
1 Introduction.

Any system in equilibrium can be fully described by the Boltzmann-Gibb’s theory of en-

sembles. For a system in contact with a heat bath, the phase-space probability distribution

is given by the canonical distribution. This expression is very general and can be applied to

any given equilibrium system. One can then calculate the partition function and from this the

free energy of the system. From this all equilibrium properties of a system can, in principle,

be calculated. In practice of course this can be difficult and an explicit calculation of specific

properties may not always be possible.

There is a large class of phenomena which cannot be describedby the Boltzmann-Gibb’s

ensemble theory. These include non-equilibrium phenomenain glassy systems, granular

material, electrical and thermal transport. The reasons that the equilibrium description breaks

down in these systems can be various: for example there may beno Hamiltonian description;

or the Hamiltonian is time-dependent; or relaxation times are extremely slow, etc.

There are few theories, such as those of non-equilibrium thermodynamics and theory of

linear response, to describe some of these non-equilibriumphenomena. However, they work

only in the linear regime where the perturbed system is slightly out of equilibrium. These

theories thus have a very limited range of applicability. There is no general framework to

treat non-equilibrium phenomena which is valid for systemsfar from equilibrium. In the

absence of a general theory for such systems, one approach isto take simple but nontrivial

model systems and understand their behaviour from first principles.

In the last decade the situation has changed somewhat. Certain general relations have been

discovered which are valid independent of how far a system isdriven out of equilibrium.

These results include (1) the Jarzynski equality [3− 6] and (2) the fluctuation theorems
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[7 − 17]. These results are now being extended and shown to be valid for many different

systems, dynamics ( deterministic as well as stochastic ) and ensembles. They have been

verified for a variety of systems theoretically [18− 20] as well as experimentally [21− 24].

After the work by Crooks [10] and Seifert [11], it is now understood that many of these

relations are closely related and are the manifestations ofa single theorem, the theorem

which connects the path probability of a thermostatted system to its time reversed trajectory.

In Sec. (1.1) we will briefly describe these results on non-equilibrium fluctuations and state

the new results obtained by us.

Another class of problems in non-equilibrium physics, which cannot be treated by con-

ventional theories, is that of ratchet systems and of molecular pumps and engines. These are

systems which are driven out of equilibrium by some externalparameter and exhibit many in-

teresting phenomenas like uni-directional current, resonances etc. Among their applications

it has been proposed to model the behaviour of molecular motors and pumps in biological

systems. There have also been many studies on the quantum version of such particle and heat

pumps. So it is interesting to look at whether the quantum nature of a system is an essential

requirement. In Sec. (1.2) we will briefly describe some known results on these systems and

discuss our contribution.

1.1 The Jarzynski equality and the fluctuation theorems

Consider a system in contact with a heat reservoir. Let some parameter,λ, for example

the external field on a magnet or the volume of a gas etc. be varied in time from an initial

point λA to a final pointλB ( in general there can be many time-dependent parametersλ =

{λ1, λ2, ......, λn} in the system ). With this parameter variation, work is done on the system.

Then, conventional thermodynamics tells us that the work doneW, on the system is always

greater than or equal to the free energy ( Helmholtz free energy) difference. Thus:

W ≥ ∆F, (1.1)
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Figure 1.1: A polymer being stretched by an optical trap potential.

where,∆F = F(λB)− F(λA). This result basically follows from the second law. The equality

holds for a quasi-static, reversible process. For example consider a system as shown in

Fig. (1.1). This is an example of a polymer placed in a bath at temperatureT and stretched

by an external time-dependent forcef (t) ( thusλ(t) = f (t) in this case ) by means of, for

example, an optical trap. The process is done in the following way. At timet = 0 the system

is in equilibrium at a temperatureT. Then the force is applied from timet = 0 to t = τ.

This stretching process is done for large number of times, every time starting the system

in equilibrium and with the force following the same protocol f (t). If such a process is

done at a finite rate, then since we start with different initial equilibrium conditions and also

because of the stochastic dynamics, we will get different amount of work done in different

realizations. Hence we can find the distribution of workP(W). Though the average work

〈W〉 is always greater than∆F for all rates, the distribution may have a large negative part.

This negative part implies that for some realizations of theexperiment, system is doing work

on the external agent while extracting heat from the reservoir. This contribution can be large

if the system is non-thermodynamic, and can be viewed as transient violation of the second

law. This observation of apparent violation of second law also startled early observers of

Brownian motion. In his book [2], Perrin discusses this point. Here we give a paragraph

from the same book:

It is clear that this agitation ( of a Brownian particle ) is notcontradictory to the principle
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of conservation of energy. It is sufficient that every increase in the speed of a granule is

accompanied by a cooling of the liquid in its immediate neighbourhood, and like wise every

decrease of speed by a local heating, without loss or gain of energy.

Perrin also stresses the following point that the Brownian motion ( or motion at small

scales ) is not reconcilable with rigid enunciations too frequently given to Carnot’s principle,

because in a given realization a particle can spontaneouslydo work at the expense of the

surrounding medium ( heat bath ).

So it must not any longer be said that perpetual motion of the second sort is impossible,

but one must say: “ On the scale of size ( macroscopic ) which interests us practically,

perpetual motion of the second sort is in general so insignificant that it would be absurd to

take into account.”

But at the microscopic scales this fluctuations about the mostprobable behaviour are im-

portant and their study might provide us with a better understanding of the second law.

Let us now go back to our discussion of the Jarzynski equality. We consider a general

Hamiltonian of a system given byHλ(x, p), wherex = {x1, x2, ....xn} andp = {p1, p2, ....pn}

are usual phase-space variables andλ is the parameter which is varied in time fromλA to λB

in time τ following a fixed protocolλ(t). Then Jarzynski considers the following definition

of work done on the system:

WJ =

∫ τ

0

∂Hλ(x, p)
∂t

dt =
∫ τ

0

∂Hλ(x, p)
∂λ

dλ
dt

dt. (1.2)

We take an ensemble of such processes, with initial conditions for the system generated

from a canonical distribution at temperatureT. Then the work doneWJ can be calculated for

every trajectory in the phase-space given by (x(t), p(t)). This work is a fluctuating quantity

because of two reasons:

1. The initial conditions are generated from a canonical distribution, hence we get differ-

ent work for different initial conditions.

2. The heat bath generates stochastic forces, which cause fluctuations in the phase-space
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paths taken by the system.

It was proved by Jarzynski, that the distributionP(WJ) satisfies the following equality:

〈exp{−βWJ}〉 =
∫ ∞

−∞
dWJ exp{−βWJ}P(WJ) = exp{−β∆F}, (1.3)

whereβ = 1/kBT. We now give a proof that of the Jarzynski equality, for the case where the

system is in contact with a heat bath at timet = 0 and in equilibrium, but the heat bath is then

removed during the driving process. Then the evolution of the system is deterministic and

described by the phase-space trajectory (x(t), p(t)) which evolves according toHλ(x(t), p(t)),

with λ taken fromλA to λB in time τ. Let the ensemble of such trajectories be described by

the initial phase-space density given by:

ρλA(x(0), p(0)) =
1

ZλA

exp{−βHλA(x(0), p(0))}, (1.4)

where Zλ =
∫

exp{−βHλ} dx dp. For a particular phase-space trajectory starting from

(x(0), p(0)) at timet = 0, the work done in timeτ is given by Eq. (1.2). The probabil-

ity of the initial state isρλA(x(0), p(0)). Hence we get the following average:

〈exp{−βWJ}〉 =
∫

ρλA(x(0), p(0)) exp{−βWJ} dx(0) dp(0). (1.5)

Since the system is isolated, we can write∂H/∂t = dH/dt, and hence the work done,

Eq. (1.2) on the system is nothing but the change in the total energy of the system, i.e.,

WJ = HλB(x(τ), p(τ)) − HλA(x(0), p(0)). This gives us:

〈exp{−βWJ}〉

=
1

ZλA

∫ τ

0
exp{−βHλA(x(0), p(0))} exp{−β[ HλB(x(τ), p(τ)) − HλA(x(0), p(0)) ]} dx(0) dp(0).

(1.6)

Using Liouville’s theorem, giving conservation of phase-space volume we getdx(0) dp(0) =

dx(τ) dp(τ) and the above equation then gives:

〈exp{−βWJ}〉 =
1

ZλA

∫

exp{−βHλB(x(τ), p(τ))} dx(τ) dp(τ) =
ZλB

ZλA

. (1.7)
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SinceFλ = −kBT ln(Zλ), we then get the Jarzynski equality, given by Eq. (1.3). This equality

can also be proved for the situation where system remains in contact with the heat bath during

the driving process. In this case, the system and the reservoir are considered to be a larger

isolated system, with Hamiltonian given by,Hλ = Hλ + HB + hI , whereHλ is the system

Hamiltonian,HB is the reservoir Hamiltonian andhI is the coupling between the system and

the reservoir. The result in Eq. (1.3) was proved for weak coupling between the system and

reservoir in [3] then for the general case in [6]. This relation can also be proved for discrete

Markovian process [10], with heat bath dynamics and for Langevin dynamics [15] ( we will

outline this proof later in this section ). It is remarkable that the result in Eq. (1.3) is valid

independent of the rate at which the external parameter is varied. The only requirement is that

the system should be in the equilibrium when the driving process starts. Unlike Eq. (1.1),

this is anequalitywhich relates a non-equilibrium quantity to an equilibriumfree energy

difference.

We will now give a simple example of a driven system with Langevin dynamics, where

one can explicitly calculate the work distribution function and verify the Jarzynski equality.

Consider a Brownian particle in a harmonic trap, which is movedwith a constant velocityu.

The Hamiltonian of the system is given by:

H =
p2

2m
+

1
2

k(x− α(t))2, (1.8)

whereα(t) = ut is now the external control parameter. We consider the over-damped limit in

which case the inertial term drops out and the Langevin equation of motion is given by:

γẋ = −k [x− α(t)] + η(t), (1.9)

whereη(t) is a Gaussian white noise, satisfying,〈η(t)〉 = 0 and〈η(t)η(t′)〉 = 2kBTγδ(t − t′).

Using the Jarzynski definition of work, Eq. (1.2), we get for the work done in timeτ:

WJ =

∫ τ

0

∂H
∂α
α̇ dt = −k

∫ τ

0
α̇ [ x − α(t) ] dt

=
k
2

[α2(τ) − α2(0)] − k
∫ τ

0
α̇ x dt. (1.10)
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The general solution of Eq. (1.9) is given by:

x(t) = e−(k/γ) t x0 +
1
γ

∫ t

0
e−(k/γ) (t−t′) [ kα(t′) + η(t′) ] dt′. (1.11)

We choosex0 = x(t = 0) from the initial equilibrium distributionP(x0) = exp{−βHα(0)}/Zα(0).

It can be seen from Eq. (1.10) thatWJ is linear inx, while x itself is linear in both,x0 and

η(t) which are Gaussian variables. Hence it follows that the distribution of WJ will also be

Gaussian. We thus just need to find the first and second momentsof this distribution. We

have:

P(WJ) =
1

√

2πσ2
WJ

exp
[

− ( WJ − 〈WJ〉 )2

2σ2
WJ

]

. (1.12)

Using Eqs. (1.10) and (1.11), it is straightforward to calculate〈WJ〉 andσ2
WJ
= 〈(WJ−〈WJ〉)2〉,

where we note that〈...〉 denotes an average over initial conditions as well as over noise. We

find:

〈WJ〉 = γu2τ [1 +
γ

kτ
(e−(k/γ)τ − 1) ],

σ2
WJ
= 2 kB T γu2τ [1 +

γ

kτ
(e−(k/γ)τ − 1) ] = 2kBT〈WJ〉. (1.13)

For this particular Hamiltonian given by Eq. (1.8), it is easy to show that the free energy is

independent ofα and hence∆F = 0. Using Eqs. (1.12, 1.13), we immediately get:

〈exp{−βWJ}〉 = 1 = exp{−β∆F}. (1.14)

Thus we have verified that the Jarzynski equality Eq. (1.3) issatisfied.

Now we will discuss the fluctuation theorems which are somewhat more general than the

Jarzynski equality and give information about the fluctuations of the entropy production in

a non-equilibrium system. In fact we will see that the Jarzynski equality can be derived

from one of the fluctuation theorems. There are various versions of the fluctuation theorems.

All of them start with some definition of the entropy producedS in a particular realization

of a non-equilibrium process in timeτ. As discussed earlier ( for the work doneW ), we
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expect this entropyS to be also a fluctuating quantity with a distribution, sayP(S). The

transient fluctuation theorem (TFT) [8,12− 15], states that for a system initially in thermal

equilibrium,P(S) satisfies the following equation:

P(S)
P(−S)

= eS/kB. (1.15)

This result is valid for any time intervalτ. Another version of TFT, due to Crooks [10] gives:

PF(S)
PR(−S)

= eS/kB, (1.16)

wherePF(S) andPR(S) are the probabilities in forward and time reversed processes respec-

tively. This theorem is also true for all timesτ. The steady state fluctuation theorem (SSFT)

looks at the case where the initial state is chosen from a non-equilibrium steady state, rather

from an equilibrium state as in TFT. In this case, the statement of the theorem as obtained by

Cohen and Gallavotti [9] is

P(σ)
P(−σ)

= eτσ, (1.17)

whereσ = S/(kBτ) is rate of entropy production and one looks at the limitτ→ ∞.

Here we will give a proof of Crooks’ fluctuation theorem for a single particle following

Langevin dynamics. Then we will also show how to obtain the Jarzynski equality from this

theorem. Consider a Brownian particle in the presence of an external potentialU(x). The

Hamiltonian of the system is given by:

H =
p2

2m
+ U(x). (1.18)

This particle is driven by an external time-dependent forcef (t), doing work on the particle.

We also assume that the system is in contact with a heat bath attemperatureT and it’s time

evolution is described by Langevin dynamics. The Langevin equation of motion is thus given
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by:

mẍ = −∂U
∂x
+ f (t) − γẋ+ η(t) = −

∂H f

∂x
− γẋ+ η(t),

with H f = H − f (t)x, (1.19)

whereη(t) is a Gaussian noise satisfying〈η(t)〉 = and〈η(t)η(t′)〉 = 2kBTγδ(t − t′). For such

stochastic systems the proof of Crooks’ fluctuation theorem and the Jarzynski equality can

be shown to follow from the principle of microscopic reversibility. For discrete systems,

evolving for example through Monte Carlo dynamics, this principle has been proved by

Crooks. Here we give a proof for Langevin dynamics [15].

We first state the principle of microscopic reversibility. Consider the evolution of the

system from timet = 0 to t = τ, through a path in phase-space given by{x(t), p(t), f (t)}.

This path will correspond to a particular realization of thenoiseη(t). The probability of this

path is then given by:

P+ = N exp{− 1
4kBTγ

∫ τ

0
η2
+ dt} = N exp

{

− 1
4kBTγ

∫ τ

0
( mẍ+

∂U
∂x
− f (t) + γẋ )2 dt

}

,

(1.20)

whereN is a normalization factor. Now consider the time reversed trajectory given by

{x′(t), p′(t), f ′(t)} = {x(τ − t),−p(τ − t), f (τ − t)}. The probability of this path is:

P− = N exp{− 1
4kBTγ

∫ τ

0
η2
− dt} = N exp

{

− 1
4kBTγ

∫ τ

0
( mẍ′ +

∂U
∂x′
− f ′(t) + γẋ′ )2 dt

}

= N exp
{

− 1
4kBTγ

∫ τ

0
( mẍ+

∂U
∂x
− f (t) − γẋ )2 dt

}

. (1.21)

We then get after some simplification:

P+
P−
= exp

{

− 1
kBT

∫ τ

0
(−γẋ+ η) ẋ dt

}

= exp{ − βQ }, (1.22)

whereQ =
∫ τ

0
(−γẋ+η) ẋ dt, is the amount of heat transferred from the heat bath to the system

in time τ. The identification ofQ as heat transferred follows from the fact that (−γẋ+ η) is

the force from the heat bath on the particle.
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Eq. (1.22) is the principle of microscopic reversibility. This principle is similar to that of

detailed balance principle. The principle of microscopic reversibility relates the probability

of a specified path in phase-space to the probability of the time reversed path. The detailed

balance condition refers to the probability of transition between two points in phase-space

sayC andC′ and states thatP(C → C′) = P(C′ → C) e−β [E(c′)−E(c)] and does not make

reference to any specific path in phase-space.

Now we proceed to prove Crooks’ fluctuation theorem. Following Crooks we will first

motivate the definition of the entropy produced,S, for a given trajectory. This entropyS

consists of two parts: a contribution from change in entropyof the bath which is−βQ and

another contribution coming from the change in entropy of the system. The entropy change

of the system is found in the following way. Let some parameter f (t), be switched from

an initial value fA = f (0) to a final valuefB = f (τ). Let the equilibrium distributions

corresponding to the parametersfA and fB beρ fA andρ fB respectively, whereρ f = e−βH f /Zf .

Then the equilibrium entropy of the ensemble is given by:

S = −kB

∫

ρ f (x, p) ln ρ f (x, p) dx dp. (1.23)

One can think of−kB ln ρ f (x, p) as the entropy of a micro-state and the change in entropy of

the system is given by−kB ln ρ fB + kB ln ρ fA. Thus for a given path, Crooks’ definition of the

total entropy generated is:

S/kB = ln ρ fA − ln ρ fB − βQ. (1.24)

Then PF(S), the probability of entropyS generated in timeτ, in time forward process is

given as:

PF(S) =
∫

D[x, p] dx(0) dp(0) dx(τ) dp(τ) ρ fA P+ δ(SF − S)

=

∫

D[x, p] dx(0) dp(0) dx(τ) dp(τ) ρ fA P− e−βQ δ(SF − S), (1.25)

whereSF is the entropy generated for a given forward trajectory andD[x, p] denotes a sum

over all paths{x(t), p(t)} between{x(0), p(0)} and{x(τ), p(τ)}. Also from Eq. (1.24) we can
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write ρ fA e−βQ = eSF/kB ρ fB. Note that under time reversalS changes sign hence we can write

SR = −SF. Substituting these relations in Eq. (1.25), we get:

PF(S) =
∫

D[x, p] dx(0)dp(0) dx(τ)dp(τ) ρ fB P− e−SR/kB δ(SR+ S) = eS/kB PR(−S),

(1.26)

thus proving Eq. (1.16).

Now we show how the Jarzynski equality can be derived from theCrooks’ fluctuation

theorem. To do this we note that,ρ fA = exp{−βH fA}/ZfA andρ fB = exp{−βH fB}/ZfB , where

H f (x, p) = p2/2m+ U(x) − f (t)x. This implies, using Eq. (1.24):

S/kB = β H fB + ln Z( fB) − β H fA − ln Z( fA) − β Q

= −β (F fB − F fA) + β (H fB − H fA) − β Q, (1.27)

where,H fA andH fB are initial and final Hamiltonians,F fA andF fB are initial and final free

energies. Using the equation of motion Eq. (1.19) and the definition of H f (x, p), it is easily

seen that:

dHf (x, p)

dt
=
∂H f (x, p)

∂t
+

dQ
dt
. (1.28)

Which then givesH fB − H fA =WJ + Q. Hence from Eq. (1.27) we get:

S/kB = −β ∆F + βWJ = βWd, (1.29)

where we have definedWd =WJ−∆F as the dissipated work. Thus from the Crooks’ identity

we have:

PF(Wd)
PR(−Wd)

= eβWd. (1.30)

This is the Crooks’ fluctuation theorem for work distributionand from this we get:

∫ ∞

−∞
PF(Wd) e−βWd dWd =

∫ ∞

−∞
PR(−Wd) dWd = 1. (1.31)
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Thus

〈exp{−βWd}〉 = 〈exp{−β(WJ − ∆F)}〉 = 1, (1.32)

which is the Jarzynski equality in Eq. (1.3).

Let us see the validity of this Crooks’ fluctuation theorem forthe example we consid-

ered previously, namely a Brownian particle in a moving harmonic trap. In this example

we proved that the distribution of workWJ is Gaussian. For Gaussian distribution it can

be shown that [15] the distribution for forward trajectoryPF(WJ) is same as that for time

reversed trajectoryPR(WJ) and therefore the Crooks’ fluctuation theorem also implies the

transient fluctuation theorem. Since∆F = 0 for this system, dissipated workWd is nothing

but the Jarzynski workWJ. Hence from the distribution given in Eqs. (1.12) and (1.13), we

get:

P(WJ)
P(−WJ)

= exp
[2 〈WJ〉WJ

σ2
WJ

]

= e βWJ , (1.33)

which is the transient fluctuation theorem.

Contribution of this thesis: The fluctuation theorems have been proved for a large class

of systems. However, their general validity has not been established and is still an open

question. Here we look at the validity of these relations, namely the Jarzynski equality and

the fluctuation theorems, for a single classical spin in the presence of a time-dependent mag-

netic field and where the dynamics of the spin is modeled by Glauber dynamics. Also, we

note that the Jarzynski equality and the fluctuation theorems are general relations satisfied by

the probability distribution function of some non-equilibrium quantity like work, and do not

make any reference to the actual form of these distributions. There have been very few earlier

studies which have explicitly looked at the form of the distribution functions, except in linear

systems where the distributions are Gaussian. We have performed Monte-Carlo simulations

to obtain the distributions for different driving protocols such as ramped magnetic field and

periodically varied fields which can be symmetric or asymmetric. In general we find that the

distributions are broad and have non-trivial forms. In somespecial limits, namely fast and
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slow driving rates we show that the work distributions can beanalytically calculated. We

verify that Crooks’ fluctuation theorem is always satisfied while the usual TFT and a steady

state version is not.

1.2 Ratchets, heat engines and molecular motors

Ratchet models have been studied for a long time to examine howdirected motion occurs

in non-equilibrium systems even in the absence of any net external bias. Among its appli-

cations it has been proposed that Brownian ratchets could provide a possible mechanism of

transport of motors in biological cells. An example of a molecular motors is kinesin which

moves uni-directionally on microtubules inside the cell. Also molecular pumps, like sodium

or potassium pumps maintain active transport across membranes against a concentration

gradient. Note that these motors and pumps work in a very noisy environment and still they

exhibit directed motion. It is thus of interest to understand the functioning of these highly

complex systems by studying simple microscopic models. In this context several ratchet

models like flashing ratchets, rocking ratchets, correlation ratchets, frictional ratchets etc.

have been proposed [75]. In all these models one tries to get anet motion, by combining the

effects of thermal ( or a-thermal ) fluctuations, spatial or temporal anisotropy and external

non-directed driving. In some cases, the system is in contact with several thermal baths (

thermal ratchets ) at different temperatures. One of the first example of a ratchet is infact

Feynman’s ratchet and pawl machine [49], where the machine is kept in contact with two

baths at different temperatures, and is able to extract work from the heattransferred. In

many of these models, one is interested in the dependence of the particle current on system

parameters like temperature, diffusion constant, amplitude of external driving etc. Also one

is interested in finding out the efficiency of these motors, a question which is of obvious prac-

tical interest. Many studies have been done to understand these aspects [64− 66,79]. The

efficiency has mainly been studied as a function of temperature and external load in rocking,

frictional ratchets. There have been lot of studies on improving the efficiency of such ratchet

models. It turns out that this efficiency is small due to the non-equilibrium and irreversible
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nature of the system. Questions like whether irreversibility can be suppressed, and whether

a system can be made to achieve Carnot efficiency, have also been studied [69, 74]. To study

efficiency of such ratchets models one usually uses the method ofstochastic energetics de-

veloped by Sekimoto [64]. In this framework all the quantities like work done, input energy,

output energy etc. can be understood and computed by the Langevin equation approach.

In the following sections we discuss a few ratchet models. Webegin with the well known

Feynman’s ratchet and pawl model and then we look at some other models of externally

driven ratchets, namely flashing, rocking and inhomogeneous ratchets.

1.2.1 Feynman’s ratchet and pawl model

In this section we will look at a model discussed inFeynman lectures on Physics, Vol. 1.

This model was devised to understand, from a molecular or kinetic point of view, how much

maximum amount of work could be extracted from a heat engine.As we know from ther-

modynamics, there is a maximum limit to this efficiency, given by the Carnot efficiency.

Feynman was trying to understand this through a microscopicmechanical model and using

statistical mechanics. Feynman’s ratchet and pawl device is shown in Fig. (1.2). This con-

sists of two compartments containing gases at temperaturesT1 andT2. The compartment

(I), at temperatureT1, contains vanes which are able to rotate freely in both directions. The

compartment (II), at temperatureT2, contains a ratchet and a pawl as shown. This ratchet

with the pawl ( with a spring ) pressing on its teeth is anasymmetricobject. With the pawl

pressing on it, the ratchet can move only in one direction. The ratchet and the vanes are con-

nected by a rigid rod. Let us consider a situation where both the temperatures are same, i.e.,

T1 = T2 = T. In compartment (I), gas molecules bombard on the vanes and make it rotate

randomly. When the vanes try to move in one direction it is allowed but the other direction

appears to be forbidden due to the presence of ratchet and pawl to which it is connected.

Thus we should see the vanes moving only in one direction and the load moves up. It appar-

ently looks like we get a directed motion out of random motionin thermal equilibrium. The

flaw in above argument lies in the fact that, in our analysis wehaven’t considered the motion
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Figure 1.2: Feynman’s ratchet and pawl engine.

of the pawl at all. Just as the vanes are getting kicks from thegas molecules, the pawl in the

other compartment is also getting bombarded by the gas molecules in its compartment. Due

to these kicks the pawl could be pressing against the ratchet, but it can also get lifted above

the ratchet once in a while. At this particular instant when the pawl is lifted, if vanes get the

kick in other direction ( so calledforbidden) then the ratchet is free to rotate. Thus we can

see that in fact there can be motion in both the directions. Hence if we look at the load tied

to the rigid rod, we will see it moving up and down at various instances, but on an average

there will be no net motion.

Now let us see what happens when the temperatures are different. LetT1 > T2, that is the

pawl is colder than the vanes. In this case, Feynman shows that directed motion is possible.

Roughly the argument is as follows. The probability of a forward motion, by one tooth of

the ratchet ise−ǫ/kBT1, whereǫ is the energy required to lift the pawl. On the other hand the

probability of a reverse motion ise−ǫ/kBT2. Hence, as the rate of these jumps are no longer
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equal, whenT1 > T2, there can be a net forward motion of the ratchet. This can be used to

do work, thus working as an engine.

Feynman then argues that in the reversible mode of operation, the efficiency of this model

reaches a Carnot efficiency. In this analysis there are some flaws, which were pointed out by

Parrondo [50] and Magnasco [51]. The point of their criticism was that, this system unlike

other usual heat engines, is in contact with two heat baths attwo different temperatures

simultaneously, thus it can never work in a reversible way.

Actual analysis, of the Feynman’s ratchet and pawl system turns out to be quite difficult,

so different models have been proposed to model this engine [48− 52]. A simple way of

modeling is that given by Magnasco [51]. Consider a system with two degrees of freedom,

x andy, wherex is a cyclic coordinate representing the ratchet motion andy representing

the pawl. These two coordinates are in contact with heat baths, at different temperaturesT1

andT2 respectively, corresponding to the two compartments with gas in Feynman’s model,

and modelled by Langevin equation. An asymmetric periodic potentialU(x, y) is included

to represent the asymmetry and periodicity of ratchet toothand the interaction of ratchet

and pawl degree of freedom. When the pawl is pressing against the ratchet, this potential is

infinite. For a particular choice ofU(x, y) considered by Magnasco [51], the system works

as an engine depending on the two temperatures, similar to Feynman’s model. Also it was

shown that the efficiency of this model is quite low, and it doesn’t reach Carnot efficiency.

In such devices it is important to note the following points.A difference between such

microscopic engines and thermodynamic engines like Carnot engines is that here effects of

thermal fluctuations are important. The second important difference is that the system is

simultaneously in contact with two (or more) heat baths at different temperatures and hence

is essentially always a non-equilibrium system.

1.2.2 Other ratchet models

In the last section we discussed the ratchet and pawl model which is an example of an engine

driven by temperature differences, with no external driving. Work is extracted solelyfrom the
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heat baths at different temperatures. There are other class of ratchets wherean external time-

dependent driving drives the system into a non-equilibriumsteady state, and useful work is

done. These models usually look at particle transport. In such models the general situation

is as follows. Consider a Brownian particle placed in an asymmetric periodic potential such

as shown in Fig. (1.3). Then, even if the potential is asymmetric, the system equilibrates at

the temperature of the bath and reaches Boltzmann distribution. In this equilibrium situation

there will be no net particle current. Thus we need to make thesystem non-equilibrium, and

this can be done by various means and below we will discuss three examples.

I. Flashing ratchet: Suppose now that the asymmetric potential is made time-dependent

[55]. This will drive the system into a non-equilibrium state and in such a situation we can

have a uni-directional current in the system. In general such a system can be described by a

Langevin equation as follows:

mẍ = −∂U(x, t)
∂x

− γẋ+ η(t), (1.34)

where,m is the mass of the particle,γ is the dissipation in the bath,U(x, t) is the external

asymmetric time-dependent periodic potential. For flashing ratchets one takesU(x, t) =

U(x) f (t). Also η(t) is the noise due to the heat bath. This noise is usually takento be

a Gaussian white noise satisfying〈η(t)〉 = 0 and〈η(t)η(t′)〉 = 2kBTγδ(t − t′). A simple

example of a time-dependent potential is one shown in Fig. (1.3). In this case this potential

is switched on ( for timeTon ) and off ( for timeTo f f ) and this is repeated periodically.

When the potential is off ( during To f f ), then particles are free to diffuse. Suppose we

choose,To f f ∼ X2
s/2D, whereD is the diffusion constant. Then, during this time, many

particles starting from close to the potential minima wouldhave diffused to the peak on the

left hand side while few particles would have reached the peak on the right. Now when we

switch on the potential, the particles on the left will slidedown the slope to the next minima

while those on the right return to the same minima (see Fig. (1.4)). Hence we get a net

motion to the left. It is important to note thatwe require diffusionin order to get a directed

motion.
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Figure 1.3: Part (a) of the figure shows a saw-tooth potential, an example of an asymmetric
potential. Part (b) shows a switching function used to generate a time-dependent
potentialUt(x) = U(x) f (t), whereV(x) is as given in part (a). For timeTon

potential in on and for timeTo f f , U(x) = 0. Such a driving can lead to an uni-
directional particle current.

Figure 1.4: Brownian particles are trapped in a periodic, asymmetric potential that can be
turned on and off. The random diffusion when the potential is off is converted
into net motion to the left when the ratchet is switched on.
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Figure 1.5: A rocking ratchet model where the external forceis varied periodically in time.
Because of the asymmetry of the potential, the situation (b) is not same as that of
(c). In this case we get a motion in the direction of steeper slope.

Now suppose there is a gradient in the potential (which opposes the current, usually called

asload). Then till some maximum load called asstalledload, the particles are able to move

against this gradient and thus useful work can be done.

II. Rocking ratchet: In the case of flashing ratchets, discussed above, the potential fluc-

tuates between on and off states. In another class of ratchets known as rocking ratchets [56],

where one applies a time-dependent force with zero mean (seeFig. (1.5)). For example such

a potential can be given byU(x, t) = U(x) − sin(ωt)x. This corresponds to a situation where

the slope of the saw-tooth potential is periodically variedin time. More generally, this vari-

ation of slope can be done in a random or periodic way, the onlyrequirement being that the

average slope is zero. Consider the zero temperature case. Then, when the force is negative,

( part (b) in Fig. (1.5)), particles can remain trapped in the valley of the potential, where

local force there is positive. On the other hand, when the external force is positive ( part (c)
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Figure 1.6: Inhomogeneous ratchet model where a periodic potential (a), and a temperature
profile (b), is separated by a phase differenceφ. Dark regions in (a) correspond
to the higher temperature regions. Direction of the currentdepends on this phase
difference.

in Fig. (1.5)), then particles slide down the slope. Thus thesituations+F and−F are not

equal and opposite to each other, which happens due the asymmetry of the potential, and we

get a net current. This can be shown to be true even for finite temperatures. Unlike the case

of flashing ratchets, the direction of the current in this case is in the direction of the steeper

slope. Note that the flashing and rocking ratchets can be thought of as examples where aDC

current is generated by applying anAC field.

III. Inhomogeneous ratchet: A third type of ratchet is the inhomogeneous ratchets

[57, 58], which unlike flashing and rocking ratchets, have spatially symmetric periodic po-

tentialU(x). They show directional transport due to the presence of space dependent diffu-

sion coefficientD(x). This space dependence can arise, for example from a spatially varying

temperatureT(x) [57− 60], since the diffusion constant is given byD(x) = kBT(x)/γ. These

systems are common in nature. For example, colloidal particles diffusing near any surface

have space dependent diffusion coefficient, molecular motors moving on the microtubules

experience space dependent mobility [63]. In this case, theratchet effect arises because the

system dissipates energy differently at different places due to the space dependent tempera-

tureT(x). In this case the only criterion to be satisfied is that both the potentialU(x) and the
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temperatureT(x) have to be periodic, and should be separated by a phase difference other

than 0 orπ.

Consider part (a) in Fig. (1.6), where dark regions corresponds to higher temperature (

this is sometimes called as Landauer torch ) corresponding to the maxima of temperature

profile. Particles try to settle at the minima of the potential but, all the time they fluctuate

around this minima due to noise from the bath. Thus when particles come into the contact

with these higher temperature regions they get enough energy to cross the barrier and jump

to next valley on the right. Thus particles in any minima willfind it easier to jump to the

right than to the left. Hence this temperature anisotropy produces a net particle transport in

the system, whose direction and magnitude depends on the phaseφ.

Contribution of this thesis: Here we look at models of both heat and particle pumps.

These models are somewhat different from various ratchet models which we have described

above and are motivated by models of quantum pumps. Unlike the flashing and rocking

ratchets, there is no asymmetric potential in the examples we study. These models have

external time-dependent magnetic field, forces etc. doing work on the system and driving

the system in to non-equilibrium steady state. The ratchet effect is achieved through the fact

that the external driving is both time, as well as space dependent.

In chapter (3) we study following two classical models of heat pump,

1. A spin system consisting of two coupled Ising spins each driven by periodic magnetic

fields with a phase difference, and connected to two heat reservoirs.

2. An oscillator system of two interacting particles drivenby periodic forces with a phase

difference and connected to two reservoirs.

In both these models we drive the system by external periodictime-dependent magnetic

fields or forces, with a phase difference and connected to multiple reservoirs. We find that

though these models are based on same designing principles,one of them ( Ising system ) is

able to work both as a heat pump and as an engine but the other isnot. As discussed earlier

for ratchet systems, to work, require spatial or temporal asymmetry. In these models there is
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no built-in asymmetry but the phase different driving leads to an overall symmetry breaking.

In chapter (4) we study a model of a particle pump. We look at the symmetric exclusion

process (SEP), with time-dependent hop-out rates at two or more sites. These hop-out rates

are periodic in time and with a phase difference. We find that in this system, in the steady

state we get a non zeroDC current. Unlike previous models studied in chapter (3), here

there is a particle transport. The hop-out rate is related tothe diffusion constant and the

modulation of this diffusion constant can be thought of as arising from a spatial andtemporal

modulation of the temperature or friction coefficient. We study this model by simulations and

also analytically by doing a perturbation theory in drivingstrength around the exactly known

time-independent SEP. We calculate general current expression and study its behaviour in

few special cases. We look at the behaviour of this current asa function of driving frequency

and the phase difference and also get a formal expression in adiabatic and fastdriving limits.
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