
Chapter 4

The third post-Newtonian gravitational
wave polarisations and associated
spherical harmonic modes for
inspiralling compact binaries in
quasi-circular orbits

4.1 Introduction

Compact binary stars are one of the most important sources of gravitational radiation for the
laser interferometric detectors LIGO, VIRGO [12, 13] and the proposed LISA [51]. Until the
late inspiral stage of the binary evolution , prior to merger, the gravitational waves emitted
by them are accurately described by the post-Newtonian (PN) approximation to general rela-
tivity [30], while the late inspiral and subsequent merger and ringdown phases are computed
by a full-fledged numerical integration of the Einstein field equations [37, 38, 39, 40]. A new
field has emerged recently consisting of high-accuracy comparisons between the PN predic-
tions and the numerically-generated waveforms. Such comparisons and matching to the PN
results have proved currently to be very successful [41, 42, 43, 44]. They clearly show the
need to include high PN corrections not only for the evolution of the binary’s orbital phase
but also for the modulation of the gravitational amplitude.

The aim of this chapter is to compute the full gravitational waveform generated by inspi-
ralling compact binaries moving in quasi-circular orbits at the third post-Newtonian (3PN)
order1. By the full waveform (FWF) at a certain PN order, we mean the waveform including
all higher-order amplitude corrections and hence all higher-order harmonics of the orbital
frequency consistent with that PN order. The FWF is to be contrasted with the so-called re-
stricted waveform (RWF) which retains only the leading-order harmonic at twice the orbital
frequency. In applications to data analysis both the FWF and RWF should incorporate the or-
bital phase evolution up to the maximum available post-Newtonian order which is currently
3.5PN [116, 32, 71]. Previous investigations[84, 77, 96] have obtained the FWF up to 2.5PN

1As usual, we refer to nPN as the order equivalent to terms ∼ (v/c)2n in the asymptotic waveform (beyond
the Einstein quadrupole formula), where v denotes the binary’s orbital velocity and c is the speed of light.
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order2. Recently Kidder [117] pointed out that there is already enough information in the
existing PN results [77] to control the dominant mode of the waveform, in a spin-weighted
spherical harmonic decomposition, at the 3PN order. This mode, having (`,m) = (2, 2), is
the one which is computed in most numerical simulations, and which is therefore primarily
needed for comparison with the PN waveforms. In the present chapter we shall extend the
works [84, 77, 96, 117] by computing all the spin-weighted spherical harmonic modes (`,m)
consistent with the 3PN gravitational polarisations.

The data analysis of ground-based and space-based detectors has traditionally been based
on the RWF approximation [73, 74, 118, 92, 119, 33, 120]. However, the need to consider
the FWF as a more powerful template has been emphasized, not only for performing a more
accurate parameter estimation [80, 94, 78, 79], but also for improving the mass reach and
the detection rate [81, 82, 97]. Another motivation for considering the FWF instead of the
RWF is to perform cosmological measurements of the Hubble parameter and dark energy
using supermassive inspiralling black-hole binaries which are known to constitute standard
gravitational-wave candles (or sirens) in cosmology [69, 70]. Indeed it has been shown that
using the FWF in the data analysis of LISA will yield substantial improvements (with re-
spect to the RWF) of the angular resolution and the estimation of the luminosity distance of
gravitational-wave sirens [121, 89]. This means that LISA may be able to uniquely iden-
tify the galaxy cluster in which the supermassive black-hole coalescence took place, and
thereby permit the measurement of the red-shift of the source which is crucially needed for
investigating the equation of state of dark energy [121].

It turns out that in order to control the FWF at the 3PN order we need to further develop
the multipolar post-Minkowskian (MPM) wave generation formalism [122, 123, 124, 125,
76, 126]. The MPM formalism describes the radiation field of any isolated post-Newtonian
source and constitutes the basis of current PN calculations3. In this formalism, the radia-
tion field is first of all parametrized by means of two sets of radiative multipole moments
[130]. These moments are then related (by means of an algorithm for solving the non-
linearities of the field equations) to the so-called canonical moments which constitute some
useful intermediaries for describing the external field of the source. Finally, the canonical
moments are expressed in terms of the operational source moments which are given by ex-
plicit integrals extending over the matter source and gravitational field. In previous studies
[131, 116, 77, 132] most of the required source moments in the case of compact binaries
were computed, or techniques were developed to compute them. The important step which
remains here is to refine, by applying the MPM framework, the relationships between the
radiative and canonical moments — this means taking into account more non-linear interac-
tions between multipole moments — and between the canonical and source moments. The
latter relationship involves controlling the coordinate transformation between two MPM al-
gorithms respectively defined from the sets of canonical and source moments.

The plan of this chapter is as follows. In Section 5.2, we outline the post-Newtonian gen-
eration formalism, based on multipolar post-Minkowskian (MPM) expansions and matching
to a general post-Newtonian source and also brief upon applications to compact binaries,
modelled as point particles. In Section 5.3 we recall the basic formulas for defining the FWF

2The computation of the FWF is more demanding than that of the phase because it not only requires mul-
tipole moments with higher multipolarity but also higher PN accuracy in many of these multipole moments.
This is why the FWF is known to a lower PN order than the phase.

3An alternative formalism called DIRE has been developed by Will and collaborators [127, 128, 129].
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in terms of radiative multipole moments. Section 5.4 summarises the results for all the rele-
vant moments parametrizing the FWF at 3PN order. The time derivatives of source moments
are investigated in Section 5.5 and the various hereditary contributions are computed in Sec-
tion 5.6. The complete polarization waveforms at 3PN order are given in Section 5.7 for
data analysis applications. In Section 5.8, we provide the spin-weighted spherical harmonic
modes of the 3PN waveform for use in numerical relativity. Finally, section 5.9 provides
some applications to the data-analysis of super-massive black hole binaries using the 3PN
waveform in the context of LISA.

4.2 The post-Newtonian wave generation formalism

The wave generation formalism relates the gravitational waves observed at a detector in the
far-zone of the source to the stress-energy tensor of the source. Successful wave-generation
formalisms mix and match approximation techniques from currently available collections.
These include post-Minkowskian (PM) methods, post-Newtonian (PN) methods, multipole
(M) expansions and perturbations around curved backgrounds. A recent review [30] dis-
cusses in detail the formalism we follow in the computation of the gravitational field; we
summarise below the main features of this approach. This formalism has two independent
aspects addressing two different problems. The first aspect, is the general method applicable
to extended or fluid sources with compact support, based on the mixed PM and multipole
expansion (we call it a MPM expansion), and matching to some PN source. The second
aspect, is the application to point particle binaries modelling ICB.

4.2.1 The MPM expansion and matching to a post-Newtonian source

We follow Refs. [122, 123, 133, 124, 134, 135] to obtain the solution in the exterior of the
source within the complete non-linear theory. The above referred works were built on earlier
seminal papers of Bonnor [136] and Thorne [130] to set up the multipolar post-Minkowskian
expansion. Starting from the general solution to the linearized Einstein’s equations in the
form of a multipolar expansion (valid in the exterior region), a PM iteration is performed and
each multipolar piece is treated individually at any PM order. In addition to terms evaluated
at one retarded time, the gravitational field contains terms integrated over the entire past
“history” of the source. These are called the hereditary terms. For the external field, the
general method is not limited a priori to PN sources. But, closed form expressions for the
multipole moments can presently be obtained only for PN sources, because the exterior field
may be connected to the inner field only if there exists an “overlapping” region where both
the MPM and PN expansions are valid and can be matched together. For PN sources, this
region always exists and is the exterior (r > a) near (r � λ) zone. After matching, it is
found that the multipole moments have a non-compact support owing to the gravitational
field stress-energy distributed everywhere up to spatial infinity. To include correctly these
contributions, the definition of the multipole moments involves a finite part operation, based
on analytic continuation. This process is equivalent to a Hadamard “partie finie” of the
integrals at the bound at infinity.

The formalism of asymptotic matching procedure has been explored thoroughly and
extended in a systematic way to higher PN orders [137, 138, 125, 126]. The final re-
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sult of this analysis is that, the physical post-Newtonian (slowly moving) source is char-
acterized by six symmetric and trace free (STF) time-varying multipole moments, denoted
{IL, JL, WL, XL, YL, ZL},4 which are specified for each source in the form of functionals of
the formal PN expansion, up to any PN order, of the stress-energy pseudo-tensor τµν of the
material and gravitational fields [126]. These moments parametrize the linear approximation
to the vacuum metric outside the source, which is the first approximation in the MPM algo-
rithm. In the linearized gravity case τµν reduces to the compact-support matter stress-energy
tensor T µν and the expressions match perfectly with those derived in Ref. [139].

Starting from the complete set of six STF source moments {IL, JL, WL, XL, YL, ZL}, for
which general expressions can be given valid to any PN order, we define a different set of
only two “canonical” source moments, denoted {ML, S L}, such that the two sets of moments
{IL, · · · , ZL} and {ML, S L} are physically equivalent. By this it is meant that they describe
the same physical source, i.e. the two metrics, constructed respectively out of {IL, · · · , ZL}
and {ML, S L}, differ by a mere coordinate transformation (are isometric). However, the six
general source moments {IL, · · · , ZL} are closer rooted to the source because we know their
expressions as integrals over τµν. On the other hand, the canonical source moments {ML, S L}
are also necessary because their use simplifies the calculation of the external non-linearities.
In addition, their existence shows that any radiating isolated source is characterized by two
and only two sets of time-varying multipole moments [130, 122].

The MPM formalism is valid all over the weak field region outside the source includ-
ing the wave zone (up to future null infinity). It is defined in harmonic coordinates. The
far zone expansion at Minkowskian future null infinity contains logarithms in the distance
which are artifacts of the harmonic coordinates. One can define, step by step in the PM
expansion, some radiative coordinates by a coordinate transformation so that the log-terms
are eliminated [123] and one recovers the standard (Bondi-type) radiative form of the met-
ric, from which the radiative moments, denoted {UL, VL}, can be extracted in the usual way
[130]. The wave generation formalism resulting from the exterior MPM field and match-
ing to the PN source is able to take into account, in principle, any PN correction in both the
source and radiative multipole moments. Nonlinearities in the external field are computed by
a post-Minkowskian algorithm. This allows one to obtain the radiative multipole moments
{UL, VL}, as some non-linear functional of the canonical moments {ML, S L}, and then of the
actual source moments {IL, · · · , ZL}. These relations between radiative and source moments
include many non-linear multipole interactions as the source moments mix with each other
as the waves propagate from the source to the detector. The dominant non-linear effect is
due to the tails of wave, made of coupling between non-static moments and the total mass
of the source, occurring at 1.5PN order (∼ 1/c3) relative to the leading quadrupole radiation
[124]. There is a corresponding tail effect in the equations of motion of the source, occurring
at 1.5PN order relative to the leading 2.5PN radiation reaction, hence at 4PN order (∼ 1/c8)
beyond the Newtonian acceleration [133]. At higher PN orders, there are different types of
non-linear multipole interactions, that are responsible for the presence of some important
hereditary (i.e. past-history dependent) contributions to the waveform and energy flux.

A different wave-generation formalism from isolated sources, based on direct retarded
integration of Einstein’s equations in harmonic coordinates, is due to Will and Wiseman
[127], and provided major improvement and elucidation of earlier investigations in the same

4As usual L = i1i2 · · · i` denotes a multi-index made of ` spatial indices (ranging from 1 to 3). The integer `
is referred to as the multipolar order. See the footnote in the beginning of the next section for more details
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line [140, 130]. This formalism is based on different source multipole moments (defined by
integrals extending over the near zone only), together with a different scheme for computing
the non-linearities in the external field. It has currently been completed up to the 2PN order.
At the most general level, i.e. for any PN extended source and in principle at any PN order,
the Will-Wiseman formalism is completely equivalent to the present formalism based on
MPM expansions with asymptotic matching (see Section 5.3 in [30] for the proof).

4.2.2 Application to compact binary systems

This application represents the second aspect of our approach. To this end, in the first in-
stance, the compact objects (neutron stars or black holes) are modelled as point particles
represented by Dirac δ-functions. Indeed for compact objects the effects of finite size and
quadrupole distortion induced by tidal interactions are higher order in the PN approximation.
However, the general formalism outlined in Section 4.2.1, is set up for a continuous (smooth)
matter distribution, with continuous T µν, and cannot be directly applied to point particles,
since they lead to divergent integrals at the location of the particles, when T µν

point−particle is sub-
stituted into the source moments {IL, · · · , ZL}. The calculation needs to be supplemented by
a prescription for removing the infinite part of the integrals. Hadamard regularisation, based
on Hadamard’s notion of partie finie, is what we employ. This is our ansatz for applying a
well-defined general “fluid” formalism to an initially ill-defined point-particle source.

To summarise: A systematic analytical approximation scheme has been set up for the
calculation of waveforms and associated quantities from point particles to the PN order re-
quired (or permitted by given resources). A technical cost is the need to handle δ-functions in
a non-linear theory, which is dealt with the Hadamard regularisation scheme or a variant of it.
However, we already mentioned that at the 3PN order, subtleties arise due notably to the so
called non-distributivity of the Hadamard partie finie, which resulted, as shown in [116], in
some “ambiguities” when computing the 3PN mass-type quadrupole moment, which could
entirely be encoded into three undetermined numerical coefficients ξ, κ, ζ. These combined
into the unique quantity θ = ξ + 2κ + ζ in the 3PN energy flux for circular orbits.

The latter ambiguities are the analogues of the undetermined parameters found in the
binary’s EOM at 3PN order, namely ωk and ωs in the canonical ADM approach [141, 142],
and λ in the harmonic-coordinates formalism [143, 144]. The parameter λ is related to the
“static” ambiguity ωs by λ = − 3

11ωs − 1987
3080 , while the “kinetic” ambiguity ωk has been deter-

mined [143] to the value 41
24 (see [145, 146] for details). The presence of the static ambiguity

ωs or, equivalently, λ, is a consequence of the Hadamard regularisation scheme which hap-
pens to become physically incomplete at the 3PN order. Recently, Damour, Jaranowski and
Schäfer [147] proposed to use a better regularisation: dimensional regularisation. This led
them to a unique determination of ωs, namely ωs = 0. More recently [148], the application
of dimensional regularisation to the computation of the EOM in harmonic coordinates has
led to the equivalent result for λ, which is λ = − 1987

3080 . The EOM are thus completely deter-
mined to the 3PN order within both the ADM and harmonic-coordinates approaches using
Hadamard regularisation supplemented by a crucial argument from dimensional regularisa-
tion in order to fix the last parameter.5 All the 3PN conserved quantities are determined in

5Note that both calculations [147, 148] are performed in the limit ε → 0, where the dimension of space is
d = 3 + ε. The principle is to add to the end results given by the Hadamard regularisation [141, 142, 143, 144]
the difference between the dimensional and Hadamard regularisations, which is specifically due to the poles
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Refs. [145, 146]. A 3PN accurate center-of-mass has been constructed and used to reduce
the conserved energy and angular momentum [149].

The numerical values of the radiation-field-related ambiguity coefficients ξ, κ and ζ in-
troduced in [116] have also been determined [71] using dimensional regularization, so that
the PN corrections to phasing are completely determined to 3.5PN accuracy. However, as
we shall work in the present chapter on the 2.5PN waveform, i.e. one half order before 3PN,
these ambiguities will not concern us here, and we shall find that no ambiguity shows up in
any of our calculations based on Hadamard’s regularisation. In fact, it can be shown that up
to the 2.5PN order Hadamard’s regularisation as we shall employ here gives the same result
as would dimensional regularisation. The reason is that, in the source multipole moments up
to this order, there are no logarithmic divergences occurring at the particles’ locations, which
correspond in d dimensions to poles in ε = d − 3.

We now give the explicit expressions of the GW polarisations and the multipole moments
required to compute them and thereafter proceed directly to the computation of the final 3PN
polarisations. We refer the reader to more details of the 3PN extensions of the MPM wave
generational formalism and asymptotic matching algorithm to Ref. [150].

4.3 The polarization waveforms

The full waveform (FWF) propagating in the asymptotic regions of an isolated source, hTT
i j , is

the transverse-traceless (TT) projection of the metric deviation at the leading-order 1/R in the
distance R = |X| to the source, in a radiative-type coordinate system Xµ = (c T,X). The FWF
can be uniquely decomposed [130] into radiative multipole components parametrized by
symmetric-trace-free (STF) mass-type moments UL and current-type ones VL.6 The radiative
moments are functions of the retarded time TR = T − R/c in radiative coordinates. By
definition we have, up to any multipolar order `,

hTT
i j =

4G
c2R
PTT

i jkl(N)
+∞
∑

`=2

1
c``!

{

NL−2 UklL−2(TR) − 2`
c(` + 1) NaL−2 εab(k Vl)bL−2(TR)

}

+ O
(

1
R2

)

. (4.1)

Here N = X/R = (Ni) is the unit vector pointing from the source to the far away detector.
The TT projection operator in (4.1) readsPTT

i jkl = PikP jl− 1
2Pi jPkl wherePi j = δi j−NiN j is the

projector orthogonal to the unit direction N. We introduce two unit polarisation vectors P and
Q, orthogonal and transverse to the direction of propagation N (hence Pi j = PiP j + QiQ j).
Our convention for the choice of P and Q will be clarified in Section 5.9. Then the two

∼ 1/ε and their associated finite part.
6The notation is: L = i1 · · · i` for a multi-index composed of ` multipolar spatial indices i1, · · · , i` (ranging

from 1 to 3); similarly L − 1 = i1 · · · i`−1 and aL − 2 = ai1 · · · i`−2; NL = Ni1 · · ·Ni` is the product of ` spatial
vectors Ni (similarly for xL = xi1 · · · xi` ); ∂L = ∂i1 · · · ∂i` and say ∂aL−2 = ∂a∂i1 · · · ∂i`−2 denote the product
of partial derivatives ∂i = ∂/∂xi; in the case of summed-up (dummy) multi-indices L, we do not write the `
summations from 1 to 3 over their indices; the STF projection is indicated using brackets, T 〈L〉 = STF[TL]; thus
UL = U〈L〉 and VL = V〈L〉 for STF moments; for instance we write x〈iv j〉 =

1
2 (xiv j + x jvi) − 1

3δi jx · v; εabc is the
Levi-Civita antisymmetric symbol such that ε123 = 1; time derivatives are denoted with a superscript (n).
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“plus” and “cross” polarisation states of the FWF are defined by
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NL−2Ui jL−2(TR) − 2`
c(` + 1)NaL−2εab(iV j)bL−2(TR)

}

+ O
(

1
R2

)

. (4.2)

Although the multipole decompositions (4.1) and (4.2) are all what we need for our
purpose, it will also be important, having in view the ongoing comparisons between the PN
and numerical results [41, 42, 43, 44], to consider separately the various modes (`,m) of the
FWF as defined with respect to a basis of spin-weighted spherical harmonics. To this end we
decompose h+ and h× in the standard way as (see e.g. [41, 117])

h+ − ih× =
+∞
∑

`=2

∑̀

m=−`
h`m Y`m

−2 (Θ,Φ) , (4.3)

where the spin-weighted spherical harmonics of weight −2 is function of the spherical angles
(Θ,Φ) defining the direction of propagation N,7 and is given by

Y`m
−2 =

√

2` + 1
4π d `m

2 (Θ) ei mΦ , (4.4a)

d `m
2 =

k2
∑

k=k1

(−)k

k!

√
(` + m)!(` − m)!(` + 2)!(` − 2)!

(k − m + 2)!(` + m − k)!(` − k − 2)!

(

cos Θ2

)2`+m−2k−2(

sin Θ2

)2k−m+2

. (4.4b)

Here k1 = max(0,m − 2) and k2 = min(` + m, ` − 2). Using the orthonormality properties of
these harmonics we obtain the separate modes h`m from the surface integral

h`m =
∫

dΩ
[

h+ − ih×
]

Y
`m

−2 (Θ,Φ) , (4.5)

where the bar or overline denotes the complex conjugate. On the other hand, we can also,
following [117], relate h`m directly to the multipole moments UL and VL. The result is8

h`m = − G√
2 R c`+2

[

U`m − i
c

V`m
]

, (4.6)

where U`m and V`m are the radiative mass and current moments in standard (non-STF) guise
[117]. These are related to the STF moments by

U`m =
4
`!

√

(` + 1)(` + 2)
2`(` − 1)

α`mL UL , (4.7a)

7For the data analysis of compact binaries in Section 5.9 the direction of propagation will be defined by the
angles (Θ,Φ) = (i, π2 ) where i is the inclination angle of the orbit over the plane of the sky.

8We have an overall sign difference with [117] due to a different choice for the polarization triad (N,P,Q).
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V`m = − 8
`!

√

`(` + 2)
2(` + 1)(` − 1) α

`m
L VL . (4.7b)

Here α`mL denotes the STF tensor connecting together the usual basis of spherical harmonics
Y`m to the set of STF tensors N〈L〉 = N〈i1 · · ·Ni`〉 (where the brackets indicate the STF projec-
tion). Indeed both Y `m and N〈L〉 are basis of an irreducible representation of weight ` of the
rotation group. They are related by

N〈L〉(Θ,Φ) =
∑̀

m=−`
α`mL Y`m(Θ,Φ) , (4.8a)

Y`m(Θ,Φ) = (2` + 1)!!
4π`! α

`m
L N〈L〉(Θ,Φ) , (4.8b)

with the STF tensorial coefficient being9

α`mL =

∫

dΩN〈L〉 Y
`m
. (4.9)

As observed in [117] this is especially useful if some of the radiative moments are known to
higher PN order than others. In this case the comparison with the numerical calculation for
these individual modes can be made at higher PN accuracy.

4.4 The moments for 3PN waveform

Using the MPM algorithm as mentioned in Section 5.2 the radiative moments {UL,VL} are
related to the canonical moments {ML, S L}, and the canonical moments are in turn expressed
in terms of the source moments {IL, JL,WL, XL, YL, ZL}. In the current Section we present the
results of the computation of all the moments needed for controlling the FWF in the case of
compact binary systems up to 3PN order.

4.4.1 The radiative moments for 3PN polarisations

The result concerning the 3PN mass quadrupole moment Ui j is already known [124, 134,
135] and we simply report it here. Actually, at 3PN order Ui j involves a cubically non-linear
term, composed of the so-called tails of tails, whose computation necessitates an extension
of the MPM algorithm to cubic order G3 [135]. We have

Ui j(TR) = M(2)
i j (TR) + 2GM

c3

∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
11
12

]

M(4)
i j (τ)

+
G
c5

{

−2
7

∫ TR

−∞
dτM(3)

a〈i (τ)M(3)
j〉a(τ)

+
1
7

M(5)
a〈i M j〉a −

5
7

M(4)
a〈i M

(1)
j〉a −

2
7

M(3)
a〈i M

(2)
j〉a +

1
3
εab〈iM

(4)
j〉aS b

}

9The notation used in [130, 117] is related to ours by Y`m
L =

(2`+1)!!
4π`! α

`m
L .
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+ 2
(GM

c3

)2 ∫ TR

−∞
dτ

[

ln2
(

TR − τ
2τ0

)

+
57
70 ln

(

TR − τ
2τ0

)

+
124627
44100

]

M(5)
i j (τ)

+ O
(

1
c7

)

. (4.10)

Notice the tail integral at 1.5PN order, the tail-of-tail integral at 3PN order, and the non-
linear memory integral at 2.5PN. In the tail and tail-of-tail integrals, M represents the mass
monopole moment or total mass of the binary system. The constant τ0 in the tail integrals
is given by τ0 = r0/c, where r0 is the arbitrary length scale originally introduced in the
MPM formalism, and appearing also in the relation between the radiative and harmonic
coordinates.

The moments required at 2.5PN order are new with this chapter (apart from the tails) and
involve some interactions between the mass quadrupole moment and the mass octupole or
current quadrupole moments. These moments are given by10

Ui jk(TR) = M(3)
i jk (TR) + 2GM

c3

∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
97
60

]

M(5)
i jk (τ)

+
G
c5

{∫ TR

−∞
dτ

[

−1
3

M(3)
a〈i (τ)M(4)

jk〉a(τ) − 4
5
εab〈i M

(3)
ja (τ)S (3)

k〉b(τ)
]

− 4
3 M(3)

a〈i M
(3)
jk〉a −

9
4 M(4)

a〈i M
(2)
jk〉a +

1
4 M(2)

a〈i M
(4)
jk〉a −

3
4 M(5)

a〈i M
(1)
jk〉a +

1
4 M(1)

a〈i M
(5)
jk〉a

+
1

12 M(6)
a〈i M jk〉a +

1
4 Ma〈iM

(6)
jk〉a +

1
5εab〈i

[

−12S (2)
ja M(3)

k〉b − 8M(2)
ja S (3)

k〉b − 3S (1)
ja M(4)

k〉b

−27M(1)
ja S (4)

k〉b − S jaM(5)
k〉b − 9M jaS (5)

k〉b −
9
4S aM(5)

jk〉b

]

+
12
5 S 〈iS

(4)
jk〉

}

+ O
(

1
c6

)

, (4.11a)

Vi j(TR) = S (2)
i j (TR) + 2GM

c3

∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
7
6

]

S (4)
i j (τ)

+
G

7 c5

{

4S (2)
a〈i M

(3)
j〉a + 8M(2)

a〈i S
(3)
j〉a + 17S (1)

a〈i M
(4)
j〉a − 3M(1)

a〈iS
(4)
j〉a + 9S a〈iM

(5)
j〉a

− 3Ma〈iS
(5)
j〉a −

1
4S aM(5)

i ja − 7εab〈iS aS (4)
j〉b +

1
2εac〈i

[

3M(3)
ab M(3)

j〉bc +
353
24 M(2)

j〉bcM(4)
ab

− 5
12 M(2)

ab M(4)
j〉bc +

113
8 M(1)

j〉bcM(5)
ab −

3
8 M(1)

ab M(5)
j〉bc +

15
4 M j〉bcM(6)

ab +
3
8 MabM(6)

j〉bc

]}

+ O
(

1
c6

)

. (4.11b)

At 2PN order we have the standard tails and some previously known interactions of the mass
10In all formulas below the STF projection 〈〉 applies only to the “free” indices denoted i jkl · · · carried by

the moments themselves. Thus the dummy indices such as abc · · · are excluded from the STF projection.
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quadrupole with itself [134], namely

Ui jkl(TR) = M(4)
i jkl(TR) + G

c3

{

2M
∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
59
30

]

M(6)
i jkl(τ)

+
2
5

∫ TR

−∞
dτM(3)

〈i j (τ)M(3)
kl〉 (τ) − 21

5 M(5)
〈i j Mkl〉 −

63
5 M(4)

〈i j M(1)
kl〉 −

102
5 M(3)

〈i j M(2)
kl〉

}

+ O
(

1
c5

)

, (4.12a)

Vi jk(TR) = S (3)
i jk(TR) + G

c3

{

2M
∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
5
3

]

S (5)
i jk(τ)

+
1

10εab〈iM
(5)
ja Mk〉b −

1
2εab〈iM

(4)
ja M(1)

k〉b − 2S 〈iM
(4)
jk〉

}

+ O
(

1
c5

)

. (4.12b)

At 1.5PN we again have some non-linear interactions (new with this chapter) involving the
mass octupole and current quadrupole and given by

Ui jklm(TR) = M(5)
i jklm(TR) + G

c3

{

2M
∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
232
105

]

M(7)
i jklm(τ)

+
20
21

∫ TR

−∞
dτM(3)

〈i j (τ)M(4)
klm〉(τ) − 710

21
M(3)
〈i j M(3)

klm〉 −
265

7
M(2)
〈i jk M(4)

lm〉 −
120

7
M(2)
〈i j M(4)

klm〉

−155
7 M(1)

〈i jk M(5)
lm〉 −

41
7 M(1)

〈i j M(5)
klm〉 −

34
7 M〈i jk M(6)

lm〉 −
15
7 M〈i jM

(6)
klm〉

}

+ O
(

1
c4

)

, (4.13a)

Vi jkl(TR) = S (4)
i jkl(TR) + G

c3

{

2M
∫ TR

−∞
dτ

[

ln
(

TR − τ
2τ0

)

+
119
60

]

S (6)
i jkl(τ)

−35
3 S (2)

〈i j M
(3)
kl〉 −

25
3 M(2)

〈i j S
(3)
kl〉 −

65
6 S (1)

〈i j M
(4)
kl〉 −

25
6 M(1)

〈i j S
(4)
kl〉 −

19
6 S 〈i jM

(5)
kl〉

− 11
6 M〈i jS

(5)
kl〉 −

11
12S 〈iM

(5)
jkl〉 +

1
6εab〈i

[

−5M(3)
ja M(3)

kl〉b −
11
2 M(4)

ja M(2)
kl〉b −

5
2 M(2)

ja M(4)
kl〉b

−1
2

M(5)
ja M(1)

kl〉b +
37
10

M(1)
ja M(5)

kl〉b +
3

10
M(6)

ja Mkl〉b +
1
2

M jaM(6)
kl〉b

]}

+ O
(

1
c4

)

. (4.13b)

For all the other higher order moments that are required, it is sufficient to assume the relation
between the radiative and canonical moments,

UL(TR) = M(`)
L (TR) + O

(

1
c3

)

, (4.14a)
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VL(TR) = S (`)
L (TR) + O

(

1
c3

)

. (4.14b)

4.4.2 The canonical moments for 3PN polarisations

We now give the canonical moments in terms of source-rooted multipole moments. It turns
out that the difference between these two types of moments ( which is due to the presence of
the gauge moments ) arises only at the small 2.5PN order. The consequence is that we have
to worry about this difference only for the 3PN canonical mass quadrupole moment Mi j, the
2.5PN mass octupole moment Mi jk, and the 2.5PN current quadrupole moment S i j. For the
mass quadrupole moment, the requisite correction has already been used in [77] and is given
by11

Mi j = Ii j +
4G
c5

[

W (2)Ii j −W (1)I(1)
i j

]

+ O
(

1
c7

)

, (4.15)

where Ii j denotes the source mass quadrupole, and where W is the monopole corresponding
to the gauge moments WL (i.e. W is the moment having ` = 0). At the PN order we are
working, W is needed only at Newtonian order and will be provided in Section 4.4.3. Notice
that the remainder in (4.15) is at order 3.5PN — consistently with the accuracy we aim
here. The expression (4.15) is valid in a mass-centred frame defined by the vanishing of the
mass dipole moment: Ii = 0. Note that a formula generalizing (4.15) to all PN orders (and
all multipole interactions) is not possible at present and needs to be investigated anew for
specific cases. Thus it is convenient in the present approach to use systematically the source
moments {IL, JL,WL, XL, YL, ZL} as the fundamental variables describing the source.

Similarly, the other moments Mi jk and S i j will admit some correction terms starting at the
2.5PN order. Details of the computation of these new corrections can be found in Ref. [150].

Our explicit results for Mi jk and S i j are

Mi jk = Ii jk +
4G
c5

[

W (2)Ii jk −W (1)I(1)
i jk + 3 I〈i jY

(1)
k〉

]

+ O
(

1
c6

)

, (4.16a)

S i j = Ji j +
2G
c5

[

εab〈i
(

−I(3)
j〉bWa − 2I j〉bY (2)

a + I(1)
j〉bY (1)

a

)

+ 3J〈iY
(1)
j〉 − 2J(1)

i j W (1)
]

+ O
(

1
c6

)

, (4.16b)

where Wi and Yi are the dipole moments corresponding to the moments WL and YL. The
remainders in (4.16) are consistent with our approximation 3PN for the FWF. Besides the
mass quadrupole moment (4.15), and mass octupole and current quadrupole moments (4.16),
we can state that, with the required 3PN precision, all the other moments ML agree with their
corresponding IL, and similarly the S L agree with JL, namely

ML = IL + O
(

1
c5

)

, (4.17a)

S L = JL + O
(

1
c5

)

. (4.17b)

11The equation (11.7a) in [116] contains a sign error with respect to the original result [76] (with no conse-
quence for any of the results in [116]). The correct sign is reproduced here.

76



4.4.3 The source moments for 3PN polarisations

We have finally succeeded in parametrizing the FWF entirely in terms of the source moments
{IL, JL,WL, XL, YL, ZL} up to 3PN order. The interest of this construction lies in the fact that
the source moments are known for general PN matter systems. They were obtained by
matching the external MPM field of the source to the internal PN field valid in the source’s
near zone [125, 76, 126]. The source moments have been worked out in the case of compact
binary systems with increasing PN precision [131, 116, 132, 77]. Here we list all the required
IL’s and JL’s (and also the few needed gauge moments) for non-spinning compact objects
and for circular orbits. We do not enter the details because the derivation of these moments
follows exactly the same techniques as in [116, 132].

The only moment needed at the 3PN order is the mass quadrupole moment Ii j, first com-
puted for circular orbits in [116] and subsequently extended to general orbits in [132]. We
write it as

Ii j = νm















A x〈i j〉 + B
r3

Gm
v〈i j〉 + C

√

r3

Gm
x〈iv j〉















+ O
(

1
c7

)

. (4.18)

The relative position and velocity of the two bodies in harmonic coordinates are denoted
by xi = yi

1 − yi
2 and vi = dxi/dt = vi

1 − vi
2 (spatial indices are lowered and raised with the

Kronecker metric so that xi = xi and vi = vi). The distance between the two particles in
harmonic coordinates is denoted r = |x|. The two masses are m1 and m2, the total mass is
m = m1 + m2 (not to be confused with the mass monopole moment M), the symmetric mass
ratio ν = m1m2/m2 satisfies 0 < ν ≤ 1/4, and the mass difference ratio is ∆ = (m1 − m2)/m
which reads also ∆ = ±

√
1 − 4ν (according to the sign of m1−m2). To express the coefficients

A, B and C in (4.18) as PN series we introduce the small post-Newtonian parameter

γ =
Gm
rc2 . (4.19)

With these notations we have (in the frame of the ‘center-of-mass’ and for circular orbits)

A = 1 + γ
(

− 1
42 −

13
14ν

)

+ γ2
(

− 461
1512 −

18395
1512 ν − 241

1512ν
2
)

+ γ3
(

395899
13200 −

428
105 ln

(

r
r0

)

+

[

3304319
166320 −

44
3 ln

(

r
r′0

)]

ν

+
162539
16632

ν2 +
2351

33264
ν3

)

, (4.20a)

B = γ

(

11
21 −

11
7 ν

)

+ γ2
(

1607
378 −

1681
378 ν +

229
378ν

2
)

+ γ3
(

−357761
19800 +

428
105 ln

(

r
r0

)

− 92339
5544 ν +

35759
924 ν2 +

457
5544ν

3
)

, (4.20b)

C =
48
7
γ5/2 ν . (4.20c)

The coefficients A and B correspond to conservative PN orders (which are even), while the
coefficient C involves a single term at the odd 2.5PN order due to radiation reaction.

Notice the appearance of logarithms in both A and B at the 3PN order. These logarithms
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have two distinct origins, depending on whether they are scaled with the constant r0 asso-
ciated with the finite part prescription , or with an alternative constant denoted r′0. The
logarithms with r0 will combine later with other contributions due to tails and tails-of-tails,
and the constant r0 will be absorbed into some unobservable shift of the binary’s orbital
phase, as can already be seen from the fact that r0 is associated with the difference of origin
of time between harmonic and radiative coordinates.

The other constant r′0 is defined by m ln r′0 = m1 ln r′1 + m2 ln r′2, where r′1 and r′2
are two regularization constants appearing in a Hadamard self-field regularization scheme
for the 3PN equations of motion of point masses in harmonic coordinates [143, 144]. The
constant r′0 is therefore present in the 3PN equations of motion and we shall thus also meet
this constant in the 3PN orbital frequency given by (4.35) below. The regularization constant
r′0 is unobservable, since it can be removed by a coordinate transformation at 3PN order —
r′0 can rightly be called a gauge constant. In practice this means that r′0 will cancel out when
using the 3PN equations of motion to compute the time derivatives of the 3PN quadrupole
moment, as will be explicitly verified in Section 5.6.12

The list of required moments continues with the 2.5PN order at which we need the mass
octupole and current quadrupole given by (with ∆ = m1−m2

m )

Ii jk = −νm∆

{

x〈i jk〉

[

1 − γν − γ2
(

139
330
+

11923
660

ν +
29

110
ν2

)]

+
r2

c2 x〈iv jk〉

[

1 − 2ν − γ
(

−1066
165

+
1433
330

ν − 21
55
ν2

)]

+
196
15

r
c
γ2 ν x〈i jvk〉

}

+ O
(

1
c6

)

, (4.21a)

Ji j = −νm∆

{

εab〈ix j〉avb

[

1 + γ
(

67
28 −

2
7ν

)

+ γ2
(

13
9 −

4651
252 ν − 1

168ν
2
)]

−484
105

r
c
γ2 ν εab〈iv j〉axb

}

+ O
(

1
c6

)

. (4.21b)

At 2PN order we require:

Ii jkl = νm

{

x〈i jkl〉

[

1 − 3ν + γ
(

3
110 −

25
22ν +

69
22ν

2
)

+ γ2
(

−126901
200200

− 58101
2600

ν +
204153

2860
ν2 +

1149
1144

ν3
)]

+
r2

c2 x〈i jvkl〉

[

78
55

(1 − 5ν + 5ν2)

+ γ

(

30583
3575 −

107039
3575 ν +

8792
715 ν2 − 639

715ν
3
)]

12Note also that the 3PN quadrupole moment [116, 132] depended originally on three constants ξ, κ, ζ
(called ambiguity parameters) reflecting some incompleteness of the Hadamard self-field regularization. These
constants have been computed by means of the powerful dimensional regularization [148, 71], and we have
replaced the result, which was ξ = − 9871

9240 , κ = 0 and ζ = − 7
33 , back into (4.20).
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+
71

715
r4

c4 v〈i jkl〉
(

1 − 7ν + 14ν2 − 7ν3
)

}

+ O
(

1
c5

)

, (4.22a)

Ji jk = νm

{

εab〈ix jk〉avb

[

1 − 3ν + γ
(

181
90 −

109
18 ν +

13
18ν

2
)

+ γ2
(

1469
3960

− 5681
264

ν +
48403

660
ν2 − 559

3960
ν3

)]

+
r2

c2 εab〈ixav jk〉b

[

7
45

(

1 − 5ν + 5ν2
)

+ γ

(

1621
990

− 4879
990

ν +
1084
495

ν2 − 259
990

ν3
)]}

+ O
(

1
c5

)

. (4.22b)

At 1.5PN order:

Ii jklm = −νm∆

{

x〈i jklm〉

[

1 − 2ν + γ
(

2
39 −

47
39ν +

28
13ν

2
)]

+
70
39

r2

c2 x〈i jkvlm〉
(

1 − 4ν + 3ν2
)

}

+ O
(

1
c4

)

, (4.23a)

Ji jkl = −νm∆

{

εab〈ix jkl〉avb

[

1 − 2ν + γ
(

20
11
− 155

44
ν +

5
11
ν2

)]

+
4

11
r2

c2 εab〈i x javkl〉b
(

1 − 4ν + 3ν2
)

}

+ O
(

1
c4

)

. (4.23b)

At 1PN order:

Ii jklmn = νm

{

x〈i jklmn〉

[

1 − 5ν + 5ν2 + γ

(

1
14 −

3
2ν + 6ν2 − 11

2 ν3
)]

+
15
7

r2

c2 x〈i jklvmn〉
(

1 − 7ν + 14ν2 − 7ν3
)

}

+ O
(

1
c4

)

, (4.24a)

Ji jklm = νm

{

εab〈ix jklm〉avb

[

1 − 5ν + 5ν2 + γ

(

1549
910 −

1081
130 ν +

107
13 ν2 − 29

26ν
3
)]

+
54
91

r2

c2εab〈ix jkavlm〉b
(

1 − 7ν + 14ν2 − 7ν3
)

}

+ O
(

1
c4

)

. (4.24b)

At 0.5PN order:

Ii jklmno = −νm∆ (1 − 4ν + 3ν2) x〈i jklmno〉 + O
(

1
c2

)

, (4.25a)

Ji jklmn = −νm∆ (1 − 4ν + 3ν2) εab〈ix jklmn〉avb + O
(

1
c2

)

. (4.25b)

At Newtonian order:

Ii jklmnop = νm
(

1 − 7ν + 14ν2 − 7ν3
)

x〈i jklmnop〉 + O
(

1
c2

)

, (4.26a)
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Ji jklmno = νm
(

1 − 7ν + 14ν2 − 7ν3
)

εab〈ix jklmno〉avb + O
(

1
c2

)

. (4.26b)

The 2.5PN correction terms in Ii jk and Ji j, the 2PN terms in Ii jkl and Ji jk, and the 1PN terms
in Ii jklm and Ji jkl are new with this chapter. The higher-order Newtonian moments Ii jklmno

and Ji jklmn were also not needed before, but Newtonian moments are trivial and are given for
general ` by

IL = νm s`(ν) x〈L〉 + O
(

1
c2

)

, (4.27a)

JL−1 = νm s`(ν) εab〈i`−1 xL−2〉avb + O
(

1
c2

)

, (4.27b)

in which we pose
s`(ν) = X`−1

2 + (−)`X`−1
1 . (4.28)

Here we define X1 =
m1
m =

1
2 (1 + ∆) and X2 =

m2
m =

1
2 (1 − ∆) with ∆ = m1−m2

m = ±
√

1 − 4ν, so
that X1 + X2 = 1 and X1X2 = ν.

In addition we shall need the mass monopole I agreeing with its canonical counterpart
M which parametrizes the various tail terms in Section 5.4.1. Since the tails arise at 1.5PN
order we need M only at the 1.5PN relative order. It is given by

I = M = m
(

1 − ν
2
γ

)

+ O
(

1
c4

)

. (4.29)

We require also the current dipole moment or angular momentum Ji (agreeing with its canon-
ical counterpart S i) since it appears in some non-linear terms, for instance in (4.10). It is
needed only at Newtonian order,

Ji = S i = νm εiabxavb + O
(

1
c2

)

. (4.30)

Finally, we have to provide the few gauge moments that enter the relations between
canonical and source moments found in (4.15) and (4.16). They are readily computed from
the general expressions of all the gauge moments {WL, XL, YL, ZL} given in (5.15)–(5.20)
of [126]. The calculation is quite simple because these moments, namely the monopolar
moment W and the two dipole moments Wi and Yi, are Newtonian. For circular orbits we
find

W = O
(

1
c2

)

, (4.31a)

Wi =
1

10 νm∆ r2 vi + O
(

1
c2

)

, (4.31b)

Yi =
1
5

G m2 ν

r
∆ xi + O

(

1
c2

)

. (4.31c)

We are done with all the source multipole moments needed to control the 3PN accurate FWF
generated by compact binary sources in quasi-circular orbits.
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4.5 Time derivatives of the source multipole moments

For the purpose of computing the time derivatives of the source moments we require the
3PN accurate equations of motion of compact binary sources. Like in the computation of the
moments we have to take into account both the conservative effects at 1PN, 2PN and 3PN
orders, and the effect of radiation reaction at 2.5PN order.

We consider non-spinning objects so the motion takes place in a fixed plane, say the x-y
plane. The relative position x = y1 − y2, velocity v = dx/dt, and acceleration a = dv/dt are
given by

x = r n , (4.32a)
v = ṙ n + rωλ , (4.32b)
a = (r̈ − rω2) n + (r ω̇ + 2ṙω) λ . (4.32c)

For a while the time derivative will be denoted using an over dot. Here λ = ẑ × n is per-
pendicular to the unit vector ẑ along the z-direction orthogonal to the orbital plane, and to
the binary’s separation direction n. The orbital frequency ω is related in the usual way to the
orbital phase φ by ω = φ̇.

Through 3PN order, it is possible to model the motion of the binary as a quasi-circular
orbit decaying by the effect of radiation reaction at the 2.5PN order. This effect is com-
puted by balancing the change in the orbital energy with the total energy flux radiated by the
gravitational waves. At 2.5PN order this yields (see e.g. [96])

ṙ = −64
5

√

Gm
r

ν γ5/2 + O
(

1
c7

)

, (4.33a)

ω̇ =
96
5

Gm
r3 ν γ5/2 + O

(

1
c7

)

, (4.33b)

where γ is given by (4.19). By substituting those expressions into (4.32),13 we obtain the
expressions for the inspiral velocity and acceleration,

v = rωλ − 64
5

√

Gm
r

ν γ5/2 n + O
(

1
c7

)

, (4.34a)

a = −ω2 x − 32
5

√

Gm
r3 ν γ5/2 v + O

(

1
c7

)

. (4.34b)

A central result of PN calculations of the equations of motion is the expression of the
orbital frequencyω in terms of the binary’s separation r up to 3PN order. This result has been
obtained in harmonic coordinates in [143, 144, 148] and independently in [151, 152, 153],
and in ADM coordinates in [141, 142, 147]. In the present work r is given in harmonic
coordinates and the expression of the 3PN orbital frequency is

ω2 =
Gm
r3

{

1 + γ
(

−3 + ν
)

+ γ2
(

6 + 41
4
ν + ν2

)

(4.35)

13We notice that r̈ = O(c−10) is of the order of the square of radiation-reaction effects and is therefore zero
with this approximation.
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+ γ3
(

−10 +
[

−75707
840 +

41
64π

2 + 22 ln
(

r
r′0

)]

ν +
19
2 ν2 + ν3

)

+ O
(

1
c8

)

}

.

Note that the logarithm at 3PN order involves the same constant r′0 as in the source
quadrupole moment (4.18)–(4.20). This logarithm comes from a Hadamard self-field reg-
ularization scheme and its appearance is specific to harmonic coordinates.

As often convenient we shall use in place of the parameter γ given by (4.19) an alternative
parameter x directly linked to the orbital frequency (4.35), namely

x =
(G mω

c3

)2/3
. (4.36)

The interest in this parameter stems from its invariant meaning in a large class of coordinate
systems including the harmonic and ADM coordinate systems. At 3PN order it is given in
terms of x by

γ = x
{

1 + x
(

1 − ν3

)

+ x2
(

1 − 65
12ν

)

(4.37)

+ x3
(

1 +
[

−2203
2520 −

41
192π

2 − 22
3 ln

(

r
r′0

)]

ν +
229
36 ν2 +

ν3

81

)

+ O
(

1
c8

)

}

.

Combining (4.35) with (4.37) we find that the velocity squared v2 = r2ω2+ṙ2 = r2ω2+O(c−10)
is related to x by

(

v

c

)2
= x

{

1 + x

(

−2 + 2
3
ν

)

+ x2
(

1 + 53
6
ν +

ν2

3

)

(4.38)

+ x3
([

−36227
1260 +

41
96π

2 +
44
3 ln

(

r
r′0

)]

ν − 29
9 ν2 +

10
81ν

3
)

+ O
(

1
c8

)

}

.

During the computation of the time derivatives of the source moments, each time an
acceleration is produced the result is consistently order reduced, i.e. the acceleration is re-
placed with (4.34b) at the right PN order. Such an order reduction will generate in particular
some 2.5PN radiation-reaction terms which are to be taken into account in the 3PN wave-
form. This occurs when computing the time derivatives of the moments Ii j, Ii jk and Ji j that
appear in the FWF at Newtonian and 0.5PN orders. On the other hand, when computing
the polarization states following (4.2) we shall meet some scalar products of the polarization
vectors P and Q with the relative velocity v. If those scalar products occur at Newtonian
and 0.5PN orders (i.e. in multipolar pieces corresponding to the moments Ii j, Ii jk and Ji j) we
shall have to take into account the 2.5PN radiation-reaction term coming from the expression
of v given by (4.34a).14 However it was shown in [96] that the radiation-reaction terms in the
FWF at the 2.5PN order can be absorbed into a modification of the orbital phase, where they
appear to constitute in fact a very small phase modulation, comparable with unknown contri-
butions in the phase being at least of order 5PN — negligible here since the phase is known
only to 3.5PN order. In the present chapter, we have chosen15 to include all the radiation-

14Not considering the radiation-reaction contribution in v given by (4.34a) has been the source of an error in
[77] which has been pointed out and corrected in [96].

15As usual there are many different ways of presenting PN results at a given order of approximation, and
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reaction terms coming from both (4.34a) and (4.34b), and to present them as 2.5PN and 3PN
amplitude corrections in our final results which will be presented in (4.63)–(4.64) and (4.71),
(4.72) ... (4.77) below.

Let us next check that the Hadamard self-field regularization constant r′0 appearing both
in the 3PN orbital frequency (4.35) and in the 3PN quadrupole moment (4.20),16 is actually
a gauge constant. To this end we simply verify that r′0 will be eliminated when expressing
the FWF in terms of the gauge invariant parameter (5.97). From (4.20) we see that the
dependence on r′0 of the 3PN quadrupole moment is

Ii j = νm

[

1 − 44
3 γ3 ν ln

(

r
r′0

)]

x〈i j〉 + · · · + O
(

1
c7

)

. (4.39)

We indicate by dots all the terms that are independent of r′0 (for convenience we also show
the Newtonian term). Now the FWF depends on the second time derivative of the quadrupole
moment. For circular orbits this reads [coming back to the superscript notation (n) for time
derivatives]

I(2)
i j = 2νm

[

1 − 44
3
γ3 ν ln

(

r
r′0

)]

(

v〈i j〉 + x〈ia j〉
)

+ · · · + O
(

1
c7

)

. (4.40)

Replacing vi and ai by their values (4.34) we get with the required approximation (still being
interested only in the fate of the constant r′0)

I(2)
i j = 2νm v2

[

1 − 44
3
γ3 ν ln

(

r
r′0

)]

(

λ〈i j〉 − n〈i j〉
)

+ · · · + O
(

1
c7

)

. (4.41)

The squared velocity v2 = r2ω2+O(c−10) appears in factor. It is now clear that replacing v2 by
its expression in terms of the parameter x following (4.38), we produce another logarithmic
term containing r′0, namely

v2 = c2 x

[

1 + 44
3

x3 ν ln
(

r
r′0

)]

+ · · · + O
(

1
c7

)

, (4.42)

which will cancel out the dependence of the quadrupole moment on r′0 at 3PN order (using
the fact that γ can be replaced by x in a small 3PN term). Thus, finally,

I(2)
i j = 2νm c2 x

(

λ〈i j〉 − n〈i j〉
)

+ · · · + O
(

1
c7

)

, (4.43)

is independent on r′0, which means that this constant cannot affect any physical result at the
3PN order.
choosing one or another is often a matter of convenience.

16The other moments are given at 2.5PN order at most; they do not depend on r′0 since the appearance of
regularization constants is a feature of the 3PN approximation.
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4.6 Computation of the tail and memory integrals

The results of Sections 5.4–5.5 yield the complete control of the instantaneous part of the
FWF. We now tackle the computation of the hereditary part, which is composed of tails (and
tails-of-tails and squared-tails) and non-linear memory terms. The hereditary integrals have
been explicitly provided in Section 5.4 as contributions to the various radiative moments UL

and VL given by (4.10)–(4.13). Our computation will basically be a straightforward extension
of the computation performed at 2.5PN order in Section 4 of [77]. Since we employ exactly
the same techniques, we skip most of the details and rely on [77] for justification of the
method and proofs.

We first consider the non-linear memory terms. Up to 3PN order we have the 2.5PN
memory integrals in the radiative mass quadrupole moment Ui j given by (4.10) and the ra-
diative mass hexadecapole moment Ui jkl given by (4.12a) — these are the memory terms
contributing to the FWF at 2.5PN order [77] — and, in addition, we have the memory inte-
gral in the mass octupole moment Ui jk given by (4.11a) and the one in Ui jklm given by (4.13a)
— these contribute specifically at 3PN order.17 Like in [77] we obtain the corresponding in-
tegrands (i.e. the terms under the integral sign) and compute directly their contributions to
the two wave polarizations h+ and h×. Indeed it is convenient to perform the relevant con-
tractions of the integrands with the polarization vectors P and Q (see Section 5.8 for the
conventions we adopt) so as to only deal with scalar quantities.

We find that the memory integrals in h+ and h× are composed of two types of terms.
First there is a term, only present in the plus polarization h+, which does not depend on the
orbital phase and can thus be viewed as a zero-frequency (DC) term. Actually, because of the
steady inspiral, this term is a steadily varying function of time, with an amplitude increasing
like some power law of the time remaining till the coalescence. Strictly speaking, this term
is to be regarded as the memory contribution because it does depend on the behaviour of
the system in the remote past, and therefore must be computed using some model for the
evolution of the binary system in the past. In the present chapter we find that the only zero-
frequency term up to 3PN order is the one which appeared already at 2.5PN order and was
evaluated in [77] — interestingly there are no other terms of this type at the 3PN order.
Because of the cumulative effect of integration over the whole past we know that this term,
though originating from 2.5PN order, finally contributes in the FWF at the Newtonian level
[154, 155, 156]. In practice the computation of this DC term reduces (in the circular orbit
case) to the evaluation of the single elementary integral

I(TR) = (G m)p−1

c2p−3

∫ TR

−∞

dτ
rp(τ)

. (4.44)

Here r(τ) denotes the binary’s separation at any time τ ≤ TR (where TR = T − R/c is
the current time). The coefficient in front of (4.44) is chosen for convenience to make the
integral dimensionless. The integral (4.44) is easily computed using a simplified model of
binary evolution in the past in which the orbit is assumed to remain circular apart from the
gradual inspiral at any time. In this model the binary separation evolves like r(τ) ∝ (Tc−τ)1/4

where Tc denotes the instant of coalescence (see [77] for more details). In the remote past
we thus have r(τ) ∼ (−τ)1/4 so the integral (4.44) converges when p > 4 (actually we shall

17Recall that the non-linear memory terms occur only in the mass-type radiative multipole moments UL.
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only need the case p = 5 like in [77]). The result reads

I(TR) = 5
64(p − 4)

xp−4(TR)
ν

, (4.45)

where x(TR) denotes the current value (i.e. at the current retarded time TR) of the parameter
x defined by (5.97). Witness the memory effect: the end result (4.45) is of order xp−4 =

O(c−2p+8) which is a factor c5 larger than the original formal PN order O(c−2p+3) as shown in
(4.44). Hence, although the memory term is formally of order 2.5PN, its actual contribution
to the waveform is comparable to a Newtonian term. As mentioned above we do not find
memory (zero-frequency) contributions originating from the next 3PN order, and therefore
finally no DC term at 0.5PN order.

Second there are other terms, present in both polarizations, which depend on the or-
bital phase, and oscillate like some harmonics of the orbital phase (say n φ). Such phase-
dependent, oscillating terms do not exhibit the memory effect, essentially because the oscil-
lations, due to the sequence of orbital cycles in the entire life of the binary system, more or
less compensate each other. As a result these terms, in contrast with (4.44)–(4.45), keep on
their formal PN order. We recover the 2.5PN terms investigated in [77] and in addition we
obtain several other terms at 3PN order. The latter are computed by a slight generalization
of the method followed in [77]: instead of (4.18) in [77] we need to consider the integral

J(TR) = (G m)p−1

c2p−3

∫ TR

−∞
dτ

ei nφ(τ)

rp(τ) , (4.46)

where φ(τ) is the orbital phase at any time, where n and p range over integer or half-integer
values (e.g. n = 1, 3, 5 and p = 11/2 at 3PN order), and where the coefficient is chosen
to make the integral dimensionless. Following the steps (4.18)–(4.23) in [77] we compute
this integral using our model of binary’s past evolution, and in the adiabatic limit, which
means that the current value of the adiabatic parameter ξ associated with the binary inspiral
is considered to be small and of PN order ξ(TR) = O(c−5). We then find

J(TR) = xp− 3
2 (TR) ei nφ(TR)

i n

[

1 + O
(

1
c5

)]

. (4.47)

This result (valid only if n , 0) permits to handle all the phase-dependent oscillating terms
coming from the memory integrals.

We next turn to the computation of the tails and tails-of-tails present in the radiative
moments (4.10)–(4.13). Again we closely follow the previous investigation [77] to which we
refer for more details. The computation of tails reduces to the evaluation of an elementary
integral involving a logarithmic kernel,

K(TR) = (G m)p−1

c2p−3

∫ TR

−∞
dτ

ei nφ(τ)

rp(τ)
ln

(

TR − τ
Tc − TR

)

, (4.48)

in which the logarithm has been scaled with the constant time Tc−TR, instead of the previous
normalization by 2τ0, where Tc is the instant of coalescence in the model of [77]. Such
scaling can always be done at the price of adding another term proportional to some integral
of the type J(TR) computed previously. Following the derivation of this integral in [77], we
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find that, at dominant order in the adiabatic approximation,

K(TR) = xp− 3
2 (TR) ei nφ(TR)

i n

[

π

2i
− ln

(

n
ξ(TR)

)

− C + O
(

ln c
c5

)]

. (4.49)

Here C = 0.577 · · · is the Euler constant, and ξ(TR) denotes the current value of the adiabatic
parameter associated with the inspiral, which is defined by ξ(TR) = [(Tc −TR)ω(TR)]−1 in the
model of [77]. The adiabatic parameter is related to the PN parameter x by

ξ(TR) = 256ν
5

x5/2(TR) . (4.50)

The squared-tails are computed using the same integral (4.48)–(4.49). Concerning the tails-
of-tails we simply have to consider an integral involving a logarithm squared,

L(TR) = (G m)p−1

c2p−3

∫ TR

−∞
dτ

ei n φ(τ)

rp(τ)
ln2

(

TR − τ
Tc − TR

)

, (4.51)

which is computed using the same technique with the result

L(TR) = xp− 3
2 (TR) ei n φ(TR)

i n













π2

6 +
(

C + ln
(

n
ξ(TR)

)

+
iπ
2

)2

+ O
(

ln c
c5

)











. (4.52)

We are done with the computation of all tails and tails-of-tails in the 3PN waveform.
For completeness let us give also the two technical formulas which enables one to arrive

at the results (4.49) and (4.52). Posing y = (TR − τ)/(Tc − TR) and λ = n/ξ, and working at
the leading order in the adiabatic limit ξ → 0 or equivalently when λ → +∞, the formulas
express that, for any positive or negative λ (see e.g. [157] p. 573 and 574),

∫ 1

0
dy ln y e−iλy =

1
λ

[

−π
2

sign(λ) + i
(ln |λ| + C

)

]

+ O
(

1
λ2

)

, (4.53a)
∫ 1

0
dy ln2 y e−i λ y =

i
λ

(

−π
2

6 +
[

−π2sign(λ) + i(ln |λ| + C)
]2)

+ O
(

1
λ3

)

. (4.53b)

Notice that we are only interested in the recent past contribution to the integrals (4.53),
corresponding to the interval 0 ≤ y ≤ 1 equivalent to the time interval 2TR − Tc ≤ τ ≤ TR.
The reason is that the remote past contribution, given by 1 < y < +∞ or equivalently
−∞ < τ < 2TR − Tc, is small in the adiabatic limit. This is a characteristic feature of tails:
they die out very rapidly, therefore they depend essentially on the recent past evolution of
the matter source [124, 158]. In the case at hand this technically means that the remote-past
contributions to the integrals are of order

∫ +∞

1
dy ln y e−i λ y = O

(

1
λ2

)

, (4.54a)
∫ +∞

1
dy ln2 y e−i λ y = O

(

1
λ3

)

, (4.54b)

as can easily be verified by using integration by parts.
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Figure 4.1: The geometry of the binary system. The vectors P, Q and N are illustrated.
Adapted from Ref. [127].

4.7 3PN polarization waveforms for data analysis

We specify our conventions for the orbital phase and polarization vectors defining the polar-
ization waveforms (4.2) in the case of quasi-circular binary systems of non-spinning compact
objects. If the orbital plane is chosen to be the x-y plane (like in Section 5.6), with the or-
bital phase φ measuring the direction of the unit vector n = x/r along the relative separation
vector, then

n = x̂ cosφ + ŷ sinφ , (4.55)

where x̂ and ŷ are the unit directions along x and y. Following [84, 77] we choose the
polarization vector P to lie along the x-axis and the observer to be in the y-z plane with

N = si ŷ + ci ẑ , (4.56)

where we pose ci = cos i and si = sin i, with i being the orbit’s inclination angle (0 ≤
i ≤ π). With this choice P lies along the intersection of the orbital plane with the plane
of the sky in the direction of the ascending node N , i.e. that point at which the bodies
cross the plane of the sky moving toward the observer. The orbital phase φ is the angle
between the ascending nodeN and the direction of body one (say). The rotating orthonormal
triad (n,λ, ẑ) describing the motion of the binary [see (4.32)] is then related to the fixed
polarization triad (N,P,Q) by

n = P cosφ + (

ci Q + si N
) sinφ , (4.57a)

λ = −P sinφ + (

ci Q + si N
) cosφ , (4.57b)

ẑ = −si Q + ci N . (4.57c)

As in previous works [84, 77] we shall present the wave polarizations (4.2) as a series
expansion in powers of the gauge-invariant PN parameter x defined by (5.97). With a conve-
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nient overall factorization we write them as




















h+

h×





















=
2 G m ν x

c2 R





















H+

H×





















+ O
(

1
R2

)

, (4.58)

with the following PN series expansion

H+,× =
+∞
∑

n=0
xn/2 H(n/2)

+,× . (4.59)

The PN coefficients H(n/2)
+,× will be given as functions of the orbital phase φ, and will also be

polynomials in the symmetric mass ratio ν and depend on the inclination angle i. In addition
they will involve, at high PN order, the logarithm of x as we shall discuss below.

Following [84, 77] it is convenient to perform a change of phase variable, from the actual
orbital phase φ satisfying φ̇ = ω, to some new variable denoted ψ. Recall that the orbital
phase φ evolves by gravitational radiation reaction and its expression as a function of time is
known from previous work [116, 32, 71] up to 3.5PN order. We then pose18

ψ = φ − 2GMω

c3 ln
(

ω

ω0

)

, (4.60)

where M is the binary’s total mass given by (4.29), and where ω0 denotes the constant

ω0 =
e

11
12−C

4τ0
. (4.61)

Here τ0 = r0/c is the normalization of logarithms in the tail integrals of the radiative moments
(4.10)–(4.13). Like τ0 the constant ω0 is arbitrary and we choose ω0 = π fseismic where fseismic
is the entry frequency of some ground-based interferometric detector. Using (4.29) and the
notation (5.97) the new phase variable reads

ψ = φ − 3x3/2
[

1 − ν2 x
]

ln
(

x
x0

)

, (4.62)

where x0 = (Gmω0
c3 )2/3.19 Our modified phase variable (4.60)–(4.62) will be valid up to 3PN

order but in fact it turns out to be the same as at the previous 2.5PN order [77].
The logarithmic term in ψ corresponds to some spreading of the different frequency com-

ponents of the wave along the line of sight from the source to the far-away detector, and
expresses physically the tail effect as a small delay in the arrival time of gravitational waves.
However, practically speaking, the main interest of this term is to minimize the occurrence
of logarithms in the FWF. Indeed we notice that the logarithmic term in (4.60), although
of formal PN order O(c−3), represents in fact a very small modulation of the orbital phase:
compared with the dominant phase evolution whose order is that of the inverse of radiation
reaction, i.e. φ = O(ξ−1) = O(c5), this term is of order O(c−8) namely 4PN in the phase

18A similar phase variable is also introduced in black-hole perturbation theory [159, 160, 161].
19We have ln x0 =

11
18 − 2

3C − 4
3 ln 2 + 2

3 ln
(

Gm
c2r0

)

in agreement with the equation (68) of [117].
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evolution, which can be regarded as negligible to the present accuracy. Thus the logarithms
associated with the phase modulation in (4.60) will be “eliminated” from the FWF at 3PN
order. This does not mean that we should ignore them but that the formulation in terms of
the small phase modulation (4.60) is quite natural (for the data analysis it is probably better
to keep the logarithm as it stands in the definition of the phase variable ψ). However all
the logarithms will not be “removed” by this process, and we shall find that some “true”
logarithms remain starting at the 3PN order.

With those conventions and notation we find for the plus polarization20

H(0)
+ = −(1 + c2

i ) cos 2ψ − 1
96 s2

i (17 + c2
i ) , (4.63a)

H(0.5)
+ = − si ∆

[

cosψ
(

5
8
+

1
8

c2
i

)

− cos 3ψ
(

9
8
+

9
8

c2
i

)]

, (4.63b)

H(1)
+ = cos 2ψ

[

19
6 +

3
2 c2

i −
1
3 c4

i + ν

(

−19
6 +

11
6 c2

i + c4
i

)]

− cos 4ψ
[

4
3 s2

i (1 + c2
i )(1 − 3ν)

]

, (4.63c)

H(1.5)
+ = si ∆ cosψ

[

19
64
+

5
16

c2
i −

1
192

c4
i + ν

(

−49
96
+

1
8

c2
i +

1
96

c4
i

)]

+ cos 2ψ
[

−2π(1 + c2
i )
]

+ si ∆ cos 3ψ
[

−657
128 −

45
16 c2

i +
81

128 c4
i

+ ν

(

225
64 −

9
8 c2

i −
81
64 c4

i

)]

+ si ∆ cos 5ψ
[

625
384

s2
i (1 + c2

i )(1 − 2ν)
]

, (4.63d)

H(2)
+ = π si ∆ cosψ

[

−5
8 −

1
8 c2

i

]

+ cos 2ψ
[

11
60 +

33
10 c2

i +
29
24 c4

i −
1

24 c6
i

+ ν

(

353
36
− 3 c2

i −
251
72

c4
i +

5
24

c6
i

)

+ ν2
(

−49
12 +

9
2 c2

i −
7

24 c4
i −

5
24 c6

i

)]

+ π si ∆ cos 3ψ
[

27
8 (1 + c2

i )
]

+
2

15 s2
i cos 4ψ

[

59 + 35 c2
i − 8 c4

i −
5
3 ν

(

131 + 59 c2
i − 24 c4

i

)

+ 5 ν2
(

21 − 3 c2
i − 8 c4

i

)]

20We also requote the previous 2.5PN results [77] taking into account the published Erratum [77] and the
correcting term associated with radiation reaction and pointed out in [96].
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+ cos 6ψ
[

−81
40 s4

i (1 + c2
i )

(

1 − 5ν + 5ν2
)

]

+ si ∆ sinψ
[

11
40 +

5 ln 2
4 + c2

i

(

7
40 +

ln 2
4

)]

+ si ∆ sin 3ψ
[(

−189
40
+

27
4

ln(3/2)
)

(1 + c2
i )
]

, (4.63e)

H(2.5)
+ = si ∆ cosψ

[

1771
5120 −

1667
5120 c2

i +
217

9216 c4
i −

1
9216 c6

i

+ ν

(

681
256 +

13
768 c2

i −
35

768 c4
i +

1
2304 c6

i

)

+ ν2
(

−3451
9216

+
673

3072
c2

i −
5

9216
c4

i −
1

3072
c6

i

)]

+ π cos 2ψ
[

19
3
+ 3 c2

i −
2
3

c4
i + ν

(

−16
3
+

14
3

c2
i + 2 c4

i

)]

+ si ∆ cos 3ψ
[

3537
1024 −

22977
5120 c2

i −
15309
5120 c4

i +
729

5120 c6
i

+ ν

(

−23829
1280 +

5529
1280 c2

i +
7749
1280 c4

i −
729

1280 c6
i

)

+ ν2
(

29127
5120

− 27267
5120

c2
i −

1647
5120

c4
i +

2187
5120

c6
i

)]

+ cos 4ψ
[

−16π
3 (1 + c2

i ) s2
i (1 − 3ν)

]

+ si ∆ cos 5ψ
[

−108125
9216 +

40625
9216 c2

i +
83125
9216 c4

i −
15625
9216 c6

i

+ ν

(

8125
256

− 40625
2304

c2
i −

48125
2304

c4
i +

15625
2304

c6
i

)

+ ν2
(

−119375
9216 +

40625
3072 c2

i +
44375
9216 c4

i −
15625
3072 c6

i

)]

+ ∆ cos 7ψ
[

117649
46080 s5

i (1 + c2
i )(1 − 4ν + 3ν2)

]

+ sin 2ψ
[

−9
5
+

14
5

c2
i +

7
5

c4
i + ν

(

32 + 56
5

c2
i −

28
5

c4
i

)]

+ s2
i (1 + c2

i ) sin 4ψ
[

56
5 −

32 ln 2
3 + ν

(

−1193
30 + 32 ln 2

)]

, (4.63f)

H(3)
+ = π∆ si cosψ

[

19
64 +

5
16 c2

i −
1

192 c4
i + ν

(

−19
96 +

3
16 c2

i +
1

96 c4
i

)]

+ cos 2ψ
[

−465497
11025 +

(

856 C
105 −

2 π2

3 +
428
105 ln(16 x)

)

(1 + c2
i )

−3561541
88200 c2

i −
943
720 c4

i +
169
720 c6

i −
1

360 c8
i
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+ ν

(

2209
360 −

41π2

96 (1 + c2
i ) + 2039

180 c2
i +

3311
720 c4

i −
853
720 c6

i +
7

360 c8
i

)

+ ν2
(

12871
540 − 1583

60 c2
i −

145
108 c4

i +
56
45 c6

i −
7

180 c8
i

)

+ν3
(

−3277
810

+
19661
3240

c2
i −

281
144

c4
i −

73
720

c6
i +

7
360

c8
i

)]

+ π∆ si cos 3ψ
[

−1971
128

− 135
16

c2
i +

243
128

c4
i + ν

(

567
64
− 81

16
c2

i −
243
64

c4
i

)]

+ s2
i cos 4ψ

[

−2189
210 +

1123
210 c2

i +
56
9 c4

i −
16
45 c6

i

+ ν

(

6271
90 − 1969

90 c2
i −

1432
45 c4

i +
112
45 c6

i

)

+ ν2
(

−3007
27
+

3493
135

c2
i +

1568
45

c4
i −

224
45

c6
i

)

+ν3
(

161
6 − 1921

90 c2
i −

184
45 c4

i +
112
45 c6

i

)]

+ ∆ cos 5ψ
[

3125 π
384 s3

i (1 + c2
i )(1 − 2ν)

]

+ s4
i cos 6ψ

[

1377
80
+

891
80

c2
i −

729
280

c4
i

+ ν

(

−7857
80 − 891

16 c2
i +

729
40 c4

i

)

+ ν2
(

567
4 +

567
10 c2

i −
729
20 c4

i

)

+ν3
(

−729
16
− 243

80
c2

i +
729
40

c4
i

)]

+ cos 8ψ
[

−1024
315 s6

i (1 + c2
i )(1 − 7ν + 14ν2 − 7ν3)

]

+ ∆ si sinψ
[

− 2159
40320 −

19 ln 2
32 +

(

− 95
224 −

5 ln 2
8

)

c2
i +

(

181
13440 +

ln 2
96

)

c4
i

+ν

(81127
10080 +

19 ln 2
48 +

(

−41
48 −

3 ln 2
8

)

c2
i +

(

−313
480 −

ln 2
48

)

c4
i

)

]

+ sin 2ψ
[

−428 π
105

(1 + c2
i )
]

+ ∆ si sin 3ψ
[

205119
8960 − 1971

64 ln(3/2) +
(

1917
224 −

135
8 ln(3/2)

)

c2
i

+

(

−43983
8960 +

243
64 ln(3/2)

)

c4
i

+ ν

(

−54869
960

+
567
32

ln(3/2) +
(

−923
80
− 81

8
ln(3/2)

)

c2
i
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+

(

41851
2880 −

243
32 ln(3/2)

)

c4
i

)

]

+ ∆ s3
i (1 + c2

i ) sin 5ψ
[

−113125
5376 +

3125
192 ln(5/2) + ν

(

17639
320 − 3125

96 ln(5/2)
)]

.

(4.63g)

For the cross polarizations we obtain

H(0)
× = −2ci sin 2ψ , (4.64a)

H(0.5)
× = sici ∆

[

−3
4 sinψ + 9

4 sin 3ψ
]

, (4.64b)

H(1)
× = ci sin 2ψ

[

17
3
− 4

3
c2

i + ν

(

−13
3
+ 4 c2

i

)]

+ ci s2
i sin 4ψ

[

−8
3(1 − 3ν)

]

, (4.64c)

H(1.5)
× = sici ∆ sinψ

[

21
32 −

5
96 c2

i + ν

(

−23
48 +

5
48 c2

i

)]

− 4π ci sin 2ψ

+ sici ∆ sin 3ψ
[

−603
64 +

135
64 c2

i + ν

(

171
32 −

135
32 c2

i

)]

+ sici ∆ sin 5ψ
[

625
192(1 − 2ν) s2

i

]

, (4.64d)

H(2)
× = sici ∆ cosψ

[

− 9
20
− 3

2
ln 2

]

+ sici ∆ cos 3ψ
[

189
20 −

27
2 ln(3/2)

]

− sici ∆

[

3 π
4

]

sinψ

+ ci sin 2ψ
[

17
15
+

113
30

c2
i −

1
4

c4
i

+ ν

(

143
9 − 245

18 c2
i +

5
4 c4

i

)

+ ν2
(

−14
3 +

35
6 c2

i −
5
4c4

i

)]

+ sici ∆ sin 3ψ
[

27π
4

]

+
4

15 ci s2
i sin 4ψ

[

55 − 12 c2
i −

5
3 ν

(

119 − 36 c2
i

)

+ 5 ν2
(

17 − 12 c2
i

)

]

+ ci sin 6ψ
[

−81
20 s4

i (1 − 5ν + 5ν2)
]

, (4.64e)

H(2.5)
× =

6
5

s2
i ci ν
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+ ci cos 2ψ
[

2 − 22
5 c2

i + ν

(

−282
5 +

94
5 c2

i

)]

+ ci s2
i cos 4ψ

[

−112
5 +

64
3 ln 2 + ν

(

1193
15 − 64 ln 2

)]

+ si ci ∆ sinψ
[

− 913
7680

+
1891

11520
c2

i −
7

4608
c4

i

+ ν

(

1165
384 −

235
576 c2

i +
7

1152 c4
i

)

+ ν2
(

−1301
4608 +

301
2304 c2

i −
7

1536 c4
i

)]

+ π ci sin 2ψ
[

34
3
− 8

3
c2

i + ν

(

−20
3
+ 8 c2

i

)]

+ si ci ∆ sin 3ψ
[

12501
2560

− 12069
1280

c2
i +

1701
2560

c4
i

+ ν

(

−19581
640 +

7821
320 c2

i −
1701
640 c4

i

)

+ ν2
(

18903
2560 −

11403
1280 c2

i +
5103
2560 c4

i

)]

+ s2
i ci sin 4ψ

[

−32π
3

(1 − 3ν)
]

+ ∆ si ci sin 5ψ
[

−101875
4608 +

6875
256 c2

i −
21875
4608 c4

i

+ ν

(

66875
1152 −

44375
576 c2

i +
21875
1152 c4

i

)

+ ν2
(

−100625
4608

+
83125
2304

c2
i −

21875
1536

c4
i

)]

+ ∆ s5
i ci sin 7ψ

[

117649
23040

(

1 − 4ν + 3ν2
)

]

, (4.64f)

H(3)
× = ∆ si ci cosψ

[

11617
20160 +

21
16 ln 2 +

(

− 251
2240 −

5
48 ln 2

)

c2
i

+ν

(

−48239
5040

− 5
24

ln 2 +
(

727
240
+

5
24

ln 2
)

c2
i

)

]

+ ci cos 2ψ
[

856 π
105

]

+ ∆ si ci cos 3ψ
[

−36801
896 +

1809
32 ln(3/2) +

(

65097
4480 −

405
32 ln(3/2)

)

c2
i

+ν

(28445
288 − 405

16 ln(3/2) +
(

−7137
160 +

405
16 ln(3/2)

)

c2
i

)

]

+ ∆ s3
i ci cos 5ψ

[

113125
2688

− 3125
96

ln(5/2) + ν
(

−17639
160

+
3125

48
ln(5/2)

)]
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+ π∆ si ci sinψ
[

21
32 −

5
96 c2

i + ν

(

− 5
48 +

5
48 c2

i

)]

+ ci sin 2ψ
[

−3620761
44100 +

1712 C
105 − 4 π2

3 +
856
105 ln(16 x)

− 3413
1260 c2

i +
2909
2520 c4

i −
1

45 c6
i

+ ν

(

743
90 −

41 π2

48 +
3391
180 c2

i −
2287
360 c4

i +
7
45 c6

i

)

+ ν2
(

7919
270

− 5426
135

c2
i +

382
45

c4
i −

14
45

c6
i

)

+ν3
(

−6457
1620 +

1109
180 c2

i −
281
120 c4

i +
7

45 c6
i

)]

+ π∆ si ci sin 3ψ
[

−1809
64 +

405
64 c2

i + ν

(

405
32 −

405
32 c2

i

)]

+ s2
i ci sin 4ψ

[

−1781
105

+
1208
63

c2
i −

64
45

c4
i

+ ν

(

5207
45 − 536

5 c2
i +

448
45 c4

i

)

+ ν2
(

−24838
135 +

2224
15 c2

i −
896
45 c4

i

)

+ν3
(

1703
45
− 1976

45
c2

i +
448
45

c4
i

)]

+ ∆ sin 5ψ
[

3125 π
192

s3
i ci(1 − 2ν)

]

+ s4
i ci sin 6ψ

[

9153
280 −

243
35 c2

i + ν

(

−7371
40 +

243
5 c2

i

)

+ν2
(

1296
5 − 486

5 c2
i

)

+ ν3
(

−3159
40 +

243
5 c2

i

)]

+ sin 8ψ
[

−2048
315

s6
i ci(1 − 7ν + 14ν2 − 7ν3)

]

. (4.64g)

Notice the obvious fact that the polarization waveforms remain invariant when we rotate by
π the separation direction between the particles and simultaneously exchange the labels of
the two particles, i.e. when we apply the transformation (ψ,∆) → (ψ + π,−∆). Moreover,
due to the parity invariance, H+ is unchanged after the replacement i→ π− i, while H× being
the projection of hTT

i j on a tensorial product of two vectors of inverse parity types, is changed
into its opposite.

We have performed two important tests on these expressions. First of all we have veri-
fied that the perturbative limit ν → 0 of the polarization waveforms (4.63)–(4.64) is in full
agreement up to 3PN order with the result of black-hole perturbation theory as reported in
the Appendix B of [160].21 Our second test is the verification that the wave polarizations

21In [77] a misprint was spotted in the Appendix B of [160]: the sign of the harmonic coefficient ζ×7,3 should
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(4.63)–(4.64) give back the correct energy flux at 3PN order. The asymptotic flux is given in
terms of the polarizations by

F GW = lim
R→+∞

R2 c3

4G

∫

dΩ
4π

[

(

ḣ+
)2
+

(

ḣ×
)2]

, (4.65)

where dΩ is the solid angle element associated with the direction of propagation N. We
have dΩ = sinΘ dΘ dΦ where (Θ,Φ) are the angles defining N, following the notation of
Section 5.2. To obtain the polarizations corresponding to this general convention for N we
have to make some simple replacements in (4.63)–(4.64) for i and ψ. As is clear from the
geometry of the problem we must replace (i, ψ) → (Θ, ψ + π/2 − Φ). The time derivative of
the polarizations is computed in the adiabatic approximation, using φ̇ = ω and ω̇ given by
(4.33b). Of course one must take into account the difference between φ and the variable ψ
used in (4.63)–(4.64). Finally, the angular integration in (4.65) is readily performed and the
result is in perfect agreement with the 3PN energy flux given by (12.9) of [116].22

As already mentioned there are some “true” logarithms which remain in the FWF at the
3PN order — i.e. after it has been expressed with the help of the PN parameter x and the
phase variable ψ. Inspection of (4.63)–(4.64) shows that these logarithms have the effect of
correcting the Newtonian polarizations in the following way:





















H+

H×





















=





















−(1 + c2
i ) cos 2ψ

−2ci sin 2ψ





















(

1 − 428
105 x3 ln(16 x)

)

+ · · · + O
(

1
c7

)

, (4.66)

where the dots represent the terms independent of logarithms. In our previous computation
of the 3PN flux using (4.65) we have already checked that these logarithms are consistent
with similar logarithms occurring at 3PN order in the flux. Indeed we easily see that they
correspond in the 3PN flux to the terms

F GW =
32c5

5G
ν2x5

[

1 − 856
105 x3 ln(16 x) + · · · + O

(

1
c7

)]

, (4.67)

already known from (12.9) in [116]. Technically the logarithm in (4.66) or (4.67) is due to
the tails-of-tails at 3PN order. Notice that this logarithm survives in the test-mass limit ν→ 0
and is therefore also seen to appear in linear black hole perturbations [159, 160, 161].

4.8 3PN spherical harmonic modes for numerical relativity

The spin-weighted spherical harmonic modes of the polarization waveforms at 3PN order
can now be obtained from using the angular integration (4.5). An alternative route would be
to use the relations (4.6)–(4.7) giving the modes directly in terms of separate contributions
of the radiative moments UL and VL. In the present chapter the two routes are equivalent
because all the radiative moments are “uniformly” given with the approximation that is nec-

be changed, so that one should read ζ×7,3 = +
729

10250240 cos(θ)(167 + ...) sin(θ)(v5 cos(3ψ) − ...).
22The ambiguity parameters therein are now known to be λ = − 1987

3080 [147, 148] and θ = ξ + 2κ + ζ = − 11831
9240

[71].
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essary and sufficient to control the 3PN waveform.
In this respect one should be careful about what we mean by controlling the modes up to

3PN order. We mean — having in mind the standard PN practice — that the accuracy of the
modes is exactly the one which is needed to obtain the 3PN waveform. Thus the dominant
mode h22 will have full 3PN accuracy, but higher-order modes, which start at some higher
PN order, will have a lower relative PN accuracy. For instance we shall see that the mode
h44 starts at 1PN order thus it will be given only with 2PN relative accuracy.

The angular integration in (4.5) is over the angles (Θ,Φ). Like in our previous computa-
tion of the flux (4.65), it should be performed after substituting (i, ψ)→ (Θ, ψ + π/2 − Φ) in
the wave polarizations. Denoting h = h+ − ih× the integral we consider is thus

h`m =
∫

dΩ h(Θ, ψ + π/2 − Φ) Y
`m

−2 (Θ,Φ) . (4.68)

Changing Φ into ψ + π/2 − ψ′ and Θ into i′ = arccos c′i , and using the known dependence of
the spherical harmonics on the azimuthal angle Φ [see (4.4)], we obtain

h`m = (−i)m e−imψ

∫ 2π

0
dψ′

∫ 1

−1
dc′i h(i′, ψ′) Y `m

−2 (i′, ψ′) , (4.69)

exhibiting the azimuthal factor e−imψ appropriate for each mode. Let us factorize out in
all the modes an overall coefficient including e−imψ, and such that the dominant mode with
(`,m) = (2, 2) starts with one (by pure convention) at the Newtonian order. Remembering
also our previous factorization in (4.58) we pose

h`m =
2G m ν x

R c2 H`m , (4.70a)

H`m =

√

16π
5 Ĥ`m e−imψ , (4.70b)

and list all the results in terms of Ĥ`m,23

Ĥ22 = 1 + x

(

−107
42 +

55ν
42

)

+ 2πx3/2 + x2
(

−2173
1512 −

1069ν
216 +

2047ν2

1512

)

+ x5/2
(

−107π
21
− 24iν +

34πν
21

)

+ x3
(27027409

646800
− 856C

105
+

428iπ
105

+
2π2

3

+

(

−278185
33264

+
41π2

96

)

ν − 20261ν2

2772
+

114635ν3

99792
− 428

105
ln(16x)

)

+ O
(

1
c7

)

, (4.71a)

Ĥ21 =
1
3 i∆

[

x1/2 + x3/2
(

−17
28 +

5ν
7

)

+ x2
(

π + i

(

−1
2 − 2 ln 2

))

+ x5/2
(

− 43
126 −

509ν
126 +

79ν2

168

)

+ x3
(

− 17π
28 +

3πν
14

+ i

(

17
56
+ ν

(

−995
84
− 3 ln 2

7

)

+
17 ln 2

14

)

)]

+ O
(

1
c7

)

, (4.71b)

23The modes having m < 0 are easily deduced using Ĥ`,−m = (−)`Ĥ
`m

.
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Ĥ20 = − 5
14
√

6
+ O

(

1
c7

)

, (4.71c)

Ĥ33 = −3
4

i

√

15
14
∆

[

x1/2 + x3/2(−4 + 2ν) + x2
(

3π + i

(

−21
5
+ 6 ln (3/2)

))

+ x5/2
(

123
110 −

1838ν
165 +

887ν2

330

)

+ x3
(

− 12π + 9πν
2

+ i

(

84
5 − 24 ln (3/2) + ν

(

−48103
1215 + 9 ln (3/2)

))

)]

+ O
(

1
c7

)

, (4.72a)

Ĥ32 =
1
3

√

5
7

[

x(1 − 3ν) + x2
(

−193
90
+

145ν
18
− 73ν2

18

)

+ x5/2
(

2π − 6πν + i

(

−3 + 66ν
5

))

+ x3
(

−1451
3960 −

17387ν
3960 +

5557ν2

220 − 5341ν3

1320

)

]

+ O
(

1
c7

)

, (4.72b)

Ĥ31 =
i∆

12
√

14

[

x1/2 + x3/2
(

−8
3 −

2ν
3

)

+ x2
(

π + i

(

−7
5 − 2 ln 2

))

+ x5/2
(

607
198
− 136ν

99
− 247ν2

198

)

+ x3
(

− 8π
3
− 7πν

6

+ i

(

56
15 +

16 ln 2
3 + ν

(

− 1
15 +

7 ln 2
3

))

)]

+ O
(

1
c7

)

, (4.72c)

Ĥ30 = −2
5 i

√

6
7 x5/2ν + O

(

1
c7

)

, (4.72d)

Ĥ44 = −8
9

√

5
7

[

x(1 − 3ν) + x2
(

−593
110
+

1273ν
66

− 175ν2

22

)

+ x5/2
(

4π − 12πν + i

(

−42
5 + ν

(

1193
40 − 24 ln 2

)

+ 8 ln 2
))

+ x3
(

1068671
200200 −

1088119ν
28600 +

146879ν2

2340 − 226097ν3

17160

)

]

+ O
(

1
c7

)

, (4.73a)

Ĥ43 = − 9i∆

4
√

70

[

x3/2(1 − 2ν) + x5/2
(

−39
11 +

1267ν
132 −

131ν2

33

)

+ x3
(

3π − 6πν + i

(

−32
5
+ ν

(

16301
810

− 12 ln (3/2)
)

+ 6 ln (3/2)
))

]

+ O
(

1
c7

)

, (4.73b)

Ĥ42 =
1

63
√

5
[

x(1 − 3ν) + x2
(

−437
110 +

805ν
66 −

19ν2

22

)

+ x5/2
(

2π − 6πν

+ i

(

−21
5 +

84ν
5

)

)

+ x3
(

1038039
200200 −

606751ν
28600 +

400453ν2

25740 +
25783ν3

17160

)

]

+ O
(

1
c7

)

,

(4.73c)

Ĥ41 =
i∆

84
√

10

[

x3/2(1 − 2ν) + x5/2
(

−101
33 +

337ν
44 −

83ν2

33

)
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+ x3
(

π − 2πν + i

(

−32
15 − 2 ln 2 + ν

(

1661
30 + 4 ln 2

)))

]

+ O
(

1
c7

)

, (4.73d)

Ĥ40 = − 1
504
√

2
+ O

(

1
c7

)

, (4.73e)

Ĥ55 =
625i∆

96
√

66

[

x3/2(1 − 2ν) + x5/2
(

−263
39 +

688ν
39 −

256ν2

39

)

+ x3
(

5π − 10πν + i

(

−181
14
+ ν

(

105834
3125

− 20 ln (5/2)
)

+ 10 ln (5/2)
))

]

+ O
(

1
c7

)

,

(4.74a)

Ĥ54 = − 32
9
√

165

[

x2
(

1 − 5ν + 5ν2
)

+ x3
(

−4451
910

+
3619ν
130

− 521ν2

13
+

339ν3

26

)

]

+ O
(

1
c7

)

,

(4.74b)

Ĥ53 = − 9
32 i

√

3
110 ∆

[

x3/2(1 − 2ν) + x5/2
(

−69
13 +

464ν
39 −

88ν2

39

)

+ x3
(

3π − 6πν + i

(

−543
70 + ν

(

83702
3645 − 12 ln (3/2)

)

+ 6 ln (3/2)
))

]

+ O
(

1
c7

)

, (4.74c)

Ĥ52 =
2

27
√

55

[

x2
(

1 − 5ν + 5ν2
)

+ x3
(

−3911
910

+
3079ν
130

− 413ν2

13
+

231ν3

26

)

]

+ O
(

1
c7

)

,

(4.74d)

Ĥ51 =
i∆

288
√

385

[

x3/2(1 − 2ν) + x5/2
(

−179
39
+

352ν
39
− 4ν2

39

)

+ x3
(

π − 2πν + i

(

−181
70 − 2 ln 2 + ν

(

626
5 + 4 ln 2

)))

]

+ O
(

1
c7

)

, (4.74e)

Ĥ50 = O
(

1
c7

)

, (4.74f)

Ĥ66 =
54

5
√

143

[
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, (4.75d)
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, (4.75f)
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Ĥ60 = O
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)
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Ĥ77 = −i
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+ O
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, (4.76a)
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, (4.76c)
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Ĥ73 = −i
243

160160

√

3
2 ∆ x5/2

[

1 − 4ν + 3ν2
]

+ O
(

1
c7

)

, (4.76e)
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Ĥ81 = O
(

1
c7

)

, (4.77h)
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while all the higher-order modes fall into the PN remainder and are negligible. However, we
shall give here for the reader’s convenience their leading order expressions for non zero m
(see the derivation in [117]). For ` + m even we find:

Ĥ`m =
(−)(`−m+2)/2

2`+1( `+m
2 )!( `−m

2 )!(2` − 1)!!

(

5(` + 1)(` + 2)(` + m)!(` − m)!
`(` − 1)(2` + 1)

)1/2

s`(ν) (im)` x`/2−1

+ O
(

1
c`−2

)

, (4.78)

where we recall that the function s`(ν) is defined in (4.28). For ` + m odd we have:

Ĥ`m =
(−)(`−m−1)/2

2`−1( `+m−1
2 )!( `−m−1

2 )!(2` + 1)!!

(

5(` + 2)(2` + 1)(` + m)!(` − m)!
`(` − 1)(` + 1)

)1/2

× s`+1(ν) i (im)` x(`−1)/2 + O
(

1
c`−2

)

. (4.79)

When m = 0, Ĥ`m may not vanish due to DC contributions of the memory integrals. We
already know that such an effect arises at Newtonian order [see (4.63a)], hence the non zero
values of Ĥ20 and Ĥ40.

We find that the result for Ĥ22 at 3PN order given by (4.71a) is in complete agreement
with the result of Kidder [117]. The only difference is our use of the particular phase variable
(4.62) which permits to remove most of the logarithmic terms, showing that they are actually
negligible modulations of the orbital phase. For the other harmonics we find agreement with
the results of [117] up to 2.5PN order, but the results have here been completed by all the
3PN contributions.

4.9 Implications of the 3PN waveform for LISA observa-
tions

In the previous two chapters it was shown how the use of a 2.5PN accurate amplitude-
corrected waveform (called the FWF in those chapters) resulted in an increased mass-reach
and improved estimations of sky-position and luminosity distance for super massive black
hole (SMBH) binaries with LISA, when compared to the RWF. In this section we present
a short summary of a recent investigation [162] on how the 3PN accurate waveform (FWF)
performs in these aspects relative to the RWF.

Recall that the RWF is a waveform whose amplitude is Newtonian and phase is accu-
rate upto 3.5PN. The RWF contains only the harmonic whose frequency is twice the orbital
frequency. Higher PN corrections lead to addition of higher harmonics in the waveform. It
is these higher harmonics that are solely responsible for the enhanced mass-reach and im-
proved parameter estimation of the FWF. It was noted, in Section II of chapter 2, that the
(2n + 2)th harmonic first appears at the nth PN order correction in the amplitude. Hence, the
3PN waveform will have a harmonic which is eight times the fundamental orbital frequency.

This fact obviously leads to an increased mass-reach compared to the 2.5PN waveform
for which the highest harmonic is at 7Ψ, Ψ being the orbital phase. The harmonic at 8Ψ will
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Figure 4.2: SNR versus total mass for successive PN amplitude corrected waveforms and
3.5PN phasing for mass ratio 0.1 with lower cut-off frequency 10−5Hz. The upper cut-off
of the kth-harmonic in the FWF is inversely proportional to the total mass. As the mass
increases the cut-off for the 2nd harmonic (or the RWF) falls below the lower cut-off of the
LISA detector bandwidth. The higher harmonics still enter the sensitive bandwidth of LISA
and higher PN order waveforms produce significant SNR. The 3PN waveform has the highest
mass reach, being 4 times the mass reach of the RWF. Sources are at a luminosity distance
of 3 Gpc with fixed angles given by θS = cos−1(−0.6), φS = 1, θL = cos−1(0.2), φL = 3. The
noise curve is the same as used in chapters 2 and 3. Adapted from Ref. [162].

be quantitatively more significant for the equal-mass case as the mass-reach will be better by
33% relative to the 2.5PN waveform as opposed to the unequal mass case where it is only
14%. The step-by-step increase in mass-reach, as measured by the SNR, when one goes
from the RWF to the 3PN FWF in steps of 0.5PN is shown in Figure 4.2. Our system of
interest, as in chapters 2 and 3, are SMBH binaries, detected with LISA.

The dramatic increase in angular resolution of LISA and improved estimation of luminos-
ity distance for SMBH binaries as discussed in chapter 3, holds true for the 3PN waveform.
Because of the increased angular resolution, the number of clusters within the reduced error-
box is of the order one, enabling the identification of the host galaxy cluster of the SMBH
binary. This helps in a measurement of the source’s red-shift and leads to an independent
confirmation of the cosmological parameters. Presence of possible EM counterparts can lead
to an accurate determination of redshift. In such cases, the improved estimation of luminos-
ity distance will lead to LISA’s ability to constrain the dark energy equation of state index
w, as shown in chapter 3 . The 3PN waveform, like the 2.5PN one (whose performance is
also presented in the table for comparison), can limit the number of clusters Ncluster within
its angular error-box to less than one for most choices of source location and orientation and
the error estimates on w are comparable to other dark-energy missions.
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µS ϕS µL ϕL Model SNR ∆ ln DL ∆ΩS ∆ lnM ∆δ Ncluster ∆w

rad rad (10−3) (10−6str) (10−6) (10−6)
(m1, m2) = (106, 107)M�; fs = 10−5Hz;
0.3 5 0.8 2 RWF 562 8.72 10.3 16.5 53.5 0.21 0.049

2.5PN 510 7.97 8.2 14.9 46.2 0.17 0.045
3.0PN 497 7.96 8.4 15.0 46.7 0.17 0.045

−0.1 2 −0.2 4 RWF 870 7.59 59 13.4 38.2 1.20 0.043
2.5PN 779 6.35 22.8 12.3 33.9 0.46 0.036
3.0PN 754 6.34 21.5 12.4 34.5 0.44 0.035

−0.8 1 0.5 3 RWF 1943 2.25 84.6 8.9 22.7 1.70 0.013
2.5PN 1661 2.12 39.1 8.2 21.0 0.79 0.012
3.0PN 1589 2.18 39.8 8.3 21.6 0.81 0.012

−0.5 3 −0.6 −2 RWF 1345 5.66 77.9 11.3 30.4 1.60 0.032
2.5PN 1172 2.97 26.3 10.1 27.6 0.54 0.017
3.0PN 1124 2.93 25.6 10.3 28.1 0.52 0.016

0.9 2 −0.8 5 RWF 2716 88.68 38.8 7.2 15.9 0.79 0.499
2.5PN 2187 1.35 12.4 7.4 17.8 0.25 0.008
3.0PN 2097 1.39 13.3 7.5 18.2 0.27 0.008

−0.6 1 0.2 3 RWF 1555 3.27 112.7 10.8 27.9 2.30 0.019
2.5PN 1356 2.76 74.4 9.7 25.2 1.52 0.015
3.0PN 1299 2.74 72.2 9.8 25.8 1.47 0.015

−0.1 3 −0.9 6 RWF 1592 4.05 213 11.7 28.3 4.34 –
2.5PN 1402 3.85 199.4 10.6 25.3 4.06 –
3.0PN 1345 3.79 197.1 10.7 25.9 4.02 –

Table 4.1: Comparison of accuracy in LISA’s measurement of the various parameters at
0PN, 2.5PN and 3.0PN for seven different sets of the angular parameters and for a binary
with masses (106 − 107)M� at a distance of 3 Gpc (z = 0.55) with lower cut-off frequency
10−5Hz. The noise curve is the same as used in chapters 2 and 3. When the number of
clusters in the error box on the sky is significantly larger than 1, it will not be possible to
determine redshift unless the inspiral event has a clear optical counterpart; we have chosen
not to quote results for ∆w in such cases. Adapted from Ref. [162].
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