Energy Depostion into the Intergalactic Medium

by Suparna Roychowdhury

A Thesis submitted to the Jawaharlal Nehru University for the Degree of Doctor of Philosophy

2005

Raman Research Institute Bangalore 560 080

India

Certificate:

This is to certify that the thesis entitled "Energy Deposition into the Intergalactic Medium" submitted by Suparna Roychowdhury for the award of the degree of Doctor of Philosophy of Jawaharlal Nehru University is her original work. This has not been published or submitted to any other University for any other Degree or Diploma.

Prof. N. Kumar (Center Chairperson) Director Raman Research Institute Bangalore 560 080 INDIA Dr. Biman B. Nath (Thesis Supervisor)

Declaration:

I hereby declare that the work reported in this thesis is entirely original. This thesis is composed independently by me at Raman Research Institute under the supervision of Dr. Biman B. Nath. I further declare that the subject matter presented in this thesis has not previously formed the basis for the award of any degree, diploma, membership, associateship, fellowship or any other similar title of any university or institution.

(Dr. Biman B. Nath)

(Suparna Roychowdhury)

Astronomy & Astrophysics Group Raman Research Institute Bangalore 560 080 INDIA

Acknowledgements:

Since this is the only part of my thesis which would be read by anybody other than my poor examiners who don't have a choice in this matter, I had always thought that I would indulge myself in writing a long, detail acknowledgment to bore everyone. However, I think, after actually finishing a ph.d thesis, I am happy writing a small note of gratitude to RRI and everyone who has been part of my eventful life in the last five years. As Nadeem would agree, the road has been long and I have grown up.

It is, of-course, usual to start by thanking ones supervisor. So, here I go. I still remember that Biman (I call him Biman-da) was not around in RRI at the time I was looking for a guide to do astrophysics and cosmology. I spoke to Dipankar and he gave me a piece of paper and said that Biman has left a write-up on his interests and his work for the new ph.d entrants. Since that time, I've really come a long way and it is a genuine pleasure to thank my guide for taking me through this journey of research. He has always pushed me to do things on my own and have given me freedom of work. Of-course, he has always put deadlines, which could be quite exasperating at times, but I thank him for teaching me to work with deadlines and meeting them. I thank him for teaching me to work with deadlines and meeting them. I thank him for teaching me to work and think under pressure and not give up. We have been through difficult times, but Biman-da, you would agree, we have pulled through and I think it is largely due to our positive steps taken at the right moments. I have learned from him the virtues of politeness, calmness, humble attitude and hard work in research and in dealing with other colleagues and fellow researchers — I would say that humbleness and attentive ears take a person a long way in science. Thank you Biman-da for your incredible patience and faith.

In the last one year of my thesis, after Biman-da left for the US, Shiv has acted as my provisional super-visor. I owe thanks to him for agreeing to do so and also for being there when I needed help of any kind, be it computers or science.

I would like to thank a few others for discussions at various times about various parts of this thesis, which have been of great help to me – specially my collaborators Mateusz Ruszkowski and Prof. Mitchell Begelman. Mateusz, your perfectionist attitude and your being a workaholic (I could gauge these things about you through our email exchanges alone) have really pushed me to work hard and finish. I have learnt a lot through discussions and exchange of LaTeX notes through email with you. In addition, I would like to thank Dipankar, Sridhar, Dwaraka, Anish, Sunita (for discussions on both academics and peripherals of academics), Rekhesh, Niruj (I have to thank him later for my all round education and development) for discussions and suggestions on various aspects of my thesis work. Thanks are also due to Srini, Sam and Bala for being in my advisory committee and also going through the annual reviews to keep a check on my progress from time to time. I would also like to thank Somnath and Shiv for arranging that cosmology school at HRI, Allahabad. It was one of the best schools I have attended in this whole period of being in research. And, I can't move one without thanking Ujjaini and Ayesha. Guys! thanks for making that school such a nice learning experience.

This research would not have been possible without good access to primary sources of information. A big thanks to the RRI library staff is necessary. I wish to thank the computer division at RRI, with apologies for all the trouble I managed to create during the last few months of my stay in this Institute. In this regard, I would also like to thank Shukre, Ramesh, Nirvikar, Dwaraka, Pandey, Chris, Shiv, Sridhar, Dipankar, the whole ASTROSAT team ie. Ravi, Anand, Sushila, and finally Abhishek Dhar and Bala Iyer for allowing me to use their computers for my simulations. Thanks are also due to Vidya, the Astro group secretary. She has been extremely sweet and helpful at all times. The canteen, administration and the transport completes the list in RRI. I can only say that I have been pampered.

I had always thought that I'll write a long note of thanks to all my friends and spend the largest part of my acknowledgement here. However, when I've finally come to this part, I think the shortest is the best. There are too many things to thank them about — without a few of them here, especially Rajesh, I would have probably left RRI and gone back home without finishing my ph.d. Anyway, let me still say it. Thank you Rajesh, Reks, Chandreyee and Niruj for everything. Niruj, I should thank you specially for character building — without you, my all round education would have been stunted. Without you guys here, it would have been really difficult. Rayu, let me not say anything more to you — we still have a long way to go together. In addition, I should thank Nadeem for always being there whenever I needed him and whenever he was around in RRI, Sushil and Anshu for being great seniors and friends in those initial confusing days in RRI, Moja-da (Shubhabrato-da) for the chats, outings and email discussions on clusters and SZ, Sudipto, for all the political and non-political discussions, Resmi, Atish, Divya, Kanak, Amitesh, Dipanjan, Chris, Dinesh (from Mauritius) and all the other RRI junta for everything. Chris, I've really enjoyed discussing football with you. Finally, in the last two years, I've come to know people like Sushila, Kripa, Vinu, Anand, Tarun and others who have been good to talk to whenever I've needed some jovial conversation. A very special word of thanks to Sushila since I came to know her only lately and yet, I think, we've become good friends. Sushila, wish you lots of happiness in your future married life and always. I hope we'll be in touch.

Before I move on, I should thank my old friends (from my B.Sc days) in Bangalore who have been there for me always in the last four years and have gone out of their way to help me out in times when I was really down. Preeta, Srinjoy — thanks a lot for everything.

I can't finish this acknowledgement without thanking my parents. If not for their support, faith and constant encouragement, I would not have made this far. My father has always believed in my honesty and my innocence which has helped me believe in myself against all odds. He is the one who instilled in me the stubbornness to fight when everyone else is out to get you, stand up firm and do what you think is right. So, dad, this is a gift for you – my thesis. Mom, I am sorry for not being there with you in the last five years but I promise, after this, nothing is more important than you and being with you.

Finally, I would like to apologize to all those people who have felt hurt by my actions or words without my knowledge. I would say to them 'I was naive and had a lot to learn about human relations.' I guess I've learnt now how to keep a safe distance from people so that neither that person nor me gets hurt and that couldn't have happened without all the jerks and the hiccups I've had in the last few years. In addition, I owe special thanks to all those people who have gone out of their way to make my life here difficult and unpleasant — without them, I wouldn't have matured and become a stronger person ready to deal with the big bad world outside. Anyway, I think, it is still too early to be too confident about interactions with humans, but I guess, this is the start.

And so, coming to the end of the road which started five years ago, I wonder if I have really become a researcher. Well, there is a long way to go still but I guess, I might have made the start. From the bottom of my heart, I remember now some others who always remind me that I still have a long way to go to become a researcher still and should always try to be a student of physics. To those, thanks and I hope to remember this all the while I'm practicing science and I hope to be in science till I remember this. As I reach completion of my thesis, it brings in a sense of excitement and also a

v

sense of unknown fear — my heart says 'this is just the start'.

Contents

1	Intro	oduction		1
	1.1	Clusters of galaxies		2
	1.1.1 The intracluster medium			2
		1.1.2 Dark matter in galaxy clusters and the intracluster medium		
	1.2	The self-similar hierarchical pictu	re and baryons	9
1.2.1 Spherical collapse				9
		1.2.2 Self-similar hierarchical e	volution	10
		1.2.3 Universal density profile of	of dark matter	11
		1.2.4 Gas infall and virialization in clusters		
		1.2.5 Observable properties of t	he ICM	15
		1.2.5.1 X-ray luminosit	y	15
		1.2.5.2 Density profile	of gas	15
		1.2.5.3 Entropy of the	СМ	17
		1.2.6 Departure from self-simil	arity in clusters	20
	1.3	Pre-heating and the ICM		21
		1.3.1 Supernovae and ICM heat	ing	22
		1.3.2 Active galactic nuclei and	the intracluster medium	23
1.4 Motivation		Motivation		26
1.5 Layout of the thesis				27
Bi	bliogr	raphy		28
2	Imp	plications of the Universal Temper	ature profile in galaxy clusters	37
	2.1	.1 Introduction		39
	2.2			40
	2.3			41
		2.3.1 Universal Temperature Pr	ofile of Gas	41
		2.3.2 Density Profile of Gas .		43
2.4 Implications of the universal temperature profile and the derived gas densi2.4.1 Entropy Profiles and Scaling Properties		perature profile and the derived gas density profile .	46	
		ing Properties	46	
		2.4.2 Gas Distribution		49
	2.4.2.1 $M_{\text{gas}}(R_{500}) - \langle T \rangle$			49
		2.4.2.2 Gas fraction f_{gas}	and its spatial variation	51

CONTENTS

		2.4.3 X-ray Luminosity-Temperature Relation	51
	2.5	Discussion	53
	2.6	Conclusion	55
Bi	ibliog	raphy	57
3	Hea	ting of the intracluster medium by quasar outflows	61
	3.1	Introduction	63
	3.2	Quasars inside clusters	64
	3.3	Work done by quasar outflows	71
		3.3.1 Quasar outflows	71
		3.3.2 Evolution of outflows	72
	3.4	Heating of the ICM	75
	3.5	Discussion	77
	3.6	Summary	81
Bi	ibliog	raphy	83
4	'Ef	fervescent" heating, convection and thermal conduction	87
	4.1	Introduction	89
	4.2	Models of the intracluster medium	91
		4.2.1 Model (A1): Pure NFW dark matter distribution and <i>no</i> energy loss due to	
		bubble creation	91
		4.2.1.1 Dark matter density profile	91
		4.2.1.2 Initial configuration of intracluster gas	92
		4.2.1.3 Effervescent heating and radiative cooling	92
		4.2.1.4 Convection	93
4.2.2 Model (A2): smoothened NFW profile and energy loss due to bul		4.2.2 Model (A2): smoothened NFW profile and energy loss due to bubble creation	
		in "effervescent" mechanism	94
		4.2.2.1 The default state of the ICM	94
		4.2.2.2 Effervescent heating and cooling	95
		4.2.3 Model (B): Effervescent heating, cooling and thermal conduction	96
		4.2.3.1 The default state of the ICM	96
		4.2.3.2 Thermal Conduction	96
		4.2.4 Evolution of the intracluster gas	97
 4.3 Results		Results	99
		The halo-black hole mass relation	. 09
	4.5	Discussions	. 10
		4.5.1 Models (A1) and (A2)	.10
		4.5.2 Model (B)	.11
	4.6	Caveats of the models	.12
	4.7 Conclusions		13

Bi	Bibliography				
5	SZ effect and "effervescent" heating				
	5.1	Introduction	121		
	5.2	Model of the intracluster medium	122		
		5.2.1 The default state of the ICM	122		
		5.2.2 Heating, thermal conduction and evolution of the ICM	122		
	5.3	Thermal Sunyaev-Zeldovich effect	123		
	5.4	Angular power spectrum	124		
	5.5	Results	124		
	5.6	Discussion	129		
	5.7	Conclusion	130		
Bi	bliogr	aphy	131		
A	opend	ices	135		
A	Spherical infall				
	A.1	Description of the model	136		
	A.2	Predictions for Einstein-de Sitter universe	137		
B	Pre-	heating	139		
	B 1	The model	140		