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Several mathematical disciplines such as differ-
ential geometry, topology and Riemann geome-
try on which Riemann left his mark have a ma-
jor impact on physics today. This article de-
scribes some of these contributions of Riemann
to physics.

Plane geometry has been studied since the ancient Greeks.
The subject was consolidated in Fuclid’s Elements, which
put down the main ideas in axiomatic form. Genera-
tions of mathematicians have marvelled at the architec-
tural beauty of Euclidean geometry. A few years before,
Riemann there began explorations of curved geometry.
The subject of non-Euclidean geometry was arrived at
independently by Gauss, Lobachevsky and Bolyai. This
new geometry satisfied all of Euclid’s axioms save one:
the fifth postulate. One version of the fifth postulate
states that given any figure there is a similar figure of
any size. This postulate asserts that the Euclidean plane
does not have an intrinsic scale. Scale independence is
not true of curved geometries: the sphere has a radius.
Non-Euclidean geometry was an important intellectual
development: it established the logical independence of
Euclid’s fifth postulate and also introduced the idea of
curved geometry. The sphere is a two dimensional sur-
face of constant positive curvature and the saddle (or
Lobachevsky space) is a two dimensional space of con-
stant negative curvature. Both have an intrinsic scale
related to the curvature.

Gauss studied curved two dimensional surfaces embed-
ded in three dimensional flat space. He recognised the
difference between properties intrinsic to the surface and
extrinic ones, which depended on the embedding.
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Accordingly, Gauss introduced two notions of curvature,
the mean curvature, which depended on the embedding
space and what is now called “Gaussian curvature”. The
mean curvature measures how the surface varies in the
embedding space and is also called the extrinsic curva-
ture. For instance, the cylinder (the surface of a pipe)
has extrinsic curvature, but it is not intrinsically curved
(it can be cut and flattened on a piece of paper). He
emphasised the intrinsic properties as worthy of study
and proved that the “Gaussian curvature” is an intrinsic
quantity: it can be determined by measurements made
entirely within the surface. Gauss was so impressed by
this theorem that he called it the Theorema FEgregium.
This latin phrase can be loosely and colloquially trans-
lated into modern English as “Heap Big Theorem”.

Riemann’s approach to curvature was far more general
than Gauss’s. In a small region of space (small com-
pared to the scale of the curvature) one can adopt a
local notion of parallelism: a rule for comparing vec-
tors at different points. It turns out that on a curved
space this local notion does not integrate to produce a
global notion of parallelism. This is best illustrated by
using the example of the surface of the Earth. In every-
day life, we do not bother about the curvature of the
Earth (since the Earth is much bigger than our cities)
and some planned cities (Salt Lake City, Utah, USA is
a good example) have a Cartesian grid of streets laid
out straight like a chess board. We take pains to en-
sure that the Main roads are directed “parallel” to each
other. Like wise, the cross roads are directed “parallel”
to each other and meet the Main roads at right angles.
If you start on a Main road and take four left turns of
ninety degrees (walking say, five blocks between turns)
you will be back on a Main road. However, if the city
grows so that it covers a good fraction of the Earth’s
surface (say 1/8), this parallelism is no longer possible.
(Try sticking small bits of graph paper on an octant of
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Riemann’s concept of

curvature was more

general and therefore

to relevant to
Einstein’s relativity.

a sphere maintaining parallelism!) You will find that if
you start on a Main road and take four left turns (each
after traversing a quarter of the Earth’s circumference),
you end up on a cross road. The grid has rotated by a
right angle! Riemannian curvature is defined using the
non-integrability of parallelism. Riemann’s definition of
curvature has considerable advantage over Gauss’s: it
is manifestly intrinsic. The Theorema FEgregium is no
longer a theorem but an obvious fact. Riemann’s ideas
generalise easily to any number of dimensions. They also
work for metrics of Lorentzian signature. This turned
out to be important for General Relativity. It was al-
ready clear from special relativity that space-time in the
absence of gravity (Minkowski space-time) had a geom-
etry of Lorentzian signature. This follows from the fact
that in special relativity it is the interval 224y + 22 —ct?
which is of primary interest, as opposed to the (squared)
length 22 + y? of Euclidean geometry. What Einstein
needed to describe the gravitational field was curvature
in four dimensional space-time, i.e space-time with a
four dimensional Lorentzian metric. Such abstraction
was not easy to achieve based on Gauss’ line of attack
using embedding in Euclidean space.

Einstein’s General Theory of Relativity went on to ac-
quire a life of its own, predicting many physical effects
that could be measured in the Solar System, revolution-
ising Cosmology and Astrophysics. The theory also pre-
dicts Black Holes, which continue to stretch our imagi-
nation and defy our understanding. Many ideas which
now form the General Theory of Relativity were an-
ticipated by Riemann. He realised that space may be
curved and that this is a question which has to be settled
by experiment, not philosophical speculation. He even
conceived of the possibility that space may be discrete,
an idea which is only now coming of age in quantum
gravity; it is believed by some that space-time is discrete
at the Planck scale of 10723 ¢cm. Evidently, Riemann
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the mathematician was well plugged in to the physi-
cal world. He suggested (seven years before Maxwell’s
equations were written) that electromagnetic interac-
tions propagate at the speed of light! For his habilitation
lecture (a requirement by the university for an aspiring
teacher) Riemann had to give three possible topics. Two
of these were on electricity! But it was the third on the
foundations of geometry that Gauss picked. This was
the famous lecture in which Riemann’s ideas on differ-
ential geometry like n-dimensional manifolds were put
forward. It is fair to say that apart from Gauss (who
had the habit of publishing far less than he knew) no one
in the audience appreciated the full depth of the ideas
proposed there.

Another subject to which Riemann contributed is com-
plex analysis. Complex analytic techniques are now
widely used in physics and engineering. Two dimen-
sional problems in potential theory, elasticity and fluid
dynamics are routinely addressed using complex ana-
lytic techniques like conformal mappings. It is inter-
esting that Riemann first encountered conformal map-
pings when studying a problem related to the heat equa-
tion! The Riemann zeta function appears in physics
texts dealing with the statistical distribution of Fermi
and Bose particles. It is also used in renormalisation in
quantum field theory to make sense of divergent infinite
sums. One uses analytic continuation to give a meaning
to the sum by evaluating the zeta function on a different
Riemann sheet.

Riemann’s approach to complex analysis was geomet-
ric and intuitive. Many of his contemporaries viewed
complex analysis from an algebraic point of view. Rie-
mann’s geometric point of view resulted in advances in
differential geometry and topology. Topological ideas
are extremely intuitive and at the same time very hard
to formalise. Leibniz (1646-1716) was one of the first
mathematicians to study “Analysis Situs’, as topology
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used to be called, but he was unable to interest physi-
cists of his time (like Christiaan Huygens) in the sub-
ject. Physicists were more interested in quantification
of physical ideas and the time was not yet ripe of the
qualitative reasoning that marks topology. Much later
Euler (see Crossing Bridges, in Suggested Reading be-
low) played with topological ideas in his famous solution
of the problem of the Bridges of Konigsberg.

When Riemann studied complex analysis, his unique ap-
proach led him to the idea of a Riemann Surface. This
led to considerable advances in topology. He was fol-
lowed by Betti and then by Poincare, who laid the foun-
dations of topology in its modern form. The twentieth
century has seen a rapid development of the subject, cul-
minating recently (2006) in the solution of the Poincaré
conjecture by Grigori Perelman.

Physics has gained from these developments in math-
ematics. Topology is used to classify defects in liquid
crystals and to describe vortices in superconductors and
magnetic monopoles. Differential geometry is used in
the study of gauge theories and gravitation. We model
space-time as a real differentiable manifold. Complex
manifolds (Calabi-Yau spaces) are used by String theo-
rists. Theoretical physicists these days glibly speak of
ten dimensional spaces. It is important to remember
that in Riemann’s day, higher dimensions were viewed
with suspicion even by mathemticians. The idea of space
and time forming a four dimensional continuum was not
then in existence. Riemann’s approach was marked by
generality and abstraction and paved the way for the
major intellectual developments of theoretical physics
in our time.
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