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We derive certain constraints on the reflection matrix for reflection from a plane, nonmagnetic, optically
anisotropic surface using a reciprocity theorem stated long ago by Van de Hulst [Light Scattering by Small
Particles (Wiley, 1957)] in the context of scattering of polarized light. The constraints are valid for absorbing
and chiral media and can be used as tools to check the consistency of derived expressions for such matrices in
terms of the intrinsic parameters of the reflecting medium as illustrated by several examples. © 2009 Optical

Society of America
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1. INTRODUCTION

Except in the simplest situations, when linearly polarized
light is incident on an optically isotropic surface or a spe-
cially oriented anisotropic surface, the polarization state
of the lightwave in general changes when it is reflected
from a surface. Changes in polarization states imply
changes of phase, as we know from the work of Pan-
charatnam. A correct analysis of optical devices involving
polarization, with or without interference, requires a pre-
cise and reliable method for handling polarization trans-
formations resulting from reflections. These are described
by means of a 2 X2 complex reflection matrix. The speci-
fication of this matrix requires the choice of a set of basis
states for the incident as well as the reflected waves along
with their phases. In this paper we first describe the most
natural convention for the basis states and a consistent
one for the description of reciprocity. We then derive cer-
tain constraints that reflection amplitudes must satisfy
on account of the principle of reciprocity and illustrate
their use with several examples.

The principle of reciprocity in polarization optics has
been widely discussed in the literature and is different
from time-reversal invariance in that (i) it applies to sys-
tems with absorption, and (ii) it deals with one incident
wave and one scattered wave at a time. For a recent re-
view we refer the reader to Potton [1]. For the purpose of
this paper the most appropriate formulation of reciprocity
is the one given by Van de Hulst [2] in which he chooses to
rotate the scatterer instead of reversing the wave.

2. PHASE CONVENTION

It was pointed out recently [3,4] that when a plane wave
of light changes its direction of propagation from a wave
vector % to a wave vector %2’ because of refraction, reflec-
tion or scattering, the definition of the matrix that relates
the incident polarization state to the final polarization
state, i.e., the Jones matrix, requires the choice of a set of
basis states and their phases for each of the two direc-
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tions of propagation. The choice that is most often used
both in polarization optics as well as in scattering theory
is the following, also illustrated in Figs. 1 and 2.

For the wave vector %, a set of orthogonal, linearly po-
larized states along x and y, called the p and the s states,
is chosen as the basis states 1 and 2, respectively, where &
is in the plane and y is perpendicular to the plane of re-
flection or scattering. The phases of the basis states are
chosen such that in the basis state 1, E.=E exp(iwt), E,
=0, and in the basis state 2, E,=0, E,=E exp(iwt), where
E, and E, are the x and y components of the electric field
in Ehe wave. With this convention, the vector
(1/y2)col.[1,1] represents a linearly polarized state along
a direction lying in the (%,y) plane, making an angle 45°
with £, and the vectors (1/€§)col.[1,ti] represent the
right and left circularly polarized states. For the wave
vector %', the convention most often used in scattering
theory as well as in polarization optics is the following:
Rotate the basis states about an axis perpendicular to the
plane of reflection, i.e. along y, through an angle such that
£ goes to £'. Let £ and § go to £’ and 5’ under this rota-
tion. The polarization basis states for 2’ are chosen to be
linearly polarized states along &’ and y’ with their rela-
tive phases chosen such that in the basis state 1, E,,
=E exp(iot), E, =0, and in the basis state 2, E,/ =0, E,,
=F exp(iwt). Note that since the rotation is about y, y’
=y. This choice leads to a precise phase convention for
backscattering or for reflection at normal incidence at a
surface, where %' =-F. For this case one gets #'=—% and
y'=y. We shall call the above convention the “traveling-
frame convention.” In the literature the above described
choice of phase convention is referred to as “choice of the
coordinate system.”

3. RECIPROCITY CONSTRAINTS

Scattering of a polarized plane wave with wave vector % to
a wave with wave vector 2’ from a scatterer is described
by a 2 X2 complex scattering matrix A whose matrix ele-
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Fig. 1. Geometry of scattering of a plane wave with wave vector

[ along 2 to a wave with wave vector %’ along 2’, where 2 and 3’

YA ]

lie in the X-Z plane. The coordinate system (x',y’,Z’) defining
the polarization basis states in the scattered wave is obtained
from the (%,7,2) system in the incident wave by a rotation about
y through an angle «, which is the scattering angle.

ment A;; represents the complex amplitude for an inci-
dent wave with unit amplitude in polarization state i
scattering into the polarization state j. If A(%,k’) repre-
sents the matrix for scattering from % to £’ and A(-%’,
—k) the matrix for the reverse scattering, the correct
statement of the principle of reciprocity with the above
phase convention has been given by Sekera [5] as

A(-F',-k)=A(k,R") (1)

where the matrix A is the “n-transpose” of A, defined [3]
as

A= (-1)"A;. (2)

For a 2 X 2 matrix, A is the transpose of A with a change
of sign of the off-diagonal elements.

In order to derive the constraints on the reflection ma-
trix resulting from reciprocity, a somewhat different for-
mulation of the principle of reciprocity, first made by Van
de Hulst [2] in the context of scattering problems, is more

Fig. 2. Geometry of reflection of a plane wave propagating along
Z from a plane surface SS whose normal along 7 lies in the X-Z
plane. The angle of incidence is # and the relation between the
coordinate systems (£,7y,2) and (£',y',2’) is the same as in the
scattering problem illustrated in Fig. 1.
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useful [6]. Van de Hulst chose to rotate the scatterer
rather than reverse the direction of propagation. Let the
polarization basis states for £ and %' be defined using the
traveling-frame convention, let Z and %’ be along 2 and 3’,
respectively, and let the scattering be in the (x,2) plane as
shown in Fig. 1, where « is the scattering angle. Van de
Hulst’s theorem states: If the scatterer is rotated through
180° about an axis defined by the line bisecting the angle
between the vectors £’ and —%, called the bisectrix, the

matrix A(k,k') goes to the matrix A(%,%'), where A is the
n-transpose of A defined by Eq. (2).

The theorem, translated to the problem of reflection
from a plane surface in optics, can be phrased as follows:
If the reflecting medium, assumed to be reciprocal, is ro-
tated about the normal 7 to the surface SS through 180°
(Fig. 2), the reflection matrix Z goes to Z' where

Z'=7, (3)

and where Z is the n-transpose of Z defined by Eq. (2).

The theorem is true in the presence of absorption and
dichroism and has the straightforward consequence that
if the reflecting medium, assumed to be reciprocal, is in-
variant under a rotation through 7 about 71, the reflection
matrix Z for any angle of incidence must be antisymmet-
ric. For such cases therefore,

Zij=_Zji' (4)

Such cases include the following:

A. An optically isotropic medium, i.e., a medium with
no birefringence or dichroism, linear or circular.

B. A medium with only optical activity and circular di-
chroism but no linear birefringence and no linear dichro-
ism.

C. An absorbing uniaxial medium with or without op-
tical activity, with the optic axes for birefringence and di-
chroism coinciding and being perpendicular to the sur-
face.

D. An absorbing uniaxial medium with or without op-
tical activity, with the optic axes for birefringence and di-
chroism coinciding and lying in the plane of the surface.

E. A nonabsorbing biaxial medium with one of the
principal axes perpendicular to the surface.

In addition to the above cases, when light is incident
normally, any reflecting medium is invariant under a =
rotation about the direction of the incident beam. At nor-
mal incidence therefore, the reflection matrix for any re-
ciprocal medium must be antisymmetric.

In cases A, B, and C, when light is incident on the sur-
face normally, there is an additional constraint when the
reflecting surface is invariant under an arbitrary rotation
about the direction of incidence, i.e., about the normal to
the surface. In the traveling-frame convention this addi-
tional constraint can be expressed as

R($)ZR(¢) = Z, (5)

where
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is a rotation matrix that rotates an incident Jones vector
about the beam axis by an arbitrary angle ¢.

Equation (5) can be proved as follows: Let the reflection
matrix of the unrotated sample be Z and let |l,//f) be the fi-
nal state resulting from reflection of an incident state |¢;)
so that

i) = Z|4hy). (7)

The reflection matrix Z® of the rotated sample is obtained
from the condition that when the state |#;) rotated
through an angle ¢ is incident on the rotated sample, the
reflected state, in the traveling-frame, must be the state
i) rotated by an angle -4, i.e.,

ZER()) = R(= )y (8)
Equations (7) and (8) give
ZP=R(- $)ZR(- ¢). 9)

Since ¢ is arbitrary, the requirement of invariance under
rotation about the beam axis therefore gives Eq. (5).

Let the matrix that satisfies the reciprocity constraint
(4), as well as the isotropy constraint (5) be called Z,. It
can easily be shown that Z; must be of the form

10
Zo=rly _4)s (10)

where r is a complex number. In other words whenever a
reciprocal reflecting medium is invariant under an arbi-
trary rotation about the normal to the surface, its reflec-
tion matrix for normal incidence is given by Z,. The result
is known to be true for optically isotropic surfaces. The
fact that it is true in the presence of optical activity and
circular dichroism, and that it follows from simple sym-
metry considerations came as news to the author. We also
note that since the matrix Z, is diagonal, it is robust
against a phase change between the two basis states.

4. DEPENDENCE ON THE POLARIZATION
BASIS

We next discuss the dependence of the theorem given by
Eq. (3) on the basis states used to express the Jones vec-
tors for the propagation directions £ and %’. Although
while stating the theorem we assumed a basis of “in-
phase” linearly polarized states along % and y, this is by
no means the only possible choice for the theorem (3) to be
true. One can also choose as basis states a pair of orthogo-
nal elliptically polarized states with the principal axes of
the polarization ellipses being along x and y, the states
being phased such that at t=0, in the wave with wave
vector %, the basis state 1 has E,=0 and the basis state 2
has E,=0. Similarly, in the wave with wave vector Z’, at
t=0, E,,=0 in basis state 1 and E,=0 in basis state 2. The
theorem as stated above remains valid in this set of basis
states. This can be proved easily.

The basis described above is obtained from the original
linearly polarized basis by means of a unitary transfor-
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mation U that takes the state |%), i.e., the state with co-
ordinates (90°, 0°) on the Poincaré sphere along a geodesic
arc to a state |P) with coordinates (90°+7,0°), where
90° > 7=-90°. Such a transformation is achieved by
means of a linearly birefringent wave plate with retarda-
tion 7 and with its fast axis at 45° to the % axis. The ma-
trix U is therefore given by

U=Ly(n) = R(45)Lo(n)R(- 45), (11)

where Lg(7) is the Jones matrix for a linear retarder with
retardation » and fast axis making an angle 8 with x. The
fields in the basis states 1 and 2 are given by (1) E,
=E cos(7n/2)exp(iwt), E,=-iE sin(7n/2)exp(iot) and (2) E,
=iE sin(7n/2)exp(iwt), E,=E cos(n/2)exp(iwt). The cases
7=0 and n=7/2 give the fields in the linearly polarized
and the circularly polarized basis, respectively.

The matrices Z and Z' when transformed to the new
basis are given by @ and @', where

Q=UZU', Q' =UZ'U". (12)

It can easily be shown by required matrix multiplication
that

Q' =Q. (13)

Equation (13) states the reciprocity principle in the basis
of the chosen elliptically polarized states. It needs to be
mentioned, however, that in an elliptically polarized ba-
sis, the form of the matrix under conditions of normal in-
cidence and spatial isotropy (5) is not given by Eq. (10).
The latter requires R(¢) to be of the form (6), which is
true only in the linear basis.

5. APPLICATIONS

The constraints derived above can be used as tools to
check derived expressions for the matrices of reflection
from optically anisotropic surfaces in terms of the intrin-
sic parameters of the sample. Under appropriate condi-
tions the derived expressions must satisfy these con-
straints. We cite below some examples from literature
where derived expressions for reflection matrix elements
indeed do so.

Sosnowski [7] has derived the reflection matrix ele-
ments for reflection from the surface of a uniaxially aniso-
tropic medium placed in an isotropic ambient medium for
the case when the optic axis is parallel to the interface
and is oriented at an angle « from the plane of incidence.
These have been reproduced on p. 355 of [8]. First con-
sider the case of normal incidence, i.e., $y=0. We derived
the expressions for the off-diagonal elements r,; and ry,
for this case using the formulas in Eqgs. (4.244)—(4.246) of
[8]. It was found that they satisfy r,;=-r, as required by
Eq. (4) above. In the limit of an isotropic medium it was
found that r;=ry,=0 and r,,=-7,, as expected. Next con-
sider the case of oblique incidence, i.e., ¢y+#0. For this
case we programmed the above chain of formulas on an
Excel worksheet and computed r,; and ry, for several
hundred randomly chosen sets of the parameters Ny, N1,
N1, a, and ¢ in their allowed ranges, where N is the re-
fractive index of the isotropic ambient, and N;,, N;, are
the two refractive indices of the anisotropic medium. In
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every case we obtained r,s=-r,,. To cite two specific ex-
amples, for ng=1.2, n,=1.7, n,=1.3, $;=30°, and «
=60°, we obtained r,;=0.0637 and r,,=-0.0637; for ny=1,
ni,=1.2, n1,=1.5, ¢y=75° and @=10°, we obtained 7,
=-0.0274 and r;,=0.0274.

Engelsen [9] has derived the expressions for the matrix
of reflection from a uniaxially anisotropic film on an iso-
tropic substrate in an isotropic ambient medium for the
case where the optic axis of the uniaxial medium is per-
pendicular to its boundaries with the substrate and the
ambient. These have been reproduced on pp. 356-357 of
[8]. The matrix is diagonal in this case. We derived the ex-
pressions for the diagonal elements ry; and r,,, for normal
incidence using the formulas in Eqs. (4.249)—(4.257) of [8].
It was found that they satisfy r,,=-r, as required by Eq.
(10) above.

Lekner [10] has derived reflection coefficients for reflec-
tion from the interface of an isotropic ambient and a
uniaxially anisotropic medium with an arbitrary orienta-
tion of the optic axis. Such a medium is invariant under a
7 rotation about the surface normal only if the optic axis
is (a) perpendicular to or (b) lies in the plane of the re-
flecting surface, which are therefore the conditions under
which our constraints apply. For the case (a), substituting
B=0 in Egs. (47) of [10] gives r,;=7,,=0 and for the case
(b), substituting y=0 in Eqs. (47) of [10], one gets 7,
=rgp. For the case of normal incidence one finds from Eq.
(73) of [10] that r,s=rg, for any orientation of the optic
axis. In the limit of an isotropic medium and normal inci-
dence, Egs. (71) and (72) of [10] give r,,=r,. These re-
sults differ from the results of this paper by a sign. The
reason lies in the phase convention for the reflected p
wave used in [10] [see Eq. (40) of [10]], which differs by =
from the one used in this paper (Fig. 2), resulting in a
change in the sign of the reflected p wave amplitude. This
changes the signs of 75, and r,,. When this change of sign
is accounted for, the results of [10] agree with those of this
paper.

We next consider some examples from the literature on
reflection from a reciprocal, isotropic, chiral medium
where the constraints derived in this paper yield useful
insights.

Silverman [11] derived the reflection matrix for reflec-
tion at the surface of an isotropic, nonmagnetic chiral me-
dium for two sets of constitutive relations that are (I) in-
variant and (II) noninvariant under a duality
transformation of the electromagnetic fields. The sym-
metric constitutive relations (I) lead to null differential
reflection at normal incidence for incident right- and left-
circularly polarized light. The asymmetric constitutive re-
lations (II), on the other hand, lead to nonzero differential
reflection for right- and left-circularly polarized light. The
author indicates a preference for (I) based on some diffi-
culties with the results obtained from (II). Using the con-
straint stated above, i.e., the reflection matrix for this
case must be given by Eq. (10), any theory that yields
nonzero differential reflection at normal incidence for in-
cident right- and left-circularly polarized light can be
ruled out. If we assume that the derivations in [11] that
do satisfy our constraints are correct, it could be con-
cluded on grounds of symmetries alone that the asymmet-
ric constitutive relations are incorrect.
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Georgieva [12] reported a solution for the amplitudes
for reflection from the surface of a reciprocal optically ac-
tive medium using a corrected Berreman’s matrix, argu-
ing that Berreman’s matrix is incorrect since it yields un-
equal off-diagonal elements for the reflection matrix. The
considerations of this paper support this assertion. Of in-
terest, however, is that while the off-diagonal elements in
[12] are equal and opposite in sign as required by the
above constraints, the diagonal elements do not satisfy
these constraints when light is incident normally. Equa-
tions (27) and (30) in [12] yield, for normal incidence, rg,
=rpp- The constraint given by Eq. (10), however, requires
rss=—Tpp. The negative sign is nontrival, as it represents
the difference between a plane glass plate and a half-
wave retarder. In [12] since ry=r,, and r,;=-ry,, the dis-
agreement cannot be explained by a phase convention
which is, in any case, clearly displayed in Fig. 1 of [12] as
being the traveling-frame convention. We conclude there-
fore that there is a problem with the derivation in [12].

Lekner [13] has derived expressions for the reflection
matrix for reflection from the boundary of an achiral and
an isotropic chiral medium using the same phase conven-
tion as in [10]. For normal incidence these expressions
yield rp,=rs and rp,;=ry,=0, and for oblique incidence the
expressions satisfy r,,=rg, as expected.

In section 4 of [13] Lekner deals with the optical prop-
erties of a chiral layer of thickness d placed in an isotropic
ambient and an isotropic substrate. The derived reflection
coefficients for an arbitrary angle of incidence are given
by Eqgs. (A4) of [13]. They satisfy r,;=ry, as expected.
However, for normal incidence, i.e., for c;=cy=c,=c_=1,
simple substitutions from Egs. (A1) and (A2) show that
Egs. (A4) do not satisfy r,,,=ry as expected. We conclude
therefore that the derivation is in error.

6. DISCUSSION

Our reason for dwelling at length on the conventions re-
garding basis states is that the reflection matrix as well
as the statement of the reciprocity principle depend on
these conventions. While the traveling-frame convention
is a fairly standard one, used by most textbooks on optics
[8,14—16] to relate the polarization states for Z to those for
E' for defining the reflection matrix, there are occasional
exceptions. For example Lekner [10,13] and Bassiri et al.
[17] use a different convention which we shall call the
“fixed-frame convention.” Consequently they obtain ex-
pressions for the Fresnel reflection amplitudes for reflec-
tion off a chiral surface that differ from those in [8,14-16]
in the limit when the chiral parameter goes to zero. As
mentioned before the amplitudes obtained with the two
conventions are related by a change of sign of the ampli-
tude of the reflected p wave, hence of ry, and rp,,.

In the analysis of propagation problems involving a se-
ries of oblique reflections terminating in a reflection at
normal incidence so that the beam retraces its path, as for
example in a Michelson interferometer, the problem of
phase convention occurs twice, once while defining the re-
flection matrix and again while relating the forward and
backward propagating waves. Since the first choice im-
plies a choice for normal incidence, the natural thing to do
is to make the second choice to be consistent with the first
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one. Unfortunately this has not always been the practice
in literature. For example, in Vansteenkiste et al. [18] the
traveling-frame convention is used for the reflections at
oblique incidence and a fixed-frame convention for relat-
ing the forward and backward propagating waves. As a
consequence the matrix for reflection at normal incidence
is defined differently from the ones for oblique incidence.
We find this somewhat unsatisfactory and that it is avoid-
able if one consistently uses the traveling-frame conven-
tion. As demonstrated in [18] it is indeed possible to de-
rive correct results if one carefully keeps track of the
phase conventions. However in regard to both pedagogy
and applications it would be desirable and simpler if a
consistent convention were used and all reflections de-
scribed similarly. If the traveling-frame convention is
used consistently the matrices for reverse propagation are
of course n-transpose of the corresponding matrices for
forward propagation instead of being the transpose [4].
Though less familiar, the n-transpose is, however, an
equally simple and elegant mathematical construct that
satisfies the property (AB)=BA.

The use of the fixed-frame convention for reflection am-
plitudes has sometimes been justified by arguing that for
normal reflections from an optically isotropic surface it
yields a unit reflection matrix that avoids the asymmetry
between the s and p wave reflection amplitudes. We point
out that this is achieved at the expense of counterintui-
tive behaviour of the amplitudes elsewhere. For example,
for reflection from ideal metallic mirrors at grazing inci-
dence the fixed-frame convention gives a unit matrix sug-
gesting no polarization change. We know however that
under these conditions a right-circularly polarized wave
is reflected as a left-circularly polarized wave and vice
versa. Another problem with the use of the fixed-frame
convention is that there is an asymmetry of conventions
between the transmitted and the reflected waves. In a
scattering problem there is no natural place for such an
asymmetry. The neat correspondence between the theory
of scattering of polarized waves and that of reflection and
refraction is thus needlessly given up.

To sum up, in the examples discussed above we found
cases ([7,9,11]) where the derived expressions satisfy the
constraints derived in this paper. We found -cases
([10,13,17]) where they do so after accounting for a differ-
ence in phase convention. Finally we found two cases
([12,13]) where the derived expressions do not satisfy the
constraints, and we conclude that the derivations have er-
rors. We wish to emphasize, however, that the satisfaction
of the constraints is a necessary but not a sufficient con-
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dition for the correctness of the derived reflection ampli-
tudes. The constraints therefore provide only a partial
test for the derived amplitudes. Finally we note that all
the considerations in this paper relate to the linear re-
gime of optics and do not include nonlinear phenomena.
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