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We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an
interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to
calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting
two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied
across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is
quite different depending on whether the electrons are incident from the left or the right lead.

DOI: 10.1103/PhysRevB.80.075302 PACS number�s�: 73.21.Hb, 73.21.La, 73.50.Bk

We study nonequilibrium steady-state charge transport in
an open quantum system in the presence of a repulsive Cou-
lomb interaction in a localized region. One of the simplest
realizations of our model is a quantum dot �QD� connected
to two noninteracting leads at different chemical potentials.
In the last two decades, there have been several
theoretical1–11 and experimental12–19 studies of electron
transport through a QD where electrons interact with each
other only in the dot region. The presence of a chemical-
potential difference across the QD leads to nonequilibrium
dynamics, which opens up the possibility of exploring the
interplay between nonequilibrium physics and interactions in
this model. In this spirit, we will study two interesting phe-
nomena in our model system, namely, two-particle resonance
and current asymmetry.

The phenomenon of resonances is often realized in open
quantum systems. Resonances are signatures of quasistation-
ary states with a long lifetime, which eventually decay into
the continuum coupled to them. There are many examples of
resonances in different branches of physics, especially
atomic and nuclear physics. Systems with or without inter-
actions between the constituents such as electrons, photons,
or phonons can exhibit resonances; for example, the symmet-
ric Breit-Wigner20 or the asymmetric Fano resonances21 can
occur in noninteracting systems, while the Kondo
resonance15–19 occurs in correlated electronic systems. In a
recent work,22 strongly correlated two-photon transport in a
one-dimensional system was studied. In this paper, we study
a two-electron resonance which occurs due to the interac-
tions between electrons; this was recently observed in Ref. 9.
This resonance is clearly visible in the two-electron current.
We demonstrate that it survives in the thermodynamic limit
when one takes the leads to be Fermi seas of electrons. Our
two-electron resonance can occur at small bias and when the
one-particle current is small; it differs from the pair-
tunneling resonance studied in Ref. 23 which requires a suf-
ficiently large bias between the leads and coexists with one-
particle transport.

A rectification of the current can be achieved in a system
without spatial inversion symmetry. There are many theoret-
ical and experimental studies of the diode effect in electron
transport using the nonlinear regime of transport in asym-

metric nanostructures,24 Coulomb blockade in triple QD,25 or
Pauli exclusion in coupled double QD.26 Current rectification
has also been realized in thermal and optical systems.27,28 In
our model, we find an asymmetry in the two-particle current
when either the on-site energies in the dot or the couplings of
the dot with the leads break the left-right symmetry.

Recently, we developed a technique employing the
Lippman-Schwinger scattering theory to study nonequilib-
rium transport in an open system with electron-electron in-
teractions in a localized region.10 In this paper we extend that
method to investigate quantum transport in more realistic
models. Compared to our previous study, here, we incorpo-
rate on-site energy in the dot as well as arbitrary tunnelings
between the dot and the leads. In experiments, the on-site
energy in the dot is realized through a plunger gate attached
to the dot while quantum point contacts between the dot and
the leads control the tunneling strength. We show how the
two-electron scattering states and the corresponding current
can be evaluated for an arbitrary strength of the Coulomb
interaction. We then use a two-particle scattering approxima-
tion to find the current in the presence of Fermi seas in the
leads.

We study a model of a quantum dot coupled to leads on
its left and right sides; we first consider spinless electrons for
simplicity. The model is described by a tight-binding Hamil-
tonian; the dot consists of two sites �0,1� with an interaction
U if both sites are occupied by electrons. The Hamiltonian is

H = HLR + HD + V , �1�

HLR = − �
x=−�

�

��cx
†cx+1 + cx+1

† cx� ,

HD = e0n0 + e1n1 − �c0
†c1 + c1

†c0�

− �0�c−1
† c0 + c0

†c−1� − �1�c1
†c2 + c2

†c1� ,

V = Un0n1,

where n̂x=cx
†cx is the number operator at site x and �� means

summation over all integers omitting x=−1,0 ,1. Note that
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we have set the hopping �x,x+1=1 for all x except x=−1 and
1 where it takes the values �0 and �1.

The energy of a single particle with wave number k is
given by Ek=−2 cos k, where −��k��. The wave function
�k�x� for a particle incident on the dot from the left or from
the right can be found in terms of the dot parameters ei and
�i. The explicit expressions for these wave functions and the
reflection and the transmission amplitudes are as follows. For
a particle incident from the left �with 0�k���, we have

�k�l� = eikl + rke
−ikl for l � − 1,

=�1 + rk�/�0 for l = 0, and tke
ik/�1 for l = 1,

=tke
ikl for l � 2,

tk =
− 2i�0�1e−ik sin k

�e1 − Ek − �1
2eik��e0 − Ek − �0

2eik� − 1
,

rk =
1 − �e1 − Ek − �1

2eik��e0 − Ek − �0
2e−ik�

�e1 − Ek − �1
2eik��e0 − Ek − �1

2eik� − 1
. �2�

For a particle incident from the right �with −��k�0�, we
have

�k�l� = tke
ikl for l � − 1,

=tk/�0 for l = 0, and �eik + rke
−ik�/�1 for l = 1,

=eikl + rke
−ikl for l � 2,

tk =
2i�0�1eik sin k

�e1 − Ek − �1
2e−ik��e0 − Ek − �0

2e−ik� − 1
,

rk =
e2ik�1 − �e1 − Ek − �1

2eik��e0 − Ek − �0
2e−ik��

�e1 − Ek − �1
2e−ik��e0 − Ek − �0

2e−ik� − 1
. �3�

We note that the transmission probability �tk�2 is the same for
wave numbers k and −k; we will see below that the two-
particle current will generally not have this symmetry as a
result of the interaction. For a weakly coupled dot with
�i→0, there is a one-particle resonance in the transmission if
the energy of the incoming particle is given by one of two
special values,

E1r� = 1
2 �e0 + e1 � ��e0 − e1�2 + 4� , �4�

provided that the energy lies within the range �−2,2�. If the
energy lies outside the range �−2,2�, it corresponds to a
bound state rather than a transmission resonance. Equation
�4� corresponds to the one-particle eigenvalues of the two-
site Hamiltonian e0n0+e1n1− �c0

†c1+c1
†c0�.

The two-particle scattering states can be found exactly in
this model.10 If H0=HLR+HD denotes the noninteracting
Hamiltonian, and Ek and �k�x� are the one-particle energies
and wave functions, the noninteracting two-particle energies

and wave functions are given by Ek=Ek1
+Ek2

and
�k�x�=�k1

�x1��k2
�x2�−�k1

�x2��k2
�x1�, where k= �k1 ,k2� and

x= �x1 ,x2�. A scattering eigenstate of the total Hamiltonian
H=H0+V is then given by the Lippman-Schwinger equation
�	�= ���+G0

+�E�V�	�, where G0
+�E�=1 / �E−H0+ i
�. In the

position basis �x�, we obtain 	k�x�=�k�x�+UKEk
�x�	k�0�,

where 0	�0,1�, and KEk
�x�= 
x�G0

+�Ek��0� has the explicit
form

KEk
�x� =

1

2
�

−�

� �
−�

� dq1dq2

�2��2

�q�x��q
��0�

Ek − Eq + i

, �5�

and 	k�0�=�k�0� / �1−UKEk
�0��. Using this approach, we

find that two particles incident with wave numbers k1 ,k2
scatter to a continuous range of final wave numbers q1 ,q2.
This is because the interaction breaks the translation invari-
ance; hence, the total momentum is not conserved although
the energy is. This suggests that the model is not solvable by
the Bethe ansatz.10

We now evaluate the two-particle current through the dot;
this is given by the expectation value of the operator

ĵx = − i�x,x+1�cx
†cx+1 − cx+1

† cx� �6�

in the scattering state �	k�= ��k�+ �Sk�, where
�Sk�	G0

+�E�V�	k� is the interaction-induced correction
to the scattering state. Since �n̂x ,H�= i� ĵx−1− ĵx�, 
 ĵx� is
independent of x in any eigenstate of H. Let us write 
 ĵx�
= jI+ jC+ jS, where jI= 
�k� ĵx��k�, jC= 
�k� ĵx�Sk�+ 
Sk� ĵx��k�,
and jS= 
Sk� ĵx�Sk�. We will now calculate all these
terms. If we assume that the system has N sites, we
find that jI=2N�sin k1�tk1

�2+sin k2�tk2
�2�. Next, jC

=2 Im
�k��cx
†cx+1−cx+1

† cx��Sk� and


�k�cx1

† cx2
�Sk� =

�k�0�
1/U − KEk

�0��−�

� dq

2�
�q�x2�

���k2

� �x1��k1q
� �0�

Ek2
− Eq + i


−
�k1

� �x1��k2q
� �0�

Ek1
− Eq + i



 .

�7�

Finally, jS=2 Im
Sk�cx
†cx+1�Sk� and


Sk�cx
†cx+1�Sk� =

��k�0��2

�1/U − KEk
�0��2�−�

� dq

2�
I0�q�I1

��q� , �8�

where

Is�q� = �
−�

� dq1

2�

�qq1
�0��q1

� �x + s�

Ek − Eqq1
− i


, s = 0,1.

For a small interaction strength U, we see that jC and jS are
generally of orders U and U2, respectively. On the other
hand, they have nonzero and finite limits when U→�. We
can use Eqs. �7� and �8� to compute 
 ĵx� at any convenient
value of x. �The extra factor of N that jI has with respect to
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jC and jS will disappear when we consider the thermody-
namic limit below�.

We have used Eqs. �7� and �8� to numerically compute the
correction to the current �j�k1 ,k2�	 jC+ jS caused by the in-
teraction. �In the numerical calculations, the integrals were
approximated by summations with a small grid size dq and
several small values of 
 satisfying dq


1. The results
were then linearly extrapolated to the limit 
→0.� We dis-
cover two interesting phenomena:

�i� First, we find that �j�k1 ,k2� as a function of U has
peaks at certain values of the energies of the two incident
states. We will call this an interaction-induced two-particle
resonance; this was recently noticed in Ref. 9. To understand
this, let us first set the dot-lead couplings �i=0. In that case
a state in which sites 0 and 1 are occupied by one particle
each is an eigenstate of H0 with energy e0+e1 and of H with
energy e0+e1+U. Then KEk

�0�= 
0�1 / �Ek−H0+ i
��0� will be
purely real and equal to 1 / �Ek−e0−e1� if Ek�e0+e1. We
now turn on small values of �i and consider two particles
coming from the leads with a total energy Ek=Ek1

+Ek2
,

where Eki
are not at the one-particle resonance energies E1r�,

so that jI is close to 0. We expect that, if Ek�e0+e1, the real
and the imaginary parts of KEk

�0� will remain close to
1 / �Ek−e0−e1� and 0, respectively. It is now clear from the
prefactors in the expressions in Eqs. �7� and �8� that
�j�k1 ,k2� will show a peak as a function of U at
1 /U−KEk

�0�=0, i.e., at Ek=E2r, where the two-particle reso-
nance energy is given by

E2r = e0 + e1 + U . �9�

Figure 1 illustrates the effects of two-particle resonance. The
main plot shows a peak in �j�k1 ,k2� at U�1.45 compared to
U=1.48 expected from Eq. �9�; the deviation is presumably
due to the small but finite values of �0 and �1. The right inset
shows what happens when one of the incident energies is at
a one-particle resonance; then the two-particle resonance, oc-
curring at U=2.6 for �k1 ,k2�= �1.772,2.1� and U=0.6 for
�k1 ,k2�= �0.64,2.1�, produces a rapid variation in the current
with U due to the denominator 1 /U−KEk

�0� in Eq. �7� going
through zero. The left inset of Fig. 1 shows what happens

when both the incident energies correspond to one-particle
resonances; the interaction causes backscattering and sup-
presses the one-particle resonance by a large amount because
the prefactor of �k�0� in Eqs. �7� and �8� is large for one-
particle resonances.

�ii� Second, we find that �j�k1 ,k2��−�j�−k1 ,−k2� if the
system is not invariant under the parity transformation
x↔1−x, i.e., if either e0�e1 or �0��1. The reason for cur-
rent asymmetry is the redistribution of the electrons’ momen-
tum after scattering from the dot along with the absence of
spatial inversion symmetry in the model. It can be under-
stood quantitatively if �0 and �1 are both small but differ
greatly in magnitude and if k1 ,k2 have the same sign. We see
from Eqs. �7� and �8� that the strength of the interaction
depends on the probability ��k�0��2 of finding the two par-
ticles at sites 0 and 1. If both the particles come from the left
�right� lead, their joint amplitude of reaching sites 0 and 1 is
proportional to �0

2 ��1
2�. Hence, ��k�0��2 will be proportional

to �0
4 ��1

4� if k1 ,k2�0 ��0�; hence, �j will be quite different
in the two cases if �0 and �1 have very different values. For
instance, if e0=−0.8, e1=−0.3, �0=0.1, �1=0.3, U=1,
k1=1, and k2=2, we find numerically that �j�k1 ,k2�=0.031
and �j�−k1 ,−k2�=−1.014. We note that the ratio
��j�−k1 ,−k2� /�j�k1 ,k2���33, which is on the same order of
magnitude as �1

4 /�0
4=81.

We now examine whether the two-particle resonance re-
mains visible when we consider a many-electron system. Let
us compute the current when the left �right� leads are at zero
temperature and chemical potentials �L ��R�. This requires
us to find N-particle scattering states and then take the limit
N→�. It is difficult to find such states exactly in our model.
We therefore make the approximation of considering only
two-particle scattering;10 this is justified if either the density
is so low that three-electron scattering can be ignored29 or if
U
2� sin kF /kF. �The latter condition arises as follows. In
the simple case with e0=e1=0 and �0=�1=1, the interaction
V in Eq. �1� can be written in a Hartree-Fock approximation
as U�
n0�n1+ 
n1�n0�, where the mean density is related to the
Fermi momentum as 
ni�=kF /�. At the Fermi momentum kF,
the reflection probability for this one-particle problem is
much less than 1 if U
ni� is much less than the Fermi
velocity 2 sin kF. We thus require that U
2� sin kF /kF.�
Within the two-particle approximation, we write
�	kN

�= ��kN
�+ �SkN

�, where the amplitude of scattering
from a wave vector kN= �k1k2¯kN� to a wave vector
qN= �q1q2¯qN� is given by


qN�SkN
� = �

q2k2

�− 1�P+P�
q2�Sk2
�
qN−2� �kN−2� � ,


q2�Sk2
� =

�q2

� �0��k2
�0�

�1/U − KEk2
�0���Ek2

− Eq2
+ i
�

, �10�

where q2�k2� denotes a pair of momenta chosen from the set
qN�kN�, qN−2� �kN−2� � denotes the remaining N−2 momenta,
and P�P�� is the appropriate number of permutations.
Using Eq. �10�, we can calculate the current expectation
value for the state �	kN

�. The noninteracting current is
jI=2NN−1� j=1

N sin kj�tkj
�2. The correct normalization is ob-
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FIG. 1. �Color online� Plots of �j�k1 ,k2� versus U, for
e0=e1=−0.6, �0=�1=0.2. Right and left insets show plots of
�j�k1 ,k2� versus U when one or both of the incident energies
correspond to one-particle resonances for the same parameter set.
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tained by dividing by a factor of NN; in the thermodynamic
limit N ,N→�, this gives jI=�kR

kL�dk /2��2 sin k�tk�2. Here
−kR �kL� is the Fermi wave number of the right �left� lead
lying in the range �−� ,0� ��0,���; it is related to the corre-
sponding chemical potentials by �R/L=−2 cos kR/L. Inserting
factors of � and the charge e, the above expression for jI
gives the current for the noninteracting system to be
I= �e /h���R

�LdE�tk�2, where E=−2 cos k. We now compute the
correction to this current, �jN, caused by the interaction.
Using the normalization given above, we find that
�jN= �1 /2N2��r,s�j�kr ,ks�; in the thermodynamic limit, this
gives the correction to be

�j =
1

2
�

−kR

kL �
−kR

kL dk1dk2

�2��2 �j�k1,k2� . �11�

We know that �j=0 if there is no voltage bias, i.e., if kR
=kL. Hence, if kR�kL, Eq. �11� reduces to

�j = ��
kR

kL �
−kR

kR

+
1

2
�

kR

kL �
kR

kL �dk1dk2

�2��2 �j�k1,k2� . �12�

In the zero-bias limit �R→�L �kR→kL�, the contributions of
the two integrals in Eq. �12� are of orders ��R−�L� and
��R−�L�2, respectively.

Now, we study whether the two-particle resonance re-
mains observable after doing the k1 ,k2 integrals in Eq. �12�.
This is shown in Fig. 2 where the dot parameters are the
same as in Fig. 1, and the average chemical potential
�0= ��L+�R� /2 is kept fixed at 0.95. The main plot shows
peaks in a plot of the total current j= jI+�j versus U; the
reason for these peaks is the following. Since the bias
��=�L−�R is small, the first integral in Eq. �12� dominates;
hence, the variable k1 stays close to k0=2.07 corresponding
to the energy E1=0.95. The other variable k2 goes over a
range of about �−2.07,2.07�; the corresponding range for E2,
�−2,0.95�, includes the one-particle resonance energies
given in Eq. �4�, E1r�=−1.6 and 0.4, where there is a high
probability for this particle to enter the dot. When the two-
particle energy E1+E2=−0.65 or 1.35 happens to be equal to
the two-particle resonance energy e0+e1+U, we get a large
contribution to �j. This predicts the peaks to lie at U=0.55

and 2.55, which are close to the values of 0.53 and 2.52
observed in Fig. 2. We also note that for the three values of
the bias ��=0.02,0.04,0.08, the values of j at the peaks lie
in the range of 1–6�10−3, which is much larger than the
interaction-independent current jI which lies in the range of
1–4�10−5. We emphasize that the two-electron resonance
occurs near a chemical potential �0.95� which lies well above
the one-particle resonance energies E1r�; thus, an electron at
the chemical potential transmits through the dot only due to
the interaction U. The inset of Fig. 2 shows the current ver-
sus the bias for U=0.52, which corresponds to the first peak
in the main figure, and U=1.1 which lies between the peaks;
we see that the conductance is much larger in the first case.
In all our calculations, we have ensured that the bias is not
large enough for either of the chemical potentials to lie close
to a one-particle resonance; otherwise, the two-particle reso-
nance might get masked by a one-particle resonance.

The analysis in this paper can be readily extended to the
case of spin-1/2 electrons. We consider a simple model of a
dot consisting of only one site �at x=0� where there is an
on-site energy e0 and an interaction of the form Un0↑n0↓.
This can lead to scattering between two electrons in the sin-
glet channel but not in the triplet channel. The scattering and
the resultant correction to the current can again be studied
using the Lippman-Schwinger formalism. We again find that
a two-electron resonance can occur at an energy given by
2e0+U if the dot-lead couplings are small. In addition to this,
the interaction can now also lead to spin entanglement.30

Namely, if a spin-up and a spin-down electron are incident
on the dot in a spin-uncorrelated state with a total energy that
is equal to the two-particle resonance energy, the two elec-
trons will emerge in a singlet state after scattering.

To summarize, we have studied a model of a quantum dot,
which is a small region in which electrons interact. The scat-
tering of two particles due to the interaction is studied ex-
actly. We find that a two-particle resonance occurs if the
incident energies and the dot parameters satisfy a certain
relation. Further, the interaction generally leads to an asym-
metry in the current if the incident wave numbers are re-
versed; for a many-electron system with no inversion sym-
metry and strong Coulomb interactions, the current
asymmetry can be shown by using a master equation
approach.31 We then use a two-electron perturbative ap-
proach to show that the two-particle resonance can survive
for the many-electron system that arises when the leads are
Fermi seas with certain chemical potentials; the resonance
occurs if the dot parameters �ei ,�i ,U� and the chemical po-
tentials are related in a particular way, and the resultant cur-
rent can be much larger than jI. These phenomena can persist
if we consider a more realistic model of a dot which has
interactions over a larger region. It would be interesting to
look for these effects experimentally in quantum dot sys-
tems.
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