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We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment
is quasilinear and equivalent to the standard “first-order smoothing approximation.” However it is non pertur-
bative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean
magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the
linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of
the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-
invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no
shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of
zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case
when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical
turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate
transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave
number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are
expected to decay in the long time limit.
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I. INTRODUCTION

The origin of large scale magnetic fields in astrophysical
systems from stars to galaxies is an issue of considerable
interest. The standard paradigm involves dynamo amplifica-
tion of seed magnetic fields due to turbulent flows which
have helicity combined with shear. Shear flows and turbu-
lence are ubiquitous in astrophysical systems although the
turbulence in general may not be helical. However, the pres-
ence of shear by itself may open new pathways to the opera-
tion of large-scale dynamos, even if the turbulence lacks a
coherent helicity �1–5�. The evidence for such large-scale
dynamo action under the combined action of non helical tur-
bulence and background shear flow comes mainly from sev-
eral direct numerical simulations �1,2�. How such a dynamo
works is not yet clear. One possibility is the shear-current
effect �4�, in which extra components of the mean electro-
motive force �EMF� arise due to shear, which couple com-
ponents of the mean magnetic field parallel and perpendicu-
lar to the shear flow. However, there is no convergence yet
on whether the sign of the relevant coupling term is such as
to obtain a dynamo; some analytic calculations �6,7� and
numerical experiments �1� find that the sign of the shear-
current term is unfavorable for dynamo action.

In an earlier paper �8� �Paper I�, we had outlined briefly a
quasilinear theory of dynamo action in a linear shear flow of
an incompressible fluid, which has random velocity fluctua-
tions due either to freely decaying turbulence or generated
through external forcing. Our analysis did not put any re-

strictions on the strength of the shear, unlike earlier analytic
work, which treated shear as a small perturbation. We arrived
at an integrodifferential equation for the evolution of the
mean magnetic field and argued that the shear-current as-
sisted dynamo is essentially absent in quasilinear theory in
the limit of zero resistivity. In the present paper, we give
detailed derivations of the main results of Paper I. We also
extend our work further by deriving differential equations for
the mean field, in the limit when the correlation time of the
turbulence is much smaller than the time scale over which
the mean field varies. This allows us to solve for the mean-
field evolution in terms of the velocity correlation functions.
We can draw some general conclusions on the shear dynamo
independent of the exact velocity dynamics. In particular, we
note that the shear dynamo can lead to transient growth of
large-scale fields in the form of shearing waves, but these
waves ultimately decay, even in the absence of microscopic
diffusion.

In Sec. II, we formulate the shear dynamo problem. Our
theory is “local” in character: in the laboratory frame we
consider a background shear flow whose velocity is unidirec-
tional �along the X2 axis� and varies linearly in an orthogonal
direction �the X1 axis�. Section III outlines a quasilinear
theory of the shear dynamo. Systematic use of the shearing
transformation allows us to develop a theory that is nonper-
turbative in the strength of the background shear. However,
we ignore the complications associated with nonlinear inter-
actions, hence, magnetohydrodynamic �MHD� turbulence
and the small-scale dynamo; so our theory is quasilinear in
nature, equivalent to the “first order smoothing approxima-
tion” �FOSA� �9,10�. The linear shear flow has a basic sym-
metry relating to measurements made by a special subset of
all observers, who may be called comoving observers. This
symmetry is the invariance of the equations with respect to a
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group of transformations that is a subgroup of the full Gal-
ilean group. It may be referred to as “shear-restricted Gal-
ilean invariance,” or Galilean invariance �GI�. It should be
noted that the laboratory frame and its set of co-moving ob-
servers need not be inertial frames; in fact one of the main
applications of GI is to the shearing sheet, which is a rotat-
ing frame. We introduce and explore the consequences of GI
velocity fluctuations in Sec. IV. Such velocity fluctuations
are not only compatible with the underlying symmetry of the
problem, but they are expected to arise naturally. This has
profound consequences for dynamo action, because the
transport coefficients that define the mean EMF become spa-
tially homogeneous in spite of the shear flow. The derivation
of an integro-differential equation for the mean magnetic
field is given in Sec. V. We discuss a number of ways of
approximating this equation in Sec. VI, for slowly varying
mean fields, all of which lead to the same set of partial dif-
ferential equations for the mean-field. The mean field dy-
namics is further studied in Sec. VII, and VIII presents a
discussion of the main results and the conclusions.

II. SHEAR DYNAMO PROBLEM

Let �e1 ,e2 ,e3� be the unit vectors of a Cartesian coordi-
nate system in the laboratory frame, X= �X1 ,X2 ,X3� the po-
sition vector, and � the time. The fluid velocity is given by
�−2AX1e2+v�, where A is the shear parameter �Oort’s first
constant� and v�X ,�� is a randomly fluctuating velocity field.
The total magnetic field, B��X ,��, obeys the induction equa-
tion,

� �

��
− 2AX1

�

�X2
�B� + 2AB1�e2 = � � �v � B�� + ��2B�.

�1�

The shear dynamo problem may be stated as follows: given
some statistics of velocity fluctuations, what can be said
about the magnetic field? More specific questions may be
posed: does the combined action of the background shear
and random velocities lead to the growth of a large-scale
component of the magnetic field �i.e., a turbulent dynamo�?
In particular, is there turbulent dynamo action when the ve-
locity fluctuations possess mirror symmetry �i.e., when the
velocity fluctuations are nonhelical�?

A common approach to the problem is through the theory
of mean-field electrodynamics. Here, the action of zero-mean
velocity fluctuations ��v�=0� on some seed magnetic field is
assumed to produce a total magnetic field with a well-defined
mean-field �B� and a fluctuating-field �b�:

B� = B + b, �B�� = B, �b� = 0 , �2�

where � � denotes ensemble averaging in the sense of Rey-
nolds. Applying Reynolds averaging to the induction Eq. �1�,
we obtain the following equations governing the dynamics of
the mean and fluctuating magnetic fields:

� �

��
− 2AX1

�

�X2
�B + 2AB1e2 = � � � + ��2B, �3�

� �

��
− 2AX1

�

�X2
�b + 2Ab1e2

= � � �v � B� + � � �v � b − �� + ��2b, �4�

where �= �v�b� is the mean EMF. The first step toward
solving the problem is to calculate � and obtain a closed
equation for the mean-field, B�X ,��. In the general case, it is
necessary to specify the dynamics of v, which could be in-
fluenced by Lorentz forces due to both B and b.

III. QUASILINEAR THEORY

To calculate the mean EMF we make some simplifying
assumptions. We first make the quasilinear approximation in
solving Eq. �4� for b by dropping terms that are quadratic in
the fluctuations. Note that the dynamics of v is not pre-
scribed; it does not imply absence of velocity dynamics. For
instance, the fluid can be acted upon by Lorentz forces due to
the magnetic field, Coriolis force as in the case of the shear-
ing sheet or buoyancy in a convective flow. In this paper, we
will not specify any particular dynamics for the velocity
field. We also drop the resistive term in the interests of sim-
plicity of presentation. Setting �=0 may seem like a drastic
step, but we would like to assure the reader that the theory
can be reworked without this limitation and that our main
conclusions carry through, even for ��0. In particular, we
recover the results of this paper in the limit �→0. We note
that the limit �→0 is also compatible with the physical situ-
ation in which the correlation times are small compared to
the eddy turn-over time scale; so our theory is applicable
when the FOSA is valid. The fluctuating velocity field is
assumed be incompressible �� ·v=0�. This restriction is not
crucial and may be lifted without much difficulty.

The quasilinear approximation is equivalent to neglecting
the effects of magnetohydrodynamic turbulence and small-
scale dynamo action for the determination of E. With these
assumptions, the equation for b we will solve is

� �

��
− 2AX1

�

�X2
�b + 2Ab1e2 = � � �v � B�

= �B · ��v − �v · ��B. �5�

A. Shearing coordinate transformation

Equation �5� is inhomogeneous in the coordinate X1. It is
convenient to exchange spatial inhomogeneity for temporal
inhomogeneity, so we get rid of the �X1� /�X2� term through
a shearing transformation to space-time variables,

x1 = X1, x2 = X2 + 2A�X1, x3 = X3, t = � . �6�

Then partial derivatives transform as

�

�X1
=

�

�x1
+ 2At

�

�x2
,

�

�X2
=

�

�x2
,

�

�X3
=

�

�x3
,

�

��
=

�

�t
+ 2Ax1

�

�x2
. �7�

We also define variables, which are component-wise equal to
the old variables,
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H�x,t� = B�X,��, h�x,t� = b�X,��, u�x,t� = v�X,��
�8�

It is important to note that, just like the old variables, the
variables are expanded in the fixed Cartesian basis of the
laboratory frame. For example, H=H1e1+H2e2+H3e3,
where Hi�x , t�=Bi�X ,��, and similarly for the other variables.
In the new variables, Eq. �5� becomes,

�h

�t
+ 2Ah1e2 = �H ·

�

�x
+ 2AtH1

�

�x2
�u

− �u ·
�

�x
+ 2Atu1

�

�x2
�H . �9�

Equation �9� for h�x , t� does not contain spatial derivatives
of h, so it can be integrated directly. We are interested in the
particular solution, which vanishes at t=0. The solutions for
h1�x , t� and h3�x , t� are

h1 = 	
0

t

dt�u1l� �Hl� + 2At��l2H1�� − 	
0

t

dt��ul� + 2At��l2u1��H1l� ,

�10�

h3 = 	
0

t

dt�u3l� �Hl� + 2At��l2H1�� − 	
0

t

dt��ul� + 2At��l2u1��H3l� ,

�11�

where primes denote evaluation at space-time point �x , t��.
We have also used notation uml= ��um /�xl� and Hml
= ��Hm /�xl�.

The equation for h2�x , t� involves h1�x , t�; the solution is

h2 = 	
0

t

dt�u2l� �Hl� + 2At��l2H1��

− 	
0

t

dt��ul� + 2At��l2u1��H2l� − 2A	
0

t

dt�h1�. �12�

We need to evaluate the integral

	
0

t

dt�h1� = 	
0

t

dt�	
0

t�
dt�u1l� �Hl� + 2At��l2H1��

− 	
0

t

dt�	
0

t�
dt��ul� + 2At��l2u1��H1l� , �13�

where the double-primes denote evaluation at space-time
point �x , t��. We now note that, for any function f�x , t�, the
double-time integral

	
0

t

dt�	
0

t�
dt�f�x,t�� = 	

0

t

dt�f�x,t��	
t�

t

dt�

= 	
0

t

dt��t − t��f�x,t��

= 	
0

t

dt��t − t��f�x,t��

reduces to a single-time integral, where in the last equality
we have merely replaced the dummy integration variable t�
by t�. Then

	
0

t

dt�h1� = 	
0

t

dt��t − t��u1l� �Hl� + 2At��l2H1��

− 	
0

t

dt��t − t���ul� + 2At��l2u1��H1l� �14�

can be used in Eq. �12� to get an explicit solution for h2�x , t�.
Combining Eqs. �10�–�12� we can write h�x , t� in component
form as

hm�x,t� = 	
0

t

dt��uml� − 2A�t − t���m2u1l� ��Hl� + 2At��l2H1��

− 	
0

t

dt��ul� + 2At��l2u1���Hml� − 2A�t − t���m2H1l� � .

�15�

B. Mean EMF

The expression in Eq. �15� for h should be substituted in
�= �v�b�= �u�h�. Following standard procedure, we allow
� � to act only on the velocity variables but not the mean
field; symbolically, it is assumed that �uuH�= �uu�H. Inter-
changing the dummy indices �l ,m� in the last term of Eq.
�15�, the mean EMF is given in component form as

Ei�x,t� = �ijm�ujhm�

= 	
0

t

dt���̂il�x,t,t�� − 2A�t − t���̂il�x,t,t���

��Hl� + 2At��l2H1�� − 	
0

t

dt���̂iml�x,t,t��

+ 2At��m2�̂i1l�x,t,t����Hlm� − 2A�t − t���l2H1m� � ,

�16�

where the transport coefficients, ��̂ , �̂ , �̂�, are defined in
terms of the uu velocity correlators by

�̂il�x,t,t�� = �ijm�uj�x,t�uml�x,t��� ,

�̂il�x,t,t�� = �ij2�uj�x,t�u1l�x,t��� ,

�̂iml�x,t,t�� = �ijl�uj�x,t�um�x,t��� . �17�

To obtain more specific expressions for the transport coeffi-
cients, we need to provide information on the uu velocity
correlators. However, it is physically more transparent to
consider velocity statistics in terms of vv velocity correla-
tors, because this is referred to the laboratory frame instead
of the sheared coordinates. By definition �Eq. �8��,

um�x,t� = vm„X�x,t�,t… , �18�

where
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X1 = x1, X2 = x2 − 2Atx1, X3 = x3, � = t �19�

are the inverse of the shearing transformation given in Eq.
�6�. Using

�

�xl
=

�

�Xl
− 2A��l1

�

�X2
, �20�

the velocity gradient uml can be written as

uml = � �

�Xl
− 2A��l1

�

�X2
�vm = vml − 2A��l1vm2, �21�

where vml= ��vm /�Xl�. Then the transport coefficients are
given in terms of the vv velocity correlators by

�̂il�x,t,t�� = �ijm��v j�X,t�vml�X�,t���

− 2At��l1�v j�X,t�vm2�X�,t���� ,

�̂il�x,t,t�� = �ij2��v j�X,t�v1l�X�,t���

− 2At��l1�v j�X,t�v12�X�,t���� ,

�̂iml�x,t,t�� = �ijl�v j�X,t�vm�X�,t��� , �22�

where X and X� are shorthand for

X = �x1,x2 − 2Atx1,x3�, X� = �x1,x2 − 2At�x1,x3� . �23�

Equation �16�, together with Eq. �17� or �22�, gives the
mean EMF in general form. X and X� can be thought of as
the coordinates of the origin, at times t and t� respectively, of
an observer comoving with the background shear flow.
Therefore, the transport coefficients depend only on the ve-
locity correlators measured by such an observer at the origin
of her coordinate system. This fact will have profound con-
sequences for dynamo action, when we consider G-invariant
velocity correlators in the next section. Before discussing the
Galilean invariance of the linear shear flow, we derive the
form of the mean EMF for a special case, when the velocity
field is “delta correlated in time.”

C. Delta-correlated-in-time velocity correlator

Although somewhat artificial, it is not uncommon to study
dynamo action due to velocity fields whose correlation times
are supposed so small that the two-point correlator taken
between space-time points �R ,�� and �R� ,��� is assumed to
be

�vi�R,��v j�R�,���� = ��� − ���Tij�R,R�,�� . �24�

Incompressibility implies that

�Tij

�Ri
= 0,

�Tij

�Rj�
= 0. �25�

We define

Tijl�R,�� = � �Tij

�Rl�
�

R�=R

. �26�

The delta-function ensures that X and X� defined in Eq. �23�
are equal to each other. Then the velocity correlators

�vi�X,t�v j�X�,t��� = ��t − t��Tij�X,X,t� ,

�vi�X,t�v jl�X�,t��� = ��t − t��Tijl�X,t� . �27�

Substitute Eq. �27� in Eq. �22� for the transport coefficients,

�̂il�x,t,t�� = ��t − t���ijm�Tjml − 2At�l1Tjm2� ,

�̂il�x,t,t�� = ��t − t���ij2�Tj1l − 2At�l1Tj12� ,

�̂iml�x,t,t�� = ��t − t���ijlTjm, �28�

and use these expressions in Eq. �16�. The delta-function
ensures that the integrals over time can all be performed
explicitly, so the mean EMF is

Ei = �ijm�Tjml − 2At�l1Tjm2��Hl + 2At�l2H1�

− �ijl�Tjm + 2At�m2Tj1�Hlm. �29�

It is useful to write the EMF in terms of the original vari-
ables and laboratory frame coordinates. To this end we trans-
form

Hlm = � �

�Xm
− 2A��m1

�

�X2
�Bl = Blm − 2A��m1Bl2, �30�

where Blm= ��Bl /�Xm�. Then the explicit dependence of Ei on
the shear parameter A cancels out, and the mean EMF as-
sumes the simple form,

Ei = �ijmTjmlBl − �ijlTjmBlm, �31�

which is identical to the familiar expression in the absence of
background shear. Therefore we conclude that, to obtain
nontrivial effects due to the shear flow, it is necessary to
consider velocity correlators with nonzero correlation times.
Henceforth, we shall consider the general case of finite ve-
locity correlation times.

IV. GALILEAN INVARIANCE

The linear shear flow has a basic symmetry relating to
measurements made by a special subset of all observers. We
define a co-moving observer as one whose velocity with re-
spect to the laboratory frame is equal to the velocity of the
background shear flow, and whose Cartesian coordinate axes
are aligned with those of the laboratory frame. A co-moving
observer can be labeled by the coordinates, �= �	1 ,	2 ,	3�
with respect to the laboratory frame, of her origin at time �
=0. Different labels identify different co-moving observers
and vice versa. As the labels run over all possible values,
they exhaust the set of all co-moving observers. The origin
of the coordinate axes of a co-moving observer translates
with uniform velocity; its position with respect to the origin
of the laboratory frame is given by

Xc��� = �	1,	2 − 2A�	1,	3� . �32�

An event with space-time coordinates �X ,�� in the laboratory

frame has space-time coordinates �X̃ , �̃� with respect to the
co-moving observer, given by
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X̃ = X − Xc���, �̃ = � − �0, �33�

where the arbitrary constant �0 allows for translation in time
as well.

Let �B̃��X̃ , �̃� , B̃�X̃ , �̃� , b̃�X̃ , �̃� , ṽ�X̃ , �̃�� denote the total,
the mean, the fluctuating magnetic fields and the fluctuating
velocity field, respectively, as measured by the co-moving
observer. These are all equal to the respective quantities mea-
sured in the laboratory frame,

�B̃��X̃, �̃�,B̃�X̃, �̃�, b̃�X̃, �̃�,ṽ�X̃, �̃��

= �B��X,��,B�X,��,b�X,��,v�X,��� . �34�

That this must be true may be understood as follows. Mag-
netic fields are invariant under nonrelativistic boosts, so the
total, mean and fluctuating magnetic fields must be the same
in both frames. To see that the fluctuating velocity fields
must be the same, we note that the total fluid velocity mea-
sured by the co-moving observer is, by definition, equal to

�−2AX̃1e2+ ṽ�X̃ , �̃��. This must be equal to the difference be-
tween the velocity in the laboratory frame, �−2AX1e2
+v�X ,���, and �−2A	1e2�, which is the velocity of the co-
moving observer with respect to the laboratory frame. Using

X̃=X−	1, we see that ṽ�X̃ , �̃�=v�X ,��.
The Galilean coordinate transformation given in Eq. �33�

implies that partial derivatives are related through

�

�X
=

�

�X̃
,

�

��
=

�

� �̃
+ 2A	1

�

�X̃2

. �35�

Note that the combination �� /��−2AX1� /�X2�= �� /��̃

−2AX̃1� /�X̃2� is invariant in form. The other partial deriva-
tives occurring in Eqs. �1�, �3�, and �4� are spatial derivatives
which, by the second of Eqs. �35�, are the same in both
frames. Therefore, Eqs. �1�, �3�, and �4� are invariant under
the simultaneous transformations given in Eqs. �33� and �34�.
We note that this symmetry property is actually invariance
under a subset of the full ten-parameter Galilean group, pa-
rametrized by the five quantities �	1 ,	2 ,	3 ,�0 ,A�; for brevity
we will refer to this restricted symmetry as GI.

There is a fundamental difference between the coordinate
transformations associated with Galilean invariance �Eq.
�33�� and the shearing transformation �Eq. �6��. The former
relates different co-moving observers, whereas the latter de-
scribes a time-dependent distortion of the coordinates axes of
one observer. Comparing Eq. �35� with Eq. �7�, we note that
the relationship between old and new variables is homoge-
neous for the Galilean transformation, whereas it is inhomo-
geneous for the shearing transformation.

It is important to note that the laboratory frame and its set
of co-moving observers need not be inertial frames. Indeed,
one of the main applications of our theory is to the shearing
sheet which is a rotating frame providing a local description
of a differentially rotating disk; in addition to other forces,
the velocity field is affected by the Coriolis force. The only
requirement is that the magnetic field satisfies the induction
Eq. �1�.

A. Galilean-invariant velocity correlators

Naturally occurring velocity fields are Galilean-invariant,
and this has a strong impact on the velocity statistics. We
consider the n-point velocity correlator measured by the ob-
server in the laboratory frame. Let this observer correlate v j1
at space-time location �R1 ,�1�, with v j2

at space-time loca-
tion �R2 ,�2�, and so on upto v jn

at space-time location
�Rn ,�n�. Now consider a co-moving observer, the position
vector of whose origin is given by Xc��� of Eq. �32�. An
identical experiment performed by this observer must yield
the same results, the measurements now made at the space-
time points denoted by �R1+Xc��1� ,�1� ; �R2
+Xc��2� ,�2� ; . . . ; �Rn+Xc��n� ,�n�. If the velocity statistics is
GI, the n-point velocity correlator must satisfy the condition

�v j1
�R1,�1� ¯ v jn

�Rn,�n��

= �v j1
„R1 + Xc��1�,�1… ¯ v jn

„Rn + Xc��n�,�n…� ,

�36�

for all �R1 , . . .Rn ;�1 , . . .�n ;��. In quasilinear theory we re-
quire only the two-point velocity correlators, for which

�vi�R,��v j�R�,���� = �vi�R + Xc���,��v j�R� + Xc����,����
�37�

for all �R ,R� ,� ,�� ,��. We also need to work out the corre-
lation between velocities and their gradients,

�vi�R,��v jl�R�,����

=
�

�Rl�
�vi�R,��v j�R�,����

=
�

�Rl�
�vi„R + Xc���,�…v j„R� + Xc����,��…�

= �vi„R + Xc���,�…v jl„R� + Xc����,��…� . �38�

If we now set

R = R� = 0, � = t, �� = t�, �	1,	2,	3� = �x1,x2,x3�
�39�

we will have

Xc��� = �x1,x2 − 2Atx1,x3�, Xc���� = �x1,x2 − 2At�x1,x3� .

�40�

Comparing Eq. �40� with Eq. �23�, we see that Xc��� and
Xc���� are equal to X and X�, which are quantities that enter
as arguments in the velocity correlators of Eqs. �22� defining
the transport coefficients. Hence, reading Eqs. �37� and �38�
from right to left, the velocity correlators,

�vi�X,t�v j�X�,t��� = �vi�0,t�v j�0,t��� = Rij�t,t�� ,

�vi�X,t�v jl�X�,t��� = �vi�0,t�v jl�0,t��� = Sijl�t,t�� , �41�

are independent of space, and are given by the functions,
Rij�t , t�� and Sijl�t , t��. Symmetry and incompressiblity imply
that Rij�t , t��=Rji�t� , t� and Sijj�t , t��=0. Note that the turbu-
lence will, in general, be affected by the background shear
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and the velocity correlators will not be isotropic. In particu-
lar, Rij�t , t�� will not be proportional to the unit tensor, �ij.

B. Galilean-invariant mean EMF

The transport coefficients are completely determined by
the form of the velocity correlator. Using Eqs. �41� in Eqs.
�22�, we can see that the GI transport coefficients,

�̂il�t,t�� = �ijm�Sjml�t,t�� − 2At��l1Sjm2�t,t��� ,

�̂il�t,t�� = �ij2�Sj1l�t,t�� − 2At��l1Sj12�t,t��� ,

�̂iml�t,t�� = �ijlRjm�t,t�� , �42�

are independent of space. Galilean invariance is the funda-
mental reason that the velocity correlators, hence the trans-
port coefficients, are independent of space. The derivation
given above is purely mathematical, relying on the basic
freedom of choice of parameters made in Eq. �39�, but we
can also understand the results more physically. X and X�, as
given by Eq. �23�, can be thought of as the location of the
origin of a co-moving observer at times t and t�, respectively.
Thus when the observer correlates velocities at X=Xc�t� and
X�=Xc�t��, it will be the same as correlating the velocities at
her origin, but at different times. Then GI implies that the
velocity correlators must be equal to those measured by any
co-moving observer at her origin at times t and t�. In particu-
lar, this must be true for the observer in the laboratory frame,
which explains Eqs. �41�, consequently Eqs. �42�.

We can derive an expression for the G-invariant mean
EMF by using Eqs. �42� for the transport coefficients in Eq.
�16�. The integrands can be simplified as follows:

�̂il�t,t���Hl� + 2At��l2H1�� = �ijm�Sjml�t,t�� − 2At��l1Sjm2�t,t���

��Hl� + 2At��l2H1��

= �ijmSjml�t,t��Hl�,

�̂il�t,t���Hl� + 2At��l2H1�� = �ij2�Sj1l�t,t�� − 2At��l1Sj12�t,t���

��Hl� + 2At��l2H1��

= �ij2Sj1l�t,t��Hl�,

��̂iml�t,t�� + 2At��m2�̂i1l�t,t���Hlm�

= �ijl�Rjm�t,t�� + 2At��m2Rj1�t,t���Hlm� ,

��̂im2�t,t�� + 2At��m2�̂i12�t,t���H1m�

= �ij2�l1�Rjm�t,t�� + 2At��m2Rj1�t,t���Hlm� .

Define

Cjml�t,t�� = Sjml�t,t�� − 2A�t − t���m2Sj1l�t,t�� ,

Djm�t,t�� = Rjm�t,t�� + 2At��m2Rj1�t,t�� . �43�

The mean EMF can now be written compactly as

Ei�x,t� = �ijm	
0

t

dt�Cjml�t,t��Hl�

− 	
0

t

dt���ijl − 2A�t − t���l1�ij2�

�Djm�t,t��Hlm� , �44�

where the x dependence of � comes about only through the
mean field, H�x , t�, and its spatial gradients, because the
G-invariant transport coefficients are independent of x.

V. MEAN-FIELD INDUCTION EQUATION

Applying the shearing transformation given in Eqs. �6�
and �7� to the mean field Eq. �3�, we see that the mean field,
H�x , t�, obeys

�Hi

�t
+ 2A�i2H1 = �� � ��i + ��2Hi, �45�

where

���p 

�

�Xp
=

�

�xp
+ 2At�p1

�

�x2
. �46�

It may be verified that Eq. �45� preserves the condition
� ·H=0:

� · H 

�Hp

�Xp
= Hpp + 2AtH12 = 0. �47�

We now use Eqs. �44� and �46� to evaluate ���.

�� � ��i = �ipq

�Eq

�Xp
= �ipq� �

�xp
+ 2At�p1

�

�x2
�Eq

= �ipq�qjm	
0

t

dt�Cjml�t,t���Hlp� + 2At�p1Hl2� �

− 	
0

t

dt�Djm�t,t����ipq�qjl − 2A�t − t���l1�ipq�qj2�

��Hlmp� + 2At�p1Hlm2� � .

Expanding �ipq�qjm= ��ij�mp−�im� jp�, the contribution from
the C term is

�� � ��i
C = 	

0

t

dt��Cipl − Cpil��Hlp� + 2At�p1Hl2� � . �48�

Evaluating the D term is a bit more involved. Again, we
begin by expanding �ipq�qjl= ��ij�lp−�il� jp�. Then we get

�� � ��i
D = 	

0

t

dt�Dpm�Hipm� + 2At�p1Hi2m�

− 2A�t − t���i2�H1pm� + 2At�p1H12m� ��

− 	
0

t

dt�Dim�Hppm� + 2At�H12m� � . �49�

The second integral vanishes because the factor in � � multi-
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plying Dim is zero: to see this, differentiate the divergence-
free condition of Eq. �47� with respect to xm. Gathering to-
gether Eqs. �48� and �49�, we have

�� � ��i = 	
0

t

dt��Ciml − Cmil��Hlm� + 2At�m1Hl2� �

+ 	
0

t

dt�Djm�Hijm� + 2At� j1Hi2m�

− 2A�t − t���i2�H1jm� + 2At� j1H12m� �� . �50�

Thus, the mean field H�x , t� satisfies the mean-field induc-
tion equation,

�Hi

�t
+ 2A�i2H1 = ��2Hi + 	

0

t

dt��Ciml − Cmil�

��Hlm� + 2At�m1Hl2� �

+ 	
0

t

dt�Djm�Hijm� + 2At� j1Hi2m�

− 2A�t − t���i2�H1jm� + 2At� j1H12m� �� .

�51�

Equation �51� gives a closed set of integro-differential
equations governing the dynamics of the mean field, H�x , t�,
valid for arbitrary values of A. Some of its important prop-
erties are as follows.

�1� Only the part of Ciml�t , t�� that is antisymmetric in the
indices �i ,m� contributes.

�2� The Djm�t , t�� terms are such that �����i involves
only Hi for i=1 and i=3, whereas �����2 depends on both
H2 and H1. This means that the mean-field induction Eq. �51�
determining the time evolution of H1�x , t� and H3�x , t� are
closed, whereas the equation for H2�x , t� involves both
H2�x , t� and H1�x , t�. Thus, H1�x , t� �or H3�x , t�� can be com-
puted by using only the initial data H1�x ,0� �or H3�x ,0��.
The equation for H2 involves both H2 and H1, and can then
be solved. The implications for the original field, B�X ,��,
can be read off, because it is equal to H�x , t� componentwise
�i.e., Bi�X ,��=Hi�x , t��. Thus, the Djm�t , t�� terms do not
couple either B1 or B3 with any other components, excepting
themselves. In demonstrating this, we have not assumed that
either the shear is small, or that H�x , t� is such a slow func-
tion of time that it can be pulled out the time integral in Eq.
�50�.

�3� When the turbulence is non helical, Ciml�t , t��=0, but
Djm�t , t���0. In this case, there is no shear-current type ef-
fect, in quasilinear theory in the limit of zero resistivity. This
result should be compared with earlier work discussed in
�4,6,7�, where there is explicit coupling of B2 and B1 in the
evolution equation for B1. A generalization of Eq. �51� to the
case of nonzero resistivity has been worked out in �11�. It is
interesting to note that the corresponding generalization of
Ciml that appears in this case need not vanish for non helical
turbulence. However, it is expected to vanish in the formal
limit of zero resistivity, consistent with our result given
above.

VI. INDUCTION EQUATION FOR A SLOWLY VARYING
MEAN-FIELD

A. Mean EMF

The mean EMF given in Eq. �44� is a functional of Hl and
Hlm. When the mean-field is slowly varying compared to
velocity correlation times, we expect to be able to approxi-
mate � as a function of Hl and Hlm. In this case, the mean-
field induction equation would reduce to a set of coupled
partial differential equations, instead of the more formidable
set of coupled integro-differential equations given by Eqs.
�45� and �50�. Sheared coordinates are useful—perhaps
indispensable—for calculations, but physical interpretation is
simplest in the laboratory frame. Hence, we derive an ex-
pression for the mean EMF in terms the original variables Bl
and Blm. The result may be stated simply as

Ei = �il���Bl�X,�� − �iml���
�Bl

�Xm
,

�il��� = �ijm	
0

�

d���Cjml��,��� + 2A�� − ����l1Cjm2��,���� ,

�iml��� = �ijl	
0

�

d���Rjm��,��� − 2A�� − ����m2Rj1��,���� ,

�52�

which is derived below by two different methods.

1. Method I: use of a perturbative solution for H(x , t�)

Consider the mean-field Eq. �45� when � can be consid-
ered small. We introduce an ordering parameter 
�1 and
consider � to be O�
�. Then a perturbative solution of Eq.
�45� in the �→0 limit is

Hl�x,t�� = Hl�x,t� + 2A�t − t���l2H1�x,t� + O�
� . �53�

We can also consider perturbative solutions with nonzero �,
but using them in Eq. �44� for � would not be correct, be-
cause Eq. �44� was derived in the limit �→0. We now use
Eq. �53� in Eq. �44�,

Ei�x,t� = Hl�ijm	
0

t

dt�Cjml�t,t�� + 2AH1�ijm

�	
0

t

dt��t − t��Cjm2�t,t�� − Hlm�ijl

�	
0

t

dt�Djm�t,t�� + O�
2� . �54�

Transform to the original field variables, using Hl=Bl and
Hlm=Blm−2At�m1Bl2, which is given in Eq. �30�. The C
terms remain unaltered and can be seen to combine to equal
�ilBl. Work out the D term using the expression for Djm
given in Eq. �43�,

NONPERTURBATIVE QUASILINEAR APPROACH TO THE … PHYSICAL REVIEW E 80, 066315 �2009�

066315-7



Hlm	
0

t

dt�Djm = �Blm − 2At�m1Bl2�	
0

t

dt��Rjm + 2At��m2Rj1�

= Blm	
0

t

dt�Rjm − 2ABl2	
0

t

dt��t − t��Rj1.

Using the above result, and ignoring O�
2� terms in Eq. �54�,
we obtain the result stated in Eq. �52�.

2. Method II: Taylor expansion of B(X� ,��= t�)

This is the standard approach, although not as short as the
one given above. We express H�x , t��=B�X� ,��= t�� and
Taylor expand B inside the integral in Eq. �44�. As in Eq.
�23�,

X = �x1,x2 − 2Atx1,x3�, X� = �x1,x2 − 2At�x1,x3� .

Writing X�=X+2A�t− t��x1e2, we Taylor expand:

Hl� 
 Hl�x,t�� = Bl�X�,t��

= Bl�X + 2A�t − t��x1e2,t��

= Bl�X,t� + 2A�t − t��x1Bl2 − �t − t��
�Bl

�t
+ ¯ .

We now use the mean-field induction Eq. �3� to evaluate
��Bl /�t�. As earlier we drop the contributions from �����
and the � term and get

�Bl

�t
= 2Ax1Bl2 − 2A�l2B1 + ¯ . �55�

Then

Hl� = Bl�X,t� + 2A�t − t��x1Bl2 − �t − t���2Ax1Bl2 − 2A�l2B1�

+ ¯ = Bl + 2A�t − t���l2B1 + ¯ . �56�

Note that the inhomogeneous terms proportional to x1 mutu-
ally cancel. It is clear, on physical grounds that they must,
because the mean EMF given by Eq. �44� is GI, and any
valid approximation of a GI expression must preserve this
symmetry. In particular, this implies that transport coeffi-
cients cannot depend on x1. We now use Eq. �56� inside the
time integrals of Eq. �44�. Bl=Bl�X , t� is a function of �x , t�
and can be pulled out of the integral over t�. Work out the C
and D terms separately,

Ei
C = �ijm	

0

t

dt�Cjml�t,t��Hl�

= �ijm	
0

t

dt�Cjml�Bl + 2A�t − t���l2B1�

= �ijm	
0

t

dt��CjmlBl + 2A�t − t��Cjm2B1� = �ilBl.

To calculate the D terms, we note that Hlm� = ��Hl /�xm�. Since
the integrals over t� is performed at constant x, �� /�xm� can
be pulled out of the integral,

Ei
D = −

�

�xm
	

0

t

dt���ijl − 2A�t − t���l1�ij2�Djm�t,t��Hl�.

Work out

��ijl − 2A�t − t���l1�ij2�Hl�

= ��ijl − 2A�t − t���l1�ij2��Bl + 2A�t − t���l2B1�

= �ijlBl�X,t� .

Then

Ei
D = − �ijl

�Bl

�xm
	

0

t

dt�Djm�t,t�� .

The quantity

�Bl

�xm
= � �

�Xm
− 2At�m1

�

�X2
�Bl = Blm − 2At�m1Bl2

can be regarded as a function of �X , t� �or equivalently �x , t��,
and we are free to take it inside the t� integral. When this is
done and the expression for Djm given in Eq. �43� is used, we
have

Ei
D = − �ijl	

0

t

dt��Blm − 2At�m1Bl2��Rjm + 2At��m2Rj1�

= − �ijlBlm	
0

t

dt��Rjm − 2A�t − t���m2Rj1�

= − �imlBlm. �57�

B. Calculation of �Ã�

We need to calculate ��� for the mean EMF of Eq. �52�.
Work out the � and � terms separately.

�� � ��i
� = �ipq�ilBlp

= Blp�ipq�qjm	
0

�

d���Cjml + 2A�� − ����l1Cjm2�

= Blm	
0

�

d���Ciml + 2A�� − ����l1Cim2�

− Blj	
0

�

d���Cjil + 2A�� − ����l1Cji2�

= Blm	
0

�

d���Ciml − Cmil + 2A�� − ����l1

��Cim2 − Cmi2�� . �58�

Note that only the part of Ciml that is antisymmetric in the
indices �i ,m� contributes.
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�� � ��i
� = − �ipq�qmlBlpm

= Blpm�ipq�qjl	
0

�

d���Rjm − 2A�� − ����m2Rj1�

= Bijm	
0

�

d���Rjm − 2A�� − ����m2Rj1� , �59�

where we have used Bll
� ·B=0. We note that Eqs. �58�
and �59� can also be derived directly from the expression for
���, given in Eq. �50�. This is an interesting exercise as it
allows us to formulate an alternate criteria on when the inte-
gral equation for B can be approximated by differential equa-
tions. We examine such an approximation further below.

C. Approximating the integral equation directly

It is convenient to work with the Fourier transform of
H�x , t�,

H̃�k,t� =	 d3xH�x,t�exp�− ik · x� . �60�

We also define the vector K�k , t�= �k1+2Atk2 ,k2 ,k3� and K2

= 
K
2= �k1+2Atk2�2+k2
2+k3

2: note that K ·X=k ·x. The mag-
netic field in the original variables, B�X ,��, can be recovered
by using the shearing transformation, Eq. �6�, to write �x , t�
in terms of the laboratory frame coordinates �X ,��,

B�X,�� = H�x,t� =	 d3k

�2��3H̃�k,t�exp�ik · x�

=	 d3k

�2��3H̃�k,��exp�iK�k,�� · X� .

�61�

From Eq. �51�, the Fourier transformed induction equation
becomes

�H̃i

�t
+ 2A�i2H̃1 = − �K2H̃i + i	

0

t

dt��Ciml − Cmil�

��H̃l�km + 2At�m1H̃l�k2�

− 	
0

t

dt�Djm�H̃i�kjkm + 2At� j1H̃i�k2km�

+ 	
0

t

dt�Djm�2A�t − t���i2�H̃1�kjkm

+ 2At� j1H̃1�k2km�� . �62�

Let us again simplify the integrals corresponding to the C
term, say TC and D term, say TD, separately. Using the defi-
nition of K�k , t�, the C term simplifies to

Ti
C = iKm�k,t�	

0

t

dt��Ciml − Cmil�H̃l�. �63�

We now assume that the mean field is slowly varying com-
pared to the correlation time �c of the turbulence and Taylor

expand H̃l�k , t�� about t �this assumption can later be
checked for its self consistency�. We get

H̃l�k,t�� = H̃l�k,t� − �t − t��
�H̃l

�t
+ ¯

= �H̃l�k,t� + 2A�t − t���l2H̃1� − �t − t��

�� �H̃l

�t
+ 2A�l2H̃1� + ¯ , �64�

where in the second line we have added and subtracted a

term 2A�t− t���l2H̃1. Substituting this expansion in Eq. �63�,
the C term becomes

Ti
C = iKm�k,t�H̃l	

0

t

dt��Ciml − Cmil + 2A�t − t���l1

��Cim2 − Cmi2�� − iKm�k,t�� �H̃l

�t
+ 2A�l2H̃1�

�	
0

t

dt��t − t���Ciml − Cmil� . �65�

Now consider the D terms. Again using the definition of
K�k , t� and Djm=Rjm+2At��m2Rj1, we can simplify this to

Ti
D = − KjKm	

0

t

dt��H̃i� − 2A�t − t���i2H̃1��

��Rjm − 2A�t − t���m2Rj1� . �66�

Again assume that the mean field is slowly varying com-
pared to the correlation time �c of the turbulence and Taylor

expand H̃l�k , t�� about t. To first order in �t− t��, we have

�H̃i� − 2A�t − t���i2H̃1�� = H̃i − �t − t��� �H̃i

�t
+ 2A�i2H̃1� + ¯ .

Substituting this expansion in Eq. �66� gives

Ti
D = − KjKmH̃i	

0

t

dt��Rjm − 2A�t − t���m2Rj1�

+ KjKm� �H̃i

�t
+ 2A�i2H̃1�	

0

t

dt��t − t��

��Rjm − 2A�t − t���m2Rj1� . �67�

The expressions for Ti
C and Ti

D given in Eqs. �65� and �67�
can be simplified. In both equations, the second terms are
proportional to the LHS of the induction �62�. As before we
ignore microscopic diffusion and write

�H̃i

�t
+ 2A�i2H̃1 � Ti

C + Ti
D.

Then Eqs. �65� and �67� can be written as
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Ti
C = iKm�k,t�H̃l	

0

t

dt��Ciml − Cmil + 2A�t − t���l1

��Cim2 − Cmi2�� − iKm�k,t��Tl
C + Tl

D�

�	
0

t

dt��t − t���Ciml − Cmil� ,

Ti
D = − KjKmH̃i	

0

t

dt��Rjm − 2A�t − t���m2Rj1�

+ KjKm�Ti
C + Ti

D�	
0

t

dt��t − t��

��Rjm − 2A�t − t���m2Rj1� . �68�

When these equations are added together, they result in a set
of three-coupled linear equations for the unknown quantities
�T1

C+T1
D�, �T2

C+T2
D�, and �T3

C+T3
D�. It is straightforward to

solve this system of equations, but the solutions assume a
form, which is needlessly complicated for our purposes. We
are interested in the limit of short velocity correlations times,
�c. In this case both Ti

C and Ti
D are well approximated by

their respective first terms,

Ti
C = iKm�k,t�H̃l	

0

t

dt��Ciml − Cmil + 2A�t − t���l1

��Cim2 − Cmi2�� ,

Ti
D = − KjKmH̃i	

0

t

dt��Rjm − 2A�t − t���m2Rj1� . �69�

These are exactly the Fourier transforms of Eq. �58� for ��
���i

�, and Eq. �59� for �����i
�.

We now state the conditions under which the approxima-
tions given in Eqs. �69� are valid. Let us define the quantities
�0 and �turb as typical values of the time integrals of the
velocity correlators, Sjml and Rjm, respectively �for homoge-
neous and isotropic turbulence, �0 is of order the magnitude
of the usual � effect, and �turb would be comparable to the
magnitude of the usual turbulent diffusion coefficient�. For
any wave number, K, we can define time scales, t�

= �K�0�−1 and t�= �K2�turb�−1, associated with �0 and �turb.
When �c is small enough such that

�c � t�,t�, A�c � 1,

A�c
2 � t�,t�, A�c 
 1, �70�

then both Ti
C and Ti

D are well approximated by their respec-
tive first terms, as given in Eqs. �69�. The time scales, t�

= �K�0�−1 and t�= �K2�turb�−1, depend on the spatial scale,
K−1, which is a time-dependent quantity for k2�0; at late
times, K�
2Atk2
 and this makes the quantities t� and t�

decreasing functions of time. With this fact taken into ac-
count, the inequalities given in Eq. �70� translate into upper
limits on the time over which the expressions in Eq. �69�
serve as good approximations to Ti

C and Ti
D.

D. Mean-field induction equation

We gather together here the results obtained in this sec-
tion. When the mean-field is slowly varying, it satisfies the
following partial differential equation:

� �

��
− 2AX1

�

�X2
�Bi + 2A�i2B1

= �̃imj���
�Bj

�Xm
+ �̃ jm���

�2Bi

�Xj � Xm
+ ��2Bi, �71�

where

�̃imj��� = 	
0

�

d���Cimj − Cmij + 2A�� − ���� j1�Cim2 − Cmi2�� ,

�̃ jm��� =
1

2
	

0

�

d���Rjm + Rmj − 2A�� − �����m2Rj1 + � j2Rm1�� .

�72�

In the above integrals Cimj =Cimj�� ,���, Rjm=Rjm�� ,���, etc.
Some comments are as follows.

�1� Note that �̃imj is antisymmetric in the indices �i ,m�,
whereas �̃ jm is symmetric in the indices �j ,m�.

�2� �̃ jm terms do not lead to coupling of any component of
B with any other component.

VII. MEAN-FIELD DYNAMICS FOR NONHELICAL
VELOCITY STATISTICS

When the velocity fluctuations are nonhelical, Simj�� ,���
=0, so that both Cimj�� ,��� and �̃mj��� vanish �in specific
models of the velocity dynamics we find that the generated
velocity fluctuations are indeed nonhelical, if the forcing is
nonhelical even in the presence of shear�. Then the evolution
of the mean field �over times when the inequalities of Eqs.
�70� are satisfied� is determined by

� �

��
− 2AX1

�

�X2
�Bi + 2A�i2B1 = �̃ jm���

�2Bi

�Xj � Xm
+ ��2Bi.

�73�

Note that �̃ jm depends on the nature of the stirring and will,
in general, be a function of time; this will be the case, say,
for decaying turbulence. However, for statistically stationary
stirring, �̃ jm will become time independent, after an initial
transient evolution.

Equation �73� is inhomogeneous in the spatial coordinates
so, as before, we find it convenient to work with the new
variable, H�x , t�, and transform Eq. �73� to the shearing co-
ordinates �x , t�,

�Hi

�t
+ 2A�i2H1 = �̃ jm���

�2Hi

�Xj � Xm
+ ��2Hi, �74�

where �see Eq. �46��
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�

�Xp
=

�

�xp
+ 2At�p1

�

�x2
; �2 = � �

�xp
+ 2At�p1

�

�x2
�2

.

�75�

Equation �74� is homogeneous in x but not in t, so we take a
spatial Fourier transform defined earlier in Eq. �60�. Then

H̃�k , t� satisfies

�H̃i

�t
+ 2A�i2H̃1 = − ��̃ jm�t�KjKm + �K2�H̃i, �76�

where the vector K�k , t�= �k1+2Atk2 ,k2 ,k3� and K2= 
K
2
= �k1+2Atk2�2+k2

2+k3
2, as before. It may be verified that this

equation preserves the Fourier version of the divergence con-

dition of Eq. �47�, namely K ·H̃�k , t�=0. The solution is

H̃1�k,t� = H̃1�k,0�G�k,t� ,

H̃2�k,t� = �H̃2�k,0� − 2AtH̃1�k,0��G�k,t� ,

H̃3�k,t� = H̃3�k,0�G�k,t� , �77�

where H̃�k ,0� are given initial conditions satisfying

k ·H̃�k ,0�=0, ensuring that K ·H̃�k , t�=0. The Green’s func-
tion, G�k , t�, is zero for t�0 and is defined for t
0 by

G�k,t� = exp�− 	
0

t

ds��̃ jm�s�KjKm + �K2�� . �78�

In the integrand, Kj =kj +2As� j1k2 should be regarded as a
function of k and s, and the s integral performed at fixed k.
Then G�k , t� can be written as the product of a microscopic
Green’s function, G��k , t�, and a turbulent Green’s function,
Gt�k , t�,

G�k,t� = G��k,t� · Gt�k,t� ,

G��k,t� = exp�− ��k2t + 2Ak1k2t2 +
4

3
A2k2

2t3�� ,

Gt�k,t� = exp�− Qjm�t�kjkm� , �79�

where the time-dependent symmetric matrix Qjm�t� is given
by

Qjm�t� = 	
0

t

ds��̃ jm�s� + 2As�� j2�̃1m�s� + �m2�̃ j1�s��

+ 4A2� j2�m2s2�̃11�s�� �80�

in terms of time integrals of �̃ jm���, which are assumed to be
known functions depending on the velocity correlators,
Rjm�� ,���, as given in Eq. �72�.

The solution in the original variables, B�X ,��, can be re-
covered by using the shearing transformation, Eq. �6�, to
write �x , t� in terms of the laboratory frame coordinates
�X ,�� �see Eq. �61��,

B�X,�� = H�x,t� =	 d3k

�2��3H̃�k,t�exp�ik · x�

=	 d3k

�2��3H̃�k,��exp�iK�k,�� · X� .

�81�

Equivalently, the solution is given in component form as

B1�X,�� =	 d3k

�2��3 B̃1�k,0�G�k,��exp�iK�k,�� · X� ,

B2�X,�� =	 d3k

�2��3 �B̃2�k,0�

− 2A�B̃1�k,0��G�k,��exp�iK�k,�� · X� ,

B3�X,�� =	 d3k

�2��3 B̃3�k,0�G�k,��exp�iK�k,�� · X� ,

�82�

where we have written the initial condition, H̃�k ,0�
= B̃�k ,0�, with k · B̃�k ,0�=0.

Some comments are as follows.
�1� The above solution for B�X ,�� is a linear superposi-

tion of shearing waves of the form exp�iK�k ,�� ·X�
=exp�i�k1+2A�k2�X1+ ik2X2+ ik3X3�, indexed by the triplet
of numbers �k1 ,k2 ,k3�.

�2� Whether the waves grow or decay depends on the time
dependence of the Green’s function, G�k ,��
=G��k ,�� ·Gt�k ,��. The first term, G�, is known explicitly
and describes the ultimately decay of the shearing waves �on
the long resistive time scale�, although these could be tran-
siently amplified. The second term, Gt, depends on the prop-
erties of the time-dependent symmetric matrix Qjm���. Shear-
ing waves can grow if Qjm��� has at least one negative
eigenvalue of large enough magnitude. To translate this re-
quirement into an explicit statement on dynamo action re-
quires developing a dynamical theory of the velocity correla-
tors, Rjm�� ,���, because Qjm��� depends on time integrals
over Rjm�� ,���.

In specific cases it is possible that the velocity dynamics
is such that �̃ jm��� becomes independent of �, in the long
time limit �this is generic when steady forcing competes with
dissipation�. Taking the zero of time to be after this station-
ary state has been reached, we can do the s integrals in Eq.
�80� explicitly and write

Qjm�t�kjkm = t��̃ jmkjkm� + 2At2��̃1mkmk2� +
4

3
A2t3��̃11k2

2� .

�83�

We can now make further statements on the dynamo growth
using Eq. �83�. Note that the linear shear of the form that we
have adopted is likely to lead to a nonzero �̃12, but is not
expected to couple the X3 component with other components,
and thus we expect �̃13= �̃23=0. Then
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− Qjmkjkm = − t��̃11k1
2 + �̃22k2

2 + 2�̃12k1k2 + ��̃33k3
2��

− 2At2��̃11k1k2 + �̃12k2
2� −

4

3
At3�̃11k2

2. �84�

The term linear in t will dominate at early times while the
term proportional to t3 will dominate eventually. Thus, at
early times we need one of the eigenvalues of the matrix

��̃11 �̃12 0

�̃12 �̃22 0

0 0 �̃33
�

to be negative for dynamo growth. These eigenvalues are

�� =
��̃11 + �̃22�

2
�


�̃11 − �̃22

2

�1 + 4
�̃12

2

��̃11 − �̃22�2�1/2

,

�3 = �̃33. �85�

Nonzero values of �̃12 or negative values of the diagonal
elements of the turbulent diffusion tensor favor growth at
early times. Preliminary work on simple models of velocity
dynamics that we are exploring suggests that �̃22 can become
negative but �̃11 and �̃33 remain positive; this happens be-
cause the turbulence is strongly affected by the background
shear and the velocity correlators are not isotropic. Thus, a
nonzero k2 seems to be required for growth initially.

At intermediate times, when the t2 term dominates we can
always choose shearing waves with an appropriate sign and
magnitude of k1k2 such that 2At2��̃11k1k2+ �̃12k2

2� is negative,
and there is growth of the mean field. On the other hand, all
shearing waves with nonzero k2 will eventually decay, in the
long time limit t→�, if �̃11�0, as then the t3 term is nega-
tive definite. Thus it seems likely that the shear dynamo can
have shearing wave solutions, which grow for some time if
they have nonzero X2 dependence, but which will eventually
decay. As already emphasized above, one needs to develop a
dynamical theory of the velocity correlators, for deriving
more explicit results on dynamo action, due to nonhelical
turbulence and shear. It is, in general, not an easy task to
make analytical progress on a dynamical theory. However, in
the limit of low fluid Reynolds numbers, a perturbative
analysis is possible and the velocity correlators can be com-
puted explicitly. Such an analysis has been undertaken by
Singh and Sridhar, and preliminary results for nonhelical
forcing indicate that the turbulent diffusion coefficient �̃22
can indeed become negative. Also our conclusions are based
on the differential equation approximation, which is valid for
a finite period and thus we need to solve the integral equation
for the mean field evolution directly, to firm up the above
results.

VIII. CONCLUSIONS

We have studied here large-scale dynamo action due to
turbulence in the presence of a linear shear flow. Systematic
use of the shearing coordinate transformation and the Gal-
ilean invariance of a linear shear flow allows us to develop a

quasilinear theory of the shear dynamo which, we empha-
size, is non perturbative in the shear parameter. The result is
an integro-differential equation for the evolution of the mean
magnetic field. We showed using this equation that for non-
helical turbulence, the time evolution of the cross-shear com-
ponents of the mean field do not depend on any other com-
ponents excepting themselves. This implies that there is
essentially no shear-current type effect in quasilinear theory
in the limit of zero resistivity. Our result is valid for any
Galilean-invariant velocity field, independent of its dynam-
ics.

We then derived differential equations for the mean-field
evolution, by developing a systematic approximation to the
integro-differential equation, assuming the mean field varies
on time scales much longer than the correlation times of the
turbulence. For nonhelical velocity correlators, these equa-
tions can be solved in terms of shearing waves. These waves
can grow transiently at early and intermediate times. How-
ever it is likely that they will eventually decay at asymptoti-
cally late times. More explicit statements about the behavior
of the shearing wave solutions requires developing a dy-
namical theory of velocity correlators in shear flows. It is
also important to directly solve the integral equation for the
mean field as the differential equation approximation is valid
only for a limited period.

Growth of large-scale magnetic fields in the presence of
shear and nonhelical turbulence has been reported in some
direct numerical simulations �1,2�. Whether we can under-
stand these numerical results through our quasilinear theory
depends on the existence �or otherwise� of growing solutions
to the integral Eq. �51� for the mean field. This in turn relies
on the form of the velocity correlators, which will be
strongly affected by shear and highly anisotropic; hence it is
difficult to guess their tensorial forms a priori, and it is nec-
essary to develop a dynamical theory of velocity correlators.
We cannot discount the possibility that effects we have ig-
nored may also play a role. Perhaps the initial growth of the
shearing wave in the mean field, for large enough shear, is
sustained by an effect which breaks one of our assumptions.
One possibility is that helicity fluxes arising due to shear,
turbulence and an inhomogeneous mean magnetic field
�10,12� induce a nonlinear alpha effect when the Lorentz
forces become strong. Another is the possible presence of an
incoherent alpha-shear dynamo �1,13� in these simulations. A
third possibility is that if even transient growth makes non-
axisymmetric mean fields strong enough, they themselves
might drive motions which could lead to sustained dynamo
action; this seems remniscent of some of the subcritical dy-
namos discussed by �14�. Clearly further studies of various
aspects of the shear dynamo, particularly incorporating ve-
locity dynamics can only be more fruitful.
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