a decrease of an inverse square
force from the Earth’s surface to the Moon’s orbit by
a factor 3660, pretty close to 4000 (in fact the discrep-
ancy was due to the use of an inaccurate value for the
radius of the Earth). This made Newton realise that
the centripetal force that keeps the Moon in its orbit
is the same gravity we experience at the Earth’s sur-
face. It was then a matter of a series of carefully crafted
arguments to extend this notion of gravity to satellites
of Jupiter and Saturn, then to planets moving around
the Sun, the universality of the inverse square law thus
established. In fact, he used the lack of noticeable apsi-
dal motion in the planetary orbits and the observed fact
that the apogee of the Moon moves very slowly, to argue
that the inverse square law must hold to a great degree
of accuracy. He correctly attributed the small motion
of Moon’s apogee to the orbital perturbation caused by
the Sun’s gravity.

The above results, added to Galileo’s law of free fall
and Newton’s third law of motion (which, combined,
led to Newton’s equivalence principle — that the same
mass is responsible for both inertia and gravity) laid
the foundation for the universal theory of gravitation.

3. Applications to Celestial Mechanics

Having established the law of universal gravitation,
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Newton applied it to a variety of problems.

In the Principia, Newton computed many details of lu-
nar motion, explained every known variation of the
Moon’s motion and predicted others. He also computed
the mutual perturbation of the orbits of Jupiter and Sat-
urn, although it is unclear if there was any convincing
evidence for this at that time.

Assuming the Earth—Sun distance to be known, Newton
applied his theory of gravitation to determine the ratio
of masses of the Sun, Earth, Jupiter and Saturn, making
use of the observed motion of the satellites around the
planets and of course the motion of the planets around
the Sun.

Newton then formulated a theory of tides based on the
gravitational attraction of the Moon and the Sun. This
was a tremendous intellectual leap forward, since this is
the first time any physical cause was attributed to tidal
phenomena. It was also a triumph since this theory
succeeded in explaining many of the general features of
the tides. Comparing the height of the tides attributed
to the Moon and the Sun, Newton estimated the ratio
of the mass of the Moon to that of the Sun.

The Principia ends with the theory of gravitation ap-
plied to cometary orbits. Newton devises a method to
compute (fit) the orbit of a comet based on observations
carried out at a few epochs, and then to predict the lo-
cation of the comet’s appearance at later times. He ap-
plies this to several comets, including the Halley’s comet
which appeared in 1682. His predictions, based on this
physical theory (as opposed to the prevalent method of
empirical interpolations and extrapolations used by his
contemporary astronomers), were accurate within a cou-
ple of arcminutes, as demonstrated in the results tabu-
lated in the Principia.

In the Principia,
Newton computed
many details of
lunar motion,
explained every
known variation of
the Moon’s motion
and predicted
others.

Newton formulated
a theory of tides
based on the
gravitational
attraction of the
Moon and the Sun.
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Newton tied all known
laws of terrestrial
mechanics and
celestial mechanics
into a firm, single
physical basis.
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4. Conclusion

There is no doubt that Newton’s Principia was a mon-
umental intellectual achievement of a magnitude so far
unsurpassed. Newton tied all known laws of terrestrial
mechanics and celestial mechanics into a firm, single
physical basis. The basis of his conclusions were pri-
marily the observations of bodies in the solar system ac-
cumulated over centuries. There is more to the cosmos
than the solar system, however. Newton was well aware
of this and did, at times, speculate on the fate of the uni-
verse. In the Principia he states that fixed stars must be
very far away since their parallax is very small, and as
they are distributed homogeneously, their gravitational
effect on the solar system bodies would mutually cancel.
In 1692, on being asked by Richard Bentley about the
fate of matter spread uniformly over finite space, New-
ton replied that as a result of gravitational attraction,
one great spherical mass will finally result. On the other
hand, he said, if the matter were spread through infinite
space, it would congeal into many masses like the Sun
and the fixed stars. Bentley asked why should truly
homogeneous and infinite distribution of matter not re-
main motionless in equilibrium. To this Newton replied
that this was unlikely, but remained puzzled over this
question. He was clearly far ahead of his time — mod-
ern cosmology and theory of structure formation had to
wait for another three centuries.
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