
Chapter 5

Tail effects in the 3PN gravitational wave
angular momentum flux
of compact binaries in quasi-elliptical
orbits

5.1 Introduction

5.1.1 Astrophysical compact binaries in quasi-elliptical orbits

In the previous three chapters we have studied the data-analysis and computation of gravi-
tational wave (GW) polarisations from inspiralling compact binaries, but with orbits which
were quasi-circular. Indeed, these are the most plausible sources for detecting GW with the
help of laser interferometers like LIGO, VIRGO and the planned LISA. It has been estab-
lished long ago, in a seminal work by Peters [47], that compact binaries moving in elliptical
orbits with large relative separation circularise under radiation reaction due to loss of energy
through emission of GW. Motivated by this, the 3.5PN phasing of inspiralling compact bina-
ries moving in quasi-circular orbits is now complete and available for use in GW data analy-
sis [32, 163]. Recent progress in increasing the sensitivity of LIGO by an order of magnitude
to reach Advanced LIGO sensitivity renders the completion of the highly accurate phasing
formula very timely. This is because prototype binary sources of GW for ground-based in-
terferometric GW detectors are neutron star (NS) or black hole (BH) binaries close to their
merger phase and consequently have lost all their eccentricity by the time the GW from them
enter the detector bandwidth.

However, astrophysical investigations indicates the possibility of detecting binaries with
eccentricity in the sensitive bandwidth of both terrestrial and space-based gravitational wave
detectors. One such scenario is the Kozai oscillations [48]. This occurs in the cores of
dense globular clusters where gravitational interactions between pairs of binary BH systems
are likely. These interactions can lead to an eventual ejection of one of the BH resulting
in the formation of a stable hierarchical triplet. This is a three-body configuration, where
two closely bound BH orbit each other while the third orbits the center-of-mass of the first
two. When the two orbital planes have a large inclination angle between them, tidal forces
from the outer body increases the eccentricity of the inner stable binary by causing an orbital

103



resonance. The Kozai mechanism described above can lead to eccentricities greater than 0.1
at the time GW from the inner binary enters the bandwidth of Advanced LIGO [49]. Binaries
comprising stellar mass BH are estimated to possess a thermal distribution of eccentricities
[164]. Eccentric binaries with higher masses situated in globular clusters are also potential
sources for LISA. Intermediate mass (∼ 103M�) BH binaries with eccentricities between 0.1
and 0.2 are also expected to be generated by the Kozai mechanism [165]. These systems
will lie in the bandwidth of LISA. Supermassive BH binaries, which are the most promising
sources for LISA, can also merge within Hubble time with high eccentricities if the Kozai
mechanism is in operation [166].

Another astrophysical situation where GW from eccentric binaries can be observable has
been described by Davis, Levan and King [167]. A NS-BH binary can become eccentric
in the late stages of its inspiral. During the first phase of mass transfer, numerical studies
[167] show that the NS is not disrupted and orbits the BH in a high eccentricity orbit. The
resulting system loses angular momentum via emission of GW which fall in the bandwidth
of detectors like Advanced LIGO. Evolution under radiation reaction drives the two bodies to
contact which is followed by further phases of mass-transfer. Recently, this mechanism was
successful in explaining the light curve of the short gamma-ray-burst GRB 050911 [168].

Recently, Grindlay et. al [169] have proposed that short GRBs are produced by NS-NS
binary mergers which are formed in globular clusters. These systems have the distinct feature
that they possess high eccentricities at short orbital separations (see Figure 2 of [169]).

Apart from globular clusters, galaxies can also host compact binaries which have residual
eccentricity in their late-inspiral phase. Asymmetric kicks imparted to NS at the time of their
birth will result in highly eccentric NS-NS binaries [170]. The same conclusion also applies
to NS-BH and BH-BH binaries [170].

5.1.2 Template construction for eccentric binaries and data analysis

All the above astrophysical paradigms clearly shows that inspiralling compact binaries in
quasi-elliptic orbits are also quite plausible sources for both ground and space based interfer-
ometric GW detectors. Construction of templates for eccentric binaries require an accurate
knowledge of the secular evolution of the GW phase and the evolution of the orbital ele-
ments (like semi-major axis, eccentricity) under radiation reaction. The first attempt in this
direction was the classic works of Peters and Mathews [171, 47]. After computing the time-
averaged (over an orbit) far-zone energy and angular momentum flux in the Newtonian limit,
Peters and Mathews balanced them with the loss of binding energy and angular momentum
of the Keplerian orbit. This allowed them to obtain the rate of decay of the orbital elements
and showed that eccentricity decays roughly by a factor of three when the semi-major axis
of the orbit is halved. After Peters and Mathews the evolution of the orbital elements by this
procedure was progressively extended by Blanchet and Schäfer to 1PN in [172] and 1.5PN
in [172, 173] and finally to 2PN by Gopakumar and Iyer [174]. While [175, 173] require
the 1PN accurate orbital description of Damour and Deruelle [176], [174] crucially employs
the generalised 2PN quasi-Keplerian parametrization of the binary’s orbital motion in ADM
coordinates as given in [177, 178, 179].

More recently, Damour, Gopakumar and Iyer [180] discussed an analytic method for
constructing high accuracy templates for the GW signals from compact binaries in quasi-
elliptical orbits in their inspiral phase. They go beyond the computation of the slow secular
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effects by the standard averaging over the orbital period and compute the additional fast oscil-
latory contributions beyond the average secular contributions. Using an improved “method
of variation of constants” and working up to the leading radiation reaction order of 2.5PN,
they combine the three time scales involved in the elliptical orbit case -the orbital period,
periastron precession and radiation reaction time scales - without making the usual approx-
imation of treating the radiative time scale as an adiabatic process. This was extended to
3.5PN order in Ref [181].

There have been relatively few exercises in data-analysis aspects of GW from eccentric
binaries. This is primarily because inclusion of eccentricity in the parameter space leads to
a large increase in the number of templates required to search for signals [182], which is
consequently accompanied by higher computational costs. To circumvent this issue, Martel
and Poisson [183] computed the loss in event rate if eccentric binaries are searched with
circular templates. They found that even though the circular templates are not optimal filters,
they will be efficient in detecting eccentric binaries. Further, the loss in signal-to-noise-ratio
incurred increases with increasing eccentricity for a given total mass of the binary.

Recently Tessmer and Gopakumar [184] revisited the same problem, but used a 2.5PN
accurate orbital evolution and adopted the phasing formalism developed in [180] mentioned
above. The result of their analysis (with detector Initial LIGO) was that templates which
modelled GW from binaries evolving under quadrupolar radiation reaction and whose orbits
are 2PN accurate circular orbits are very efficient in searching for eccentric binaries.

5.1.3 3PN angular momentum flux: hereditary terms

The generation problem of gravitational waves for inspiralling compact binaries has been
completed at the third post-Newtonian (3PN) order both for the equation of motion of the bi-
nary and for its far-zone radiation field. Recently, in a series of two related papers [185, 186],
the computation of the energy flux of gravitational waves (GW) from inspiralling compact bi-
naries moving in general non-circular orbits up to 3PN order was discussed. For non-circular
orbits, in addition to the conserved energy and gravitational wave energy flux, the angular
momentum flux needs to be known to determine the phasing of quasi-eccentric binaries. As
mentioned before, a knowledge of the angular momentum flux of the system averaged over
an orbit is mandatory to calculate the evolution of the orbital elements of non-circular, in
particular, elliptic orbits under GW radiation reaction.

In this chapter, we compute all the hereditary terms in the angular momentum flux of
inspiralling compact binaries moving in non-circular orbits up to 3PN order generalising
earlier work at 1.5PN order (tails and spin-orbit) by Schaf́er and Rieth [173]. The hereditary
terms, unlike the instantaneous terms which are functions of the retarded time, depend on the
dynamics of the system in its entire past. The 3PN hereditary contribution to angular momen-
tum flux comes, apart from the tail terms, the tails of tails and tail-squared terms [135, 134].
Unlike the energy flux case, the angular momentum flux also contains an interesting memory
contribution at 2.5PN. Using the angular momentum flux expression in conjunction with the
3PN accurate hereditary part of the energy flux obtained in Ref. [187, 185], we compute the
hereditary part of the evolution of the orbital elements, semi-major axis ar, eccentricity et,
mean motion n and the periastron advance parameter k. Evolution of other related parameters
such as orbital period P can be derived from these expressions. We also provide the expres-
sions for the fluxes and evolution of orbital elements in the limit of small eccentricity up to
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second order in et. All the results of this chapter are provided in terms of the PN parameter
x = (Gmω

c3 )2/3, related to the orbital frequency ω, which helps one to recover the circular orbit
limit straightforwardly. The instantaneous terms in the 3PN angular momentum flux were
computed by Arun in [188].

The rest of this chapter is organised as follows. In Section 5.2, we provide the general
expression for the angular momentum flux in terms of radiative moments and relations be-
tween the radiative and source moments, keeping only terms relevant for computation of the
hereditary terms upto 3PN accuracy. Section 5.3 reviews the solution of the equations of
motion of compact binaries upto the accuracy we require for this chapter. In Section 5.4, we
provide the Fourier domain representations of the source multipole moments and their use
in averaging the flux over the orbital time-scale. Section 5.5 provides explicit expressions
of the hereditary contributions in terms of the Fourier amplitudes. In Section 5.6 we give
details of the numerical evaluation of these contributions. We provide the complete 3PN
hereditary terms in Section 5.7 along with relevant checks. In Section 5.8, evolution of the
orbital elements due to hereditary terms are provided. Section 5.9 comprises the conclusion
and discussion of the results of this chapter. Finally, in Section 5.10, a list of the Fourier
coefficients of the Newtonian moments are given in terms of Bessel functions.

5.2 Structure of the hereditary terms in the angular mo-
mentum flux

The complete 3PN accurate angular momentum flux in the source’s far-zone, written in terms
of the symmetric trace-free (STF) mass and current type radiative multipole moments (ULs
and VLs) [130] can be found in Ref. [188]. Below we provide the far zone angular momentum
flux F J i upto 1PN order which will be sufficient to control the hereditary part of F J i upto
3PN.

F J i =
G
c5 εi jk

{2
5U jaU(1)

ka +
1
c2

[

1
63U jabU(1)

kab +
32
45V jaV (1)

ka

]

}

+ · · · . (5.1)

The dots indicate terms which contribute to the 3PN instantaneous terms in F J i and we do
not write them explicitly. UL and VL (with L = i jk... a multi-index composed of l indices,
each index running from 1 to 3) are the mass and current type radiative multipole moments
respectively and U (l)

L and V (l)
L denote their lth time derivatives.

The moments are functions of retarded time TR ≡ T − R
c in radiative coordinates. εipq

is the usual Levi-Civita symbol such that ε123 = +1. The shorthand O(n) indicates that the
post-Newtonian remainder is of order of O(c−n).

Using the multipolar Post-Minkowskian (MPM) formalism outlined in the previous chap-
ter, we re-express the radiative moments in Eq. (5.1) in terms of the source moments to an
accuracy sufficient for the computation of the hereditary part of the angular momentum flux
up to 3PN. The complete expressions required to calculate the instantaneous terms were
already given in the previous chapter.

The relations connecting the different radiative moments UL and VL to the corresponding
source moments IL and JL [124, 135, 134] required for this chapter are given below.
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For the mass type moments we have

Ui j(TR) = I(2)
i j (TR) + 2GM

c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
11
2

]

I(4)
i j (V) − 2 G

7 c5

∫ TR

−∞
dVI(3)

a<i(V)I(3)
j>a(V)

+2
(GM

c3

)2 ∫ TR

−∞
dVI(5)

i j (V)
[

ln2
(TR − V

2b

)

+
57
70 ln

(TR − V
2b

)

+
124627
44100

]

+O(7), (5.2a)

Ui jk(TR) = I(3)
i jk (TR) + 2GM

c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
97
60

]

I(5)
i jk (V) + O(5) , (5.2b)

where the bracket <> denotes STF projection. In the above formulas, M is the total ADM
mass of the binary system. The IL’s and JL’s are the mass and current-type source moments,
and I(p)

L , J(p)
L denote their p-th time derivatives.

For the current-type moments, on the other hand, we find

Vi j(TR) = J(2)
i j (TR) + 2GM

c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
7
6

]

J(4)
i j (V) + O(5) . (5.3)

The radiative moments have two distinct contributions. The first part which is a function
only of the retarded time, TR = T − R

c , are the ‘instantaneous terms’ . The second part that
depends on the dynamics of the system in its entire past [124] is referred to as hereditary
contributions and forms the subject matter of this chapter.

The parameter b appearing in the logarithms of Eqs. (5.2) and (5.3) is a freely specifiable
constant, having the dimension of time, entering the relation between the retarded time TR =

T − R/c in radiative coordinates and the corresponding time t − ρ/c in harmonic coordinates
(where ρ is the distance of the source in harmonic coordinates). More precisely, we have

TR = t − ρ
c
− 2 G M

c3 ln
(

ρ

c r0

)

. (5.4)

We choose the constant b scaling the logarithm to be r0
c to match with the choice made in the

computation of tails-of-tails in [135].
From the expressions for ULs and VLs, one can schematically split the total contribution

to the angular momentum flux as the sum of the instantaneous and hereditary terms.

F J i =
(

F J i

)

inst
+

(

F J i

)

hered
. (5.5)

Since we do not discuss the instantaneous terms in the angular momentum flux here, they
are not given beyond the Newtonian order here though it is easy to write them down using
the expressions, Eqs (5.2) and (5.3) for the radiative moments. The Newtonian instanta-
neous term in F J i which will be calculated later in this chapter for illustrating the Fourier
decomposition method for calculating the hereditary terms is

(

F J i

)Newtonian

inst
(t) = 2

5
G
c5 εipqI(2)

p j (t)I(3)
q j (t) (5.6)
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The hereditary part can be decomposed, as mentioned in the earlier Section, as

(F J i)hered = (F J i)tail + (F J i)tail(tail) + (F J i)(tail)2 + (F J i)memory, (5.7)

The quadratic-order tail integrals are explicitly given by (using Eqs 5.2 and 5.3 in Eq 5.1)

(F J i)tail(t) =
G
c5

{4GM
5c3 εi jk

∫ +∞

0
dτ

(

I(2)
ja (t) I(5)

ka (t − τ) − I(3)
ja (t) I(4)

ka (t − τ)
)

[

ln
(

τ

2r0/c

)

+
11
12

]

+
2GM
63c5 εi jk

∫ +∞

0
dτ

(

I(3)
jab(t) I(6)

kab(t − τ) − I(4)
jab(t) I(5)

kab(t − τ)
)

[

ln
(

τ

2r0/c

)

+
97
60

]

+
64GM
45c5 εi jk

∫ +∞

0
dτ

(

J(2)
ja (t) J(5)

ka (t − τ) − J(3)
ja (t) J(4)

ka (t − τ)
)

[

ln
(

τ

2r0/c

)

+
7
6

]}

,

(5.8)

while the cubic-order tails (proportional to M2) are

(F J i)tail(tail)(t) =
G
c5

4G2M2

5c6 εi jk

∫ +∞

0
dτ

(

I(2)
ja (t)I(6)

ka (t − τ) − I(3)
ja (t)I(5)

ka (t − τ)
)

(5.9a)

×
[

ln2
(

τ

2r0/c

)

+
57
70

ln
(

τ

2r0/c

)

+
124627
44100

]

,

(F J i)(tail)2(t) = G
c5

8G2M2

5c6 εi jk

(∫ +∞

0
dτ I(4)

ja (t − τ)
[

ln
(

τ

2r0/c

)

+
11
12

]

)

(5.9b)

×
(∫ +∞

0
dτ I(5)

ka (t − τ)
[

ln
(

τ

2r0/c

)

+
11
12

]

)

,

and finally, the memory integral is

(

F J i

)

memory
(t) = G

c5
4G

35c5εi jk I(3)
ja (t)

(
∫ ∞

0

[

I(3)
b<k I(3)

a>b

]

[t − τ] dτ

)

. (5.10)

Note that in Eq. (5.10), a term of the form − G
c5

4G
35c5 εi jk I(2)

ja (t) d
dt

(∫ ∞
0

[

I(3)
b<k I(3)

a>b

]

[t − τ] dτ
)

has
been left out. This term simply reduces to − G

c5
4G

35c5 εi jk I(2)
ja (t)I(3)

b<k(t)I(3)
a>b(t), i.e., an instantaneous

term. This term, therefore, has been incorporated in the instantaneous part of the angular
momentum flux and has been computed in Ref. [188]. For the energy flux case, the entire
memory contribution becomes instantaneous (see Ref. [185]).

In the equations Eq. (5.8), (5.9) recall that M is the conserved mass monopole or total
ADM mass of the source. The first term in (5.8) is the dominant tail at order 1.5PN while
the second and third represent the sub-dominant tails appearing both at order 2.5PN. The
higher-order tails are not given since they are at least at 3.5PN order (see [135] for their
expressions). The two cubic-order tails given in Eqs. (5.9) are both at 3PN order. The
memory term appears at 2.5PN order. Note that the constant b scaling the logarithms in
the tail integrals in the radiative moments Eqs (5.2) & (5.3) has been replaced in the above
tail, tail-of-tail etc. integrals as (r0/c). For simplicity, we have replaced the symbol for the
retarded time TR in radiative coordinates by t.
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5.3 Solution of the equations of motion of compact binaries

5.3.1 Doubly-periodic structure of the solution

To compute the integrals appearing in Eqs. (5.8), (5.9) and (5.10), a knowledge of the evo-
lution of the source is required. For this purpose, we need to construct the solution of the
equation-of-motion of compact binaries. For this purpose, we review in this Section, the gen-
eral “doubly-periodic” structure of the PN solution, and the quasi-Keplerian representation of
the 1PN binary motion by means of different types of eccentricities. The works [31, 189, 176]
are closely followed here.

If we neglect the radiation reaction term at the 2.5PN order, the equations of motion of
a compact binary system up to the 3PN order admit ten first integrals of the motion. These
correspond to the conserved energy, angular and linear momenta, and position of the center
of mass [145, 146]. When restricted to the frame of the center of mass, the equations admit
four first integrals associated with the energy E and the angular momentum vector J, given
at 3PN order by Eqs. (4.8)–(4.9) of Ref. [149].

The motion takes place in a plane orthogonal to J. We denote by r = |x| the binary’s
orbital separation, and by v = v1 − v2 the relative velocity (both x and v lie in the plane
of motion). The conserved E and J are functions of r, ṙ2, v2 and x × v (for definiteness we
employ the harmonic coordinate system of [149]1), and depend on the total mass m = m1+m2
and reduced mass µ = m1m2/m. Polar coordinates r, φ in the orbital plane are used to express
E and the norm J = |J| as some explicit functions of r, ṙ2 and φ̇ (v2 = ṙ2 + r2φ̇2). The latter
functions can be inverted (by means of straightforward PN iteration) to give ṙ2 and φ̇ in terms
of r and the constants of motion E and J. Thus,

ṙ2 = R[r; E, J], (5.11a)
φ̇ = G[r; E, J], (5.11b)

where R and G are polynomials in 1/r, the degree of which depends on the PN approxima-
tion in question. At 3PN order, it is seventh degree for both R and G [190]. The various
coefficients of the powers of 1/r are themselves polynomials in E and J, and also, of course,
depend on m and the dimensionless reduced mass ratio ν ≡ µ/m. For bound elliptic-like
orbits, one can prove [189] that the function R admits two real roots, rP and rA such that
rP < rA, which admit some non-zero finite Newtonian limits when c → ∞, and represent
respectively the radii of the orbit’s periastron and apastron. The other roots tend to zero in
the limit c→ ∞.

The binary’s orbital period, or time of return to the periastron, is obtained by integrating
the radial motion (we drop the dependence on E and J in the following, for simplicity).

P = 2
∫ rA

rP

dr√
R[r]

. (5.12)

Let us introduce the mean anomaly ` and the mean motion n by

` = n(t − tP) (5.13)
1All calculations in this chapter will be done at the relative 1PN order, and at that order there is no difference

between the harmonic and ADM coordinates.
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n =
2π
P
, (5.14)

where tP denotes the instant of passage to the periastron. For a given value of the mean
anomaly `, the orbital separation r is obtained by inversion of the integral equation

` = n
∫ r

rP

dr′√
R [r′]

. (5.15)

This defines the function r(`) which is a periodic function in ` with period 2π. Using this in
Eq. (5.11), the orbital phase φ can be obtained in terms of the mean anomaly ` by integrating
the angular motion as

φ(`) = φP +
1
n

∫ `

0
d`′ G [

r(`′)] , (5.16)

where φP denotes the value of the phase at the instant tP. Formally, the functions r(`) and
φ(`) complete the solution but does not take into account the doubly-periodic nature of the
problem.

For this purpose, consider the advance of periastron per period, i.e., the increase in the
orbital phase ∆φ (modulo 2π) during a single return to the periastron

∆φ + 2π = 2
∫ rA

rP

dr
G[r]√
R[r]

, (5.17)

Let us define the fractional angle (i.e. the angle divided by 2π) of the total advance of the
periastron per orbital revolution,

2πK = 2π + ∆φ. (5.18)

Thus the precession of the periastron per period is given by ∆φ = 2π(K − 1). As K tends to
one in the limit c → ∞ (as is checked from the Newtonian limit), it is often convenient to
define k ≡ K − 1, which will then entirely constitute the relativistic precession.

If, like the radial motion , we introduce another mean anomaly `φ and a mean angular
motion ωφ given by

`φ = ωφ(t − tP) (5.19)

ωφ =
2π

P/K
, (5.20)

we find that the two mean motions and mean anomalies are related by

ωφ = K n (5.21)
`φ = K ` (5.22)

In the case of a circular orbit, where the phase evolves linearly with time, φ̇ = G [r] = ω,
where ω is the orbital frequency of the circular orbit given by

ω = K n = (1 + k) n. (5.23)

In the general case of a non-circular orbit we use the mean angular motion ω = Kn (we
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drop the subscript φ) and to explicitly introduce the linearly growing part of the orbital
phase (5.16) by decomposing it in the form

φ = φP + ω (t − tP) +W(`)
= φP + K ` +W(`). (5.24)

Here W(`) denotes a particular function which is periodic in ` (hence, periodic in time with
period P). From Eq (5.16), this function is given in terms of the mean anomaly ` by

W(`) = 1
n

∫ `

0
d`′

[

G [

r(`′)
] − ω

]

. (5.25)

Finally, the decomposition (5.24) exhibits clearly the “doubly periodic” nature of the binary
motion, in terms of the mean anomaly ` with period 2π, and in terms of the periastron
advance K ` with period 2πK. It is worth noting that in Refs. [191, 180] the notation λ is
used; it corresponds to λ = K ` and will also occasionally be used here.

5.3.2 Quasi-Keplerian representation of the motion of compact bina-
ries

In our calculations we shall also require the explicit solution of the motion at 1PN order, in
the form due to Damour & Deruelle [176]. The solution is given in parametric form in terms
of the eccentric anomaly u. The radius r and the mean anomaly ` are expressed as

r = ar (1 − er cos u), (5.26a)
` = u − et sin u. (5.26b)

The phase angle φ is given by (the additive constant φP has been set equal to zero)

φ = K V, (5.27)

where the true anomaly V is defined by2

V = 2 arctan
[(1 + eφ

1 − eφ

)1/2

tan u
2

]

. (5.28)

In the above, K is the periastron advance given in general terms by Eq. (5.18), and ar is the
semi-major axis of the orbit. Note that there are, in this parametrization at 1PN order, three
kinds of eccentricities er, et and eφ (labelled after the coordinates r, t and φ). All these eccen-
tricities differ from one another by 1PN terms, while the advance of the periastron per orbital
revolution appears also starting at the 1PN order. Due to these features, this representation is
referred to as the “quasi-Keplerian” (QK) parametrization for the 1PN orbital motion of the
binary. The periodic function W of Eq. (5.25) now reads

W = K (V − `) . (5.29)
2We have denoted the true anomaly by V rather than by the symbol v of earlier papers to avoid confusion

with the relative speed v.
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The above solution is closed by the explicit dependence of the orbital elements in terms of
the 1PN conserved energy E and angular momentum J in the center-of-mass frame (taken as
usual per unit of the reduced mass µ). This is given in Ref. [176]. Note that the semi-major
axis ar and mean motion n depend at 1PN order only on the constant of energy through

ar = −
G m
2E

{

1 +
(

7
2 −

ν

2

)

E
c2

}

, (5.30a)

n =
(−2 E)3/2

G m

{

1 +
(

15
4 −

ν

4

)

E
c2

}

. (5.30b)

Posing h ≡ J/(Gm), the 1PN periastron precession simply reads

K = 1 + 3
c2 h2 , (5.31)

while the three different eccentricities are given by

er =

{

1 + 2 E h2
[

1 +
(

−15
2 +

5
2ν

)

E
c2 +

−6 + ν
c2h2

]}1/2

, (5.32a)

et =

{

1 + 2 E h2
[

1 +
(

17
2 −

7
2ν

)

E
c2 +

2 − 2ν
c2h2

]}1/2

, (5.32b)

eφ =

{

1 + 2 E h2
[

1 +
(

−15
2 +

ν

2

)

E
c2 −

6
c2h2

]}1/2

. (5.32c)

Notice the following simple ratios (valid at 1PN order)

et

er
= 1 + (8 − 3ν) E

c2 , (5.33a)

et

eφ
= 1 + (8 − 2ν) E

c2 , (5.33b)

er

eφ
= 1 + ν E

c2 . (5.33c)

The binary orbit can be characterised by either (E, J) or any two of the quasi-Keplerian
orbital elements. We choose (n, et) and list the 1PN accurate expressions for the other orbital
elements in terms of n and et, which we will require later in the work.

For this purpose we first invert Eq. (5.30b) to obtain the 1PN conserved energy in terms
of n.

E = −1
2

(G m n)2/3
{

1 + (15 − ν)
(G m n

c3

)2/3}

, (5.34)

Using this in Eq. (5.30a), we get

ar =

(G m
n2

)1/3 {

1 + (−3 + ν)
(G m n

c3

)2/3}

, (5.35)

which is a 1PN extension of Kepler’s law. From Eqs (5.33) we obtain er and eφ in terms of n
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and et.

er = et

{

1 + (4 − 3
2
ν)

(G m n
c3

)2/3}

, (5.36a)

eφ = et

{

1 + (4 − ν)
(G m n

c3

)2/3}

. (5.36b)

The periastron precession, given by Eq. (5.31), also needs to be expressed as a function
of n and et. To obtain it, we use the following expression, easily obtained from Eq. (5.32b).

−2E h2 = (1 − et)2
{

1 +
(G m n

c3

)2/3 1
4 (1 − e2

t )
(

9 + ν − (17 − 7 ν) e2
t

)

}

(5.37)

The above relation, along with Eq. (5.34) yields

K = 1 + 3
(1 − e2

t )

(G m n
c3

)2/3
(5.38)

5.4 Fourier decomposition of the binary’s multipole mo-
ments

5.4.1 Newtonian Angular Momentum flux

The method we shall use in this chapter is illustrated by the computation of the averaged
angular momentum flux of compact binaries at Newtonian order using a Fourier decomposi-
tion of the Keplerian motion [171]. The GW angular momentum flux reduces at Newtonian
order to (from Eq. 5.6) 3

(F J i)(N) =
2
5 εi jk

(2)
I ja

(N)(t)
(3)
Ika

(N)(t), (5.39)

where (N) means the Newtonian limit, the superscript (n) refers to time differentiations.
I(N)
i j is, by construction, the symmetric-trace-free (STF) quadrupole moment at Newtonian

order given by I(N)
i j = µ x<ix j>. xi is the binary’s orbital separation, and the angular brackets

around indices indicate the STF projection: x<i x j> ≡ xix j − 1
3δ

i jr2. However, the presence
of the Levi-Civita symbol ensures that the trace part of the symmetrized quadrupole moment
cancels out. Hence, unlike the energy-flux calculation in Ref. [185], in this chapter we will
ignore the trace of the quadrupole moment. Thus

I(N)
i j = µ xix j. (5.40)

Peters & Mathews [171, 47] obtained the expression of the (averaged) Newtonian flux
for compact binaries on eccentric orbits by two methods. The first method was to directly
average in time Eq. (5.39) using the expression (5.40) computed for the Keplerian ellipse; the
second method was to decompose the components of the quadrupole moment into discrete
Fourier series using the known Fourier decomposition of the Kepler orbit (the two methods,

3From now on we set c = 1 and G = 1.
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as expected, agreed on the result).
In the second method the quadrupole moment, which is a periodic function of time at

Newtonian order, is thus decomposed into a Fourier series

I(N)
i j (t) =

+∞
∑

p=−∞
I
(p)

(N)
i j ei p `, (5.41a)

with I
(p)

(N)
i j =

∫ 2π

0

d`
2π I(N)

i j e−i p `, (5.41b)

where ` is the mean anomaly of the binary motion, Eq. (5.13). Since I (N)
i j is real the Fourier

coefficients clearly satisfy (p)I(N)
i j = (−p)I(N)∗

i j (∗ denotes the complex conjugate). Inserting
Eqs. (5.41) into (5.39) we obtain

(F J i)(N) =
2
5

+∞
∑

p=−∞

+∞
∑

q=−∞
(ip n)2(iq n)3 εi jk I

(p)

(N)
ja I(q)

(N)
ka ei(p+q)`. (5.42)

After this, we perform an average over one period P. This means the average over ` =
n (t − tP) which is easily performed with the following

〈eip`〉 ≡
∫ 2π

0

d`
2π ei p ` = δp,0. (5.43)

This immediately yields the averaged angular momentum flux in the form of the Fourier
series

〈 (F J i)(N) 〉 = −4
5 i

+∞
∑

p=1
(p n)5 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka . (5.44)

Using dimensional analysis (and the known circular orbit limit) this flux is necessarily of the
form

〈 (F J i)(N) 〉 = 32
5 ν2 m9/2

a7/2 fJ(e) zi, (5.45)

where ν = µ/m and a is the semi-major axis of the Kepler orbit, zi is an unit vector parallel
to the angular momentum of the binary (and perpendicular to the orbit lying in the x-y plane)
and the function fJ(e) is a dimensionless function depending only on the binary’s eccentricity
e. The coefficient in front of (5.45) is chosen in such a way that fJ(e) reduces to one in the
circular orbit limit (e→ 0). Therefore,

fJ(e) = −i
8 µ2 a4

+∞
∑

p=1
p5 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka zi. (5.46)

The Fourier coefficients of the quadrupole moment are explicitly given by Eqs. (5.128) in
Section 5.10. fJ(e) admits an algebraically closed-form expression which is crucial for the
timing of the binary pulsar PSR 1913+16 [50], and given by

fJ(e) = 8 + 7 e2

8 (1 − e2)2 . (5.47)
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The method of decomposing the Newtonian moment of compact binaries as discrete
Fourier series was used in Ref. [173] to compute the tail at the dominant 1.5PN order. To
extend this result we need to be more systematic about the Fourier decomposition of the (not
necessarily Newtonian) source multipole moments.

5.4.2 General structure of the Fourier decomposition

The two sets of source moments of the compact binary are denoted by IL(t) and JL(t) fol-
lowing Ref. [126]. The multi-index notation means L ≡ i1i2 · · · il, where l is the number
of indices or multipolarity (which should not be confused with the mean anomaly `). In
this Section we study the structure of the mass and current moments IL and say JL−1 (where
L − 1 ≡ i1i2 · · · il−1 is chosen in the current moment for convenience rather than L), at any
PN order and for a compact binary system moving on a general non-circular orbit4. Their
general structure can be written as

IL(t) =
l

∑

k=0
Fk[r, ṙ, v2] x<i1···ikvik+1 ···il>, (5.48a)

JL−1(t) =
l−2
∑

k=0
Gk[r, ṙ, v2] x<i1···ikvik+1···il−2εil−1>abxavb, (5.48b)

where xi = yi
1−yi

2 and vi = dxi/dt = vi
1−vi

2 denote the relative position and velocity of the two
bodies (in a harmonic coordinate system). In (5.48) we pose for instance xi1···ik ≡ xi1 · · · xik ,
and the angular brackets surrounding indices refer to the usual symmetric-trace-free (STF)
projection with respect to those indices.

Using polar coordinates r, φ in the orbital plane (as in Sec. 5.3.1), the above introduced
coefficients Fk and Gk depend on the masses and on r, ṙ and v2 = ṙ2 + r2φ̇2. For quasi-elliptic
motion one can explicitly factorize out the dependence on the orbital phase φ by inserting
x = r cosφ, y = r sinφ, and vx = ṙ cosφ − r φ̇ sinφ, vy = ṙ sinφ + r φ̇ cosφ. Furthermore,
using the explicit solution of the motion (Sec. 5.3.2) r, ṙ and v2, and hence the Fk’s and
Gk’s can be expressed as periodic functions of the mean anomaly ` = n (t − tP), where

n = 2π/P. We then find that the above general structure of the multipole moments can be
expressed in terms of the phase angle φ, as the following finite sum over some “magnetic-
type” index m ranging from −l to +l,

IL(t) =
l

∑

m=−l

A
(m)

L(`) ei mφ, (5.49a)

JL−1(t) =
l

∑

m=−l

B
(m)

L−1(`) ei mφ, (5.49b)

involving some coefficients (m)AL and (m)BL−1 depending on the mean anomaly ` and which
are complex (∈ C). (Some of these coefficients could be vanishing in particular cases.) The
point for our purpose is that these coefficients are periodic functions of ` with period 2π. As

4However the intrinsic spins of the compact objects are neglected, so the motion takes place in a fixed orbital
plane.
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we can see, the structure of the mass and current moments IL and JL−1 is basically the same,
but their coefficients (m)AL and (m)BL−1 will have a different parity, because of the Levi-Civita
symbol entering the current moment JL−1.

To proceed further, let us exploit the doubly periodic nature of the dynamics in the two
variables λ ≡ K ` and ` (as reviewed in Sec. 5.3.1). The phase is given in full generality by
Eq. (5.24) where W(`) is periodic in `. In the following it will be more convenient to single
out in the expression of the phase the purely relativistic precession of the periastron, namely
λ − ` = k ` where k = K − 1. We insert the expression of the phase variable into Eqs. (5.49)
which yields many factors modifying the coefficients of (5.49), but in such a way that they
retain the periodicity in `. Hence

IL(t) =
l

∑

m=−l

I
(m)

L(`) ei m k `, (5.50a)

JL−1(t) =
l

∑

m=−l

J
(m)

L−1(`) ei m k `, (5.50b)

where the coefficients (m)IL(`) and (m)JL−1(`) are 2π-periodic. This allows us to use a discrete
Fourier series expansion in the interval ` ∈ [0, 2π] for each of these coefficients, i.e.,

I
(m)

L(`) =
+∞
∑

p=−∞
I

(p,m)
L ei p `, (5.51a)

J
(m)

L−1(`) =
+∞
∑

p=−∞
J

(p,m)
L−1 ei p `, (5.51b)

and the inverse relations are

I
(p,m)

L =

∫ 2π

0

d`
2π I(m)

L(`) e−i p `, (5.52a)

J
(p,m)

L−1 =

∫ 2π

0

d`
2π J(m)

L−1(`) e−i p `. (5.52b)

We now have the following final decompositions of the multipole moments,

IL(t) =
+∞
∑

p=−∞

l
∑

m=−l

I
(p,m)

L ei (p+m k) `, (5.53a)

JL−1(t) =
+∞
∑

p=−∞

l
∑

m=−l

J
(p,m)

L−1 ei (p+m k) `. (5.53b)

The moments IL and JL−1 being real, their Fourier coefficients satisfy (p,m)IL = (−p,−m)I∗L and
(p,m)JL−1 = (−p,−m)J∗L−1.

The previous decompositions were general, but it is still useful to introduce a special no-
tation for the particular case of the Newtonian (N) order, for which the relativistic precession
k → 0. In this limit, the usual periodic Fourier decomposition of the moments is recovered
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[generalizing Eqs. (5.41)], with only one Fourier summation over the index p, so that

I(N)
L (t) =

+∞
∑

p=−∞
I
(p)

(N)
L ei p `, (5.54a)

J(N)
L−1(t) =

+∞
∑

p=−∞
J
(p)

(N)
L−1 ei p `. (5.54b)

The Newtonian Fourier coefficients are equal to the sums over m of the doubly-periodic
Fourier coefficients in Eqs. (5.53) when taken in the Newtonian limit, namely

I
(p)

(N)
L =

l
∑

m=−l

I
(p,m)

(N)
L , (5.55a)

J
(p)

(N)
L−1 =

l
∑

m=−l

J
(p,m)

(N)
L−1. (5.55b)

5.5 Hereditary contributions in the angular momentum
flux

The technique of the previous Section is applied to the computation of the tail integrals in
the angular momentum flux of compact binaries. Although the computations are effectively
done up to the 3PN level, the method we propose could in principle be implemented at any
PN order.

We shall compute all the tail and tail-of-tail terms (5.8)–(5.9) [i.e. up to the 3PN or-
der] averaged over the mean anomaly `. Together with the instantaneous terms reported
in Ref. [188] we shall obtain the complete expression of the 3PN angular momentum flux.
It is clear from Eqs. (5.8)–(5.9) that all the terms necessitate an evaluation at the relative
Newtonian order except the mass-type quadrupolar tail term – first term in (5.8) – which
must crucially include the 1PN corrections. We start with all the terms required at relative
Newtonian order and then tackle the more difficult 1PN quadrupolar tail term.

5.5.1 Tails at relative Newtonian order

In this section we consider the mass-type quadrupolar tail term in the angular momentum
flux, the first term in Eq. (5.8). However, we will not compute this term at the PN order
required for this chapter, but at the relative Newtonian order 5. This will serve as a simple
illustration of the method we will use for computing the higher-order tails.

The 1.5PN mass-quadrupole tail contribution is, from Eq. (5.8)

〈(F J i)(N)
mass quad〉tail = 〈

4M
5

εi jk

∫ +∞

0
dτ

(

(2)
I ja

(N)(t)
(5)
Ika

(N)(t − τ) −
(3)
I ja

(N)(t)
(4)
Ika

(N)(t − τ)
)

×
[

ln
(

τ

2r0

)

+
11
12

]

〉, (5.56)

5We shall compute this term at 1PN relative order in Sec. 5.5.3.
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where the brackets 〈〉 refer to the average over the mean anomaly ` as defined by Eq. (5.43).
The term (5.56) was already computed using a Fourier series at Newtonian order in
Ref. [173]; note that the method of [173] is valid only for periodic motion and thus is appli-
cable only at the Newtonian level. In this Section we recover the Newtonian result of [173].

The Fourier decomposition of the Newtonian quadrupole moment was already given in
general form by Eqs. (5.41). Inserting that into the flux (5.56), we evaluate the tail integral by
using the fact that if `(t) = n (t− tP) corresponds to the current time t, then `(t−τ) = `(t)−n τ
corresponds to the retarded time t − τ. Next we perform the average over the current value
`(t) with the help of the formula (5.43). We get

〈(F J i)(N)
mass quad〉tail =

8M
5 i

+∞
∑

p=−∞
(p n)7 εi jk I

(p)

(N)
ja I(−p)

(N)
ka

∫ +∞

0
dτ eip n τ

[

ln
(

τ

2r0

)

+
11
12

]

. (5.57)

Note the crucial replacement of the Fourier decomposition of the quadrupole moment
Ika

(N)(t−τ) at the retarded time t−τ in the tail integral in Eq. (5.56) by the Fourier coefficients
at the current time t, defined by Eq. (5.41). This permits us to take the Fourier coefficients
of Ika

(N) outside the tail integral. This replacement makes the result derived below “exact”
only in a PN sense, as we have neglected the effect of the binary’s adiabatic evolution by
radiation reaction in the past. Consequently, this replacement introduces a remainder term
in Eq. (5.57) given by the order of magnitude of the adiabatic parameter ξrad ≡ ω̇/ω2. From
Refs. [124, 158], we know that the above replacement of the current motion in the tail in-
tegral is valid only modulo some remainder O(ξrad) or, more precisely, O(ξrad ln ξrad). This
remainder corresponds to a correction term of relative 2.5PN order which is always negli-
gible for our purposes (the 1.5PN order of the tails makes the correction terms due to the
influence of the binary’s past at 4PN order).

To tackle the last factor in (5.57) which is the tail integral in the Fourier domain, we use
the closed-form formula

∫ +∞

0
dτ eiστ ln

(

τ

2r0

)

= − 1
σ

[

π

2sign(σ) + i
(

ln(2|σ|r0) + C
)

]

, (5.58)

where σ ≡ p n, sign(σ) = ±1 and C = 0.577 · · · denotes the Euler constant. Inserting
Eq. (5.58) into (5.57) we have

〈(F J i)(N)
mass quad〉tail = −

8π M
5

i
+∞
∑

p=1
(p n)6 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka . (5.59)

Note that the range of p’s corresponds to positive frequencies only.
The remaining tail integrals, given by the second and third terms in Eq. (5.8), are evalu-

ated in exactly the same way. With the PN accuracy of the present calculation these integrals
are truly Newtonian so the mass octupole moment Ii jk and current quadrupole moment Ji j are
required at Newtonian order only. For simplicity, we drop the supercript (N) because there
can be no confusion with other results. We thus need to evaluate the time-averaged fluxes

〈(F J i)mass oct〉tail = 〈
2M
63 εi jk

∫ +∞

0
dτ

(

I(3)
jab(t) I(6)

kab(t − τ) − I(4)
jab(t) I(5)

kab(t − τ)
)
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×
[

ln
(

τ

2r0

)

+
97
60

]

〉, (5.60)

〈 (F J i)curr quad〉tail = 〈
64M
45 εi jk

∫ +∞

0
dτ

(

J(2)
ja (t) J(5)

ka (t − τ) − J(3)
ja (t) J(4)

ka (t − τ)
)

×
[

ln
(

τ

2r0

)

+
7
6

]

〉. (5.61)

Note that, as in the case of the mass-quadrupole moment, the trace of Ji j also does not
contribute to the angular momentum flux (see the argument after Eq. (5.39)). However, for
Ii jk , we do have to take into account its trace. Inserting the Fourier decomposition of the
moments, performing the average using Eq. (5.43) and using the integration formula (5.58)
gives us

〈(F J i)mass oct〉tail = −
4πM
63

i
+∞
∑

p=1
(p n)8 εi jk I

(p)

(N)
jab I(p)

(N)∗
kab (5.62a)

〈 (F J i)curr quad〉tail = −
128πM

45 i
+∞
∑

p=1
(p n)6 εi jk J

(p)

(N)
ja J

(p)

(N)∗
ka . (5.62b)

In Sec. 5.6 we shall provide some numerical plots for the enhancement eccentricity-
dependent factors associated with Eqs. (5.62), since they do not have a closed-form expres-
sion.

5.5.2 Tails-of-tails and tails squared

At the 3PN order (i.e. 1.5PN beyond the dominant tail) the first cubic non-linear interac-
tion, between the quadrupole moment Ii j and two mass monopole factors M, appears. From
Eqs. (5.9) we have to compute the “tail-of-tail” contribution and the so-called “tail squared”
one,

〈(F J i)tail(tail)〉 = 〈
4M2

5
εi jk

∫ +∞

0
dτ

(

I(2)
ja (t)I(6)

ka (t − τ) − I(3)
ja (t)I(5)

ka (t − τ)
)

×
[

ln2
(

τ

2r0

)

+
57
70 ln

(

τ

2r0

)

+
124627
44100

]

〉, (5.63a)

〈(F J i)(tail)2〉 = 〈8M2

5
εi jk

(∫ +∞

0
dτ I(4)

ja (t − τ)
[

ln
(

τ

2r0

)

+
11
12

]

)

×
(∫ +∞

0
dτ I(5)

ka (t − τ)
[

ln
(

τ

2r0

)

+
11
12

]

)

〉. (5.63b)

(5.63c)

Both terms are evaluated at relative Newtonian order. We insert the Fourier decomposition
of the Newtonian quadrupole moment (5.41) [again suppressing the superscript (N) for sim-
plicity]. The new feature with respect to the tails is the appearance of a logarithm squared
in the tail-of-tail integral (5.63). We have again replaced the motion in the infinite past of
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the binary by the motion in the current time (see the argument following Eq. (5.57)). The
closed-form formula required to deal with this term is [compare with Eq. (5.58)]

∫ +∞

0
dτ eiστ ln2

(

τ

2r0

)

=
i
σ

{

π2

6
−

[

π

2
sign(σ) + i

(

ln(2|σ|r0) + C
)

]2}

, (5.64)

and with this formula, together with (5.58), we obtain the result

〈(F J i)tail(tail)〉 = −
8M2

5
i
+∞
∑

p=1
(p n)7 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka (5.65a)

{

π2

6 − 2
(

ln(2p n r0) + C
)2
+

57
35

(

ln(2p n r0) + C
)

− 124627
22050

}

.

The tail squared term is readily computed with (5.58) and is

〈(F J i)(tail)2〉 = −8M2

5
i
+∞
∑

p=1
(p n)7 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka

{

π2

2
+ 2

(

ln(2p n r0) + C − 11
12

)2}

. (5.66)

Adding the two results (5.65a) and (5.66) we finally get

〈(F J i)tail(tail)+(tail)2〉 = −8M2

5 i
+∞
∑

p=1
(p n)7 εi jk I

(p)

(N)
ja I(p)

(N)∗
ka (5.67a)

{

2π2

3 −
214
105 ln(2p n r0) − 214

105C − 116761
29400

}

.

Note that the contribution from logarithms squared has cancelled out between the two
terms (5.65a)–(5.66). Such cancellation is known to occur for general sources [135]. Note
also that the result (5.67a) still depends on the arbitrary length scale r0. It is important to trace
out the fate of this constant and check that the complete angular momentum flux we obtain
at the end (including all the instantaneous contributions computed in [188]) is independent
of r0.

5.5.3 The mass quadrupole tail at 1PN order

In this subsection, we calculate the mass quadrupole tail at the relative 1PN order, namely

〈(F J i)mass quad〉tail = 〈
4M
5 εi jk

∫ +∞

0
dτ

(

I(2)
ja (t) I(5)

ka (t − τ) − I(3)
ja (t) I(4)

ka (t − τ)
)

×
[

ln
(

τ

2r0

)

+
11
12

]

〉, (5.68)

At the 1PN order (and similarly at any higher PN orders), we must take care of the
doubly-periodic structure of the solution of the motion [Sec. 5.3.1], and decompose the mul-
tipole moments according to the general formulas (5.53). Hence the 1PN mass quadrupole
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moment Ii j entering Eq. (5.68) is decomposed as

Ii j(t) =
+∞
∑

p=−∞

2
∑

m=−2
I

(p,m)
i j ei (p+m k) `, (5.69)

with doubly-indexed Fourier coefficients (p,m)Ii j which are valid through order 1PN. The
harmonics for which m = ±1 are zero at the 1PN order, so Eq. (5.69) reduces to

Ii j(t) =
+∞
∑

p=−∞

{

I
(p,−2)

i j ei (p−2k) ` + I
(p,0)

i j ei p ` + I
(p,2)

i j ei (p+2k) `
}

, (5.70)

but for our purposes, Eq. (5.69) is more convenient, keeping in mind that the terms with
m = ±1 are absent. As before we insert Eq. (5.69) into Eq. (5.68) to obtain [after neglecting
2.5PN radiation reaction terms O (ξrad) mentioned before]

〈(F J i)mass quad〉tail = −
4M
5 i

∑

p,p′;m,m′
n7

(

(p + mk)2(p′ + m′k)5 − (p + mk)3(p′ + m′k)4
)

εi jk I
(p,m)

ja I
(p′,m′)

ka〈ei(p+p′+(m+m′)k)`〉
∫ +∞

0
dτ e−i (p′+m′k) n τ

[

ln
(

τ

2r0

)

+
11
12

]

,

(5.71)

where the summations range from −∞ to +∞ for p and p′, and from −2 to 2 for m and m′.
The factors (p + mk)2, (p′ + m′k)5 etc. come from the time-derivatives of the quadrupole
moment. We leave the last two factors in Eq. (5.71) as they are, namely the average over ` of
an elementary “doubly-periodic” complex exponential, and the Fourier transform of the tail
integral.

The expression in Eq. (5.71) is to be calculated at the 1PN order. Since the relativistic
advance of the periastron k is a small 1PN quantity, we first evaluate Eq. (5.71) at linear order
in k [i.e., neglecting O(k2) which is at least 2PN]. Afterwards we shall insert the explicit PN
expressions for the 1PN quadrupole moment and ADM mass. The necessary formulas for
performing the linear-order expansion in k of the last two factors in Eq. (5.71) are provided
below. The average we perform is over the orbital period (time to return to the periastron)
and so is defined by

〈ei (p+m k) `〉 ≡
∫ 2π

0

d`
2π

ei (p+m k) `. (5.72)

Using the fact that m k � 1 since we are in the limit where k → 0 (hence p +m k is never an
integer unless k = 0), we readily find

〈ei (p+m k) `〉 =























m
p

k if p , 0

1 + i πm k if p = 0























+ O(k2). (5.73)

The above result depends only on whether p is zero or not, and is true for any integer m,
except that when m = 0 the result (5.73) becomes “exact” as there is no remainder term
O(k2) in this case.
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To compute the tail integral given by the last factor in Eq. (5.71), we expand it at first
order in k, obtaining

∫ +∞

0
dτ ei (p+m k) n τ ln

(

τ

2r0

)

=

(

1 − m k
p

) ∫ +∞

0
dτ eip n τ ln

(

τ

2r0

)

− i m k
p2n
+ O(k2), (5.74)

and we apply for the remaining integral in Eq (5.74) the formula Eq. (5.58).
Using Eqs. (5.73) and (5.74) we can explicitly compute the tail expression Eq. (5.71) at

first order in k (the extension to higher order in k would in principle be straightforward).
The result is left in the form of the multiple Fourier series Eq. (5.71), into which the re-
sults (5.73)–(5.74) have been inserted (we do not give a more explicit form for this result
which is given by a complicated Mathematica expression). In the next Section we shall re-
express this series in terms of some elementary enhancement functions which we evaluate
numerically.

5.5.4 Memory Integral at 2.5PN order

The memory contribution is, from Eq. (5.10),

(

F J
i

)

mem
=

4
35
εi jk I(3)

ja (t)
(∫ ∞

0

[

I(3)
b<k I(3)

a>b

]

[t − τ] dτ

)

(5.75)

in which the symmetrisation over k & a in the integrand can be removed because it is mani-
festly symmetric and the tracelessness condition can also be removed because of the presence
of εi jk and the symmetry of Ii j. Fourier decomposing Ii j we get

(

F J
i

)

mem
=

4
35εi jk

















+∞
∑

p=−∞
(i p n)3 I

(p)
ja eipl

































+∞
∑

q=−∞
(i q n)3 I

(p)
bk eiql































+∞
∑

r=−∞
(i r n)3 I

(p)
ab eirl















(5.76)

(∫

0
e−i(q+r)n τ dτ

)

where, like in the tail integrals we have neglected the adiabatic orbital evolution of the binary
and replaced it by the motion at the current time. The integrand for the memory does not
contain the log kernel, but it being highly oscillatory the crests and troughs cancel out and
the only contribution comes from the boundaries. However the infinite past contribution
(corresponding to τ→∞) is zero if we assume stationarity in the past.

On performing an average over an orbit we get using

〈ei(p+q+r)l〉 = δp+q+r,0. (5.77)

〈
(

F J
i

)

mem
〉 = 4

35 n8 εi jk

+∞
∑

p=−∞

+∞
∑

q=−∞
p2 q3 (p + q)3 I

(p)
ja I

(p)
bk I
−(p+q)

ab (5.78)
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This, on simplification, reduces to

〈
(

F J
i

)

mem
〉 = 8

35 n8 εi jk

+∞
∑

p=1

+∞
∑

q=1
p2 q3

(

(p + q)3<[I
(p)

ja I
(q)

bk I
(p+q)

∗
ab]

−(p − q)3<[I
(p)

ja I
(q)
∗

bk I(p−q)
∗

ab]
)

(5.79)

where <[x] stands for real part of x. The angular momentum flux contribution from the
memory, in terms of the PN parameter x = (mω)2/3, becomes

〈
(

F J
i

)

mem
〉 = 32

5 ν2 m x7/2
(

1
28 x5/2 ρJ(e)

)

zi (5.80)

where ρJ(e) is the enhancement function corresponding to the memory and goes to zero as
e→ 0. It is given by

ρJ(e) = εi jk

+∞
∑

p=1

+∞
∑

q=1
p2 q3

(

(p + q)3<[I
(p)

ja I
(q)

bk I
(p+q)

∗
ab] − (p − q)3<[I

(p)
ja I

(q)
∗

bk I
(p−q)

∗
ab]

)

zi(5.81)

We find that the functions of the quadrupole moment Fourier coefficients appearing in each
of the two terms in Eq. (5.81) are pure imaginary and therefore, we have, like the circular
orbit case,

ρJ(e) = 0. (5.82)

In the future, we would like to look at this result in more detail, specially a proof of the
vanishing of this term in a time-domain calculation. Also, the validity of the assumption of
the replacement of the past motion by the current motion inside the memory integral needs
to be treated more rigorously, perhaps by the use of Fourier transforms rather than Fourier
series.

5.6 Numerical calculation of the tail integrals

5.6.1 Definition of the eccentricity enhancement factors

We define here some functions of the eccentricity by certain Fourier series of the components
of the Newtonian multipole moments I (N)

L and J(N)
L−1 for a Keplerian ellipse with eccentricity e,

semi-major axis a, frequency n = 2π/P (such that Kepler’s law n2a3 = m holds at Newtonian
order). In the center of mass frame I (N)

L = µsl(ν)x<L> and J(N)
L−1 = µsl(ν)x<L−2εil−1>abxavb where

µ = m1m2/m = νm. We pose sl(ν) ≡ Xl−1
2 + (−)lXl−1

1 , where, X1 ≡ m1
m =

1
2

(

1 +
√

1 − 4ν
)

,

and, X2 ≡ m2
m =

1
2

(

1 −
√

1 − 4ν
)

. Let us rescale the latter Newtonian moments in order to
make them dimensionless

I(N)
L ≡ µ al sl(ν) ÎL , (5.83a)

J(N)
L−1 ≡ µ al n sl(ν) ĴL−1 . (5.83b)
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Figure 5.1: Variation of ϕJ(e) with the eccentricity e. In the circular orbit limit we have
ϕJ(0) = 1.

Our first “enhancement” function is the Peters & Mathews [171, 47] function which we
have already expressed in Eq. (5.46) as a Fourier series [and which turns out to admit the
analytically closed form (5.47)]. This series becomes, in terms of the Fourier components of
the rescaled quadrupole moment Îi j

fJ(e) = − i
8

+∞
∑

p=1
p5 εi jk Î

(p)
jb Î

(p)
∗

kb zi, (5.84)

and is such that the averaged Newtonian angular momentum flux of compact binaries reads

〈(F J i)(N)〉 = 32
5 ν2 m x7/2 fJ(e) zi. (5.85)

In the above we have defined, for future convenience, the frequency-related PN parame-
ter x = (mω)2/3 where ω is the binary’s orbital frequency defined for general orbits by
Eq. (5.23). Note that in Eq. (5.85) (which is Newtonian) we can replace ω by n (hence x
reduces to m/a).

Next, we define several other “enhancement” functions of the eccentricity which will
permit to usefully parametrize the tail terms at Newtonian order. First we pose

ϕJ(e) = − i
16

+∞
∑

p=1
p6 εi jk Î

(p)
jb Î

(p)
∗

kb zi. (5.86)

Like for fJ(e) this function is defined in such a way that it tends to one in the circular orbit
limit, when e→ 0. However, unlike fJ(e), it does not admit a closed-form expression, and we
leave it in the form of a Fourier series. The function ϕJ(e) parametrizes the mass quadrupole
tail at Newtonian order, in the sense that we have, from Eq. (5.59),

〈(F J i)(N)
mass quad〉 =

32
5 ν2 m x7/2

[

4π x3/2 ϕJ(e)
]

zi. (5.87)

For circular orbits, ϕJ(0) = 1 and we recognize the coefficient 4π of the 1.5PN tail term (∝
x3/2) as computed analytically in Refs. [173]. The function ϕJ(e) has already been computed
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Figure 5.2: Variation of βJ(e) (left panel) and γJ(e) (right panel) with the eccentricity e. In
the circular orbit limit we have βJ(0) = γJ(0) = 1.

numerically from its Fourier series (5.86) in Ref. [173]. Here we show the plot of ϕJ(e) in
Fig. 5.1 (see Sec. 5.6.2 for details on the numerical computation) 6.

We next provide similar expressions for the 2.5PN mass octupole and current quadrupole
tails by posing

βJ(e) = − 20 i
16403

+∞
∑

p=1
p8 εi jk Î

(p)
jab Î

(p)
∗

kab zi, (5.88a)

γJ(e) = −8 i
+∞
∑

p=1
p6 εi jk Ĵ

(p)
ja Ĵ

(p)

∗
ka zi. (5.88b)

These functions also tend to one when e → 0 (as will be checked later) and most probably
do not admit any closed-form expressions. The tail terms (∝ x5/2) of Eqs. (5.60) reduce to

〈(F J i)mass oct〉tail =
32
5
ν2 m x7/2

[

16403
2016

π (1 − 4 ν) x5/2 βJ(e)
]

zi, (5.89)

〈(F J i)curr quad〉tail =
32
5 ν2 m x7/2

[

π

18 (1 − 4 ν) x5/2 γJ(e)
]

zi. (5.90)

The numerical graphs of the functions βJ(e) and γJ(e) are shown in Fig. 5.2.
Two further enhancement factors are needed for the tail-of-tail and tail squared integrals

(which are Newtonian). The first of these functions looks very much like fJ(e), Eq. (5.84),
in the sense that its Fourier series involves odd powers of the modes p. Namely we define

FJ(e) = − i
32

+∞
∑

p=1
p7 εi jk Î

(p)
ja Î

(p)
∗

ka zi. (5.91)

Thanks to this odd power ∝ p7 we find that FJ(e) admits like for fJ(e) an analytic closed
6Our notation is different from the one in Rieth & Schäfer [173]; the function ϕRS(e) there is related to our

definition by ϕRS(e) = ϕJ(e)/ fJ(e). In the present work it is better not to divide the various functions by the
Peters & Mathews function fJ(e).
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Figure 5.3: Variation of χJ(e) (left panel) and FJ(e) (right panel) with the eccentricity e. In
the right panel, the exact expression of FJ(e) given by Eq. (5.92) is used. In the circular orbit
limit we have χJ(0) = 0 and FJ(0) = 1.

form which is

FJ(e) =
1 + 229

32 e2 + 327
64 e4 + 69

256 e6

(1 − e2)5 . (5.92)

We need another function whose Fourier transform differs from the one of F J(e) by the
presence of the logarithm of modes, namely

χJ(e) = − i
32

+∞
∑

p=1
p7 ln

( p
2

)

εi jk Î
(p)

ja Î
(p)
∗

ka zi. (5.93)

Most probably χJ(e) does not admit any analytic form [hence we name it using the Greek
alphabet – in contrast to fJ(e) and FJ(e)]. Note that χJ(e) has been exceptionally defined in
such a way that it vanishes when e → 0. This is easily checked since in the circular orbit
limit (and at Newtonian order) the quadrupole moment I (N)

i j possesses only one harmonic,
which is the one for which p = 2, and consequently the log-term in χJ(e) becomes zero. In
Fig. 5.3 we show the numerical plot of the function χJ(e) [and also the one for FJ(e)]. In
Fig. 5.3 we show the numerical plot of the function χJ(e) [and also the one for FJ(e)].

With the above definitions the sum of tail-of-tail and tail squared contributions obtained
in Eq. (5.67a) becomes

〈(F J i)tail(tail)+(tail)2 〉 = 32
5 ν2 m x13/2

{[

−116761
3675 +

16
3 π2 − 1712

105 C − 1712
105 ln (4ω r0)

]

FJ(e)

− 1712
105 χJ(e)

}

zi. (5.94)

(5.95)

The circular-orbit limit is read off and seen to agree with Eq. (5.9) in Ref. [135] or Eq. (12.7)
in Ref. [116].

Finally we provide the mass quadrupole tail at 1PN order, whose computation is much
more involved (see Sec. 5.5.3) as the Fourier series Eq. (5.71) contains several summations,
and depend on the intermediate results (5.73) and (5.74). The computation must also incor-
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Figure 5.4: Variation of αJ(e) (left panel) and θJ(e) (right panel) with the eccentricity e. In
the circular orbit limit we have αJ(0) = 0 and θJ(0) = 1.

porate the 1PN relativistic correction in the mass quadrupole moment and ADM mass; we
provide them in Eqs. (5.98) and (5.99) below. Probably no simple way exists [i.e. no simple
Fourier series like for instance (5.93)] for expressing the new enhancement functions of ec-
centricity which appear at the 1PN order. However it can be easily checked that the 1PN term
is a linear function of the symmetric mass ratio ν, hence we must introduce two enhance-
ment functions, denoted below αJ and θJ . As usual, we normalize them so that αJ(0) = 1
and θJ(0) = 1. We thus have [extending Eq. (5.87) at the 1PN order]

〈(F J i)(N)
mass quad〉 =

32
5
ν2 m x5

{

4π ϕJ(et) + π x

[

−428
21

αJ(et) +
178
21

ν θJ(et)
]}

zi. (5.96)

This equation defines the two enhancement functions αJ and θJ , and we use Mathematica to
compute them as complicated Fourier decompositions, which will then be directly computed
numerically using the method outlined in Sec. 5.6.2. Notice that since we are at the 1PN
order we must be specific about eccentricity we use. We adopted here the “time” eccentricity
et entering the Kepler equation (5.26b) in Sec. 5.3.2. The other eccentricities are related to
it by Eqs. (5.33) at the 1PN order. On the other hand, the frequency-related PN parameter,
given by

x = (mω)2/3, (5.97)

crucially includes the 1PN relativistic correction coming from the periastron advance K =
1 + k, through the definition ω = n K of Sec. 5.3.1. All the 1PN corrections arising from the
formulas (5.73) and (5.74), the multipole moments M and Ii j, the use of the time eccentricity
et and the specific PN variable x, are incorporated in a Mathematica program dealing with
the decomposition (5.71) and used to obtain (5.96). The plots of the enhancement functions
α(e) and θ(e) are given in Fig. 5.4.

5.6.2 Numerical evaluation of the Fourier coefficients

Let us now describe the numerical implementation of the computation of the Fourier coeffi-
cients of the multipole moments that lead to the numerical plots of the previous Section. We
focus on the computation of the crucial coefficients (p,m)Ii j at 1PN order which are the more
difficult to obtain. The mass quadrupole moment with 1PN accuracy is given by [compare
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with the general structure (5.48a)]

Ii j = µ

{

1 +
[

v2
(

29
42 −

29
14ν

)

+
m
r

(

−5
7 +

8
7 ν

)]

x〈ix j〉

+

(

11
21 −

11
7 ν

)

r2 v〈iv j〉 +

(

−4
7 +

12
7 ν

)

r ṙ x〈iv j〉
}

, (5.98)

where xi and vi = dxi/dt are the relative position and velocity in harmonic coordinates, and
r = |xi| (like in Sec. 5.3.2). Equation (5.98) is valid for non-spinning compact binaries on
an arbitrary quasi-Keplerian orbit in the center-of-mass frame (see e.g. [132]). Since we
calculate tails with 1PN relative accuracy we need to know how the ADM mass M relates to
the total mass m = m1 + m2 at 1PN order,

M = m

[

1 + ν
(

v2

2 −
m
r

)]

. (5.99)

With the help of the quasi-Keplerian representation [Sec. 5.3.2], the dependence of Ii j on
xi, vi, r, v2 and ṙ is parametrized by the eccentric anomaly u. However, as explained previ-
ously we require Ii j(`) in the time domain to proceed. The steps of our numerical implemen-
tation can be schematically expressed as :

1. Firstly, each component of the 1PN mass quadrupole is expressed in terms of the
quasi-Keplerian parameters using Eqs. (5.26)–(5.28). The components of the mass
quadrupole become functions of the eccentric anomaly u, and are parametrized by
the mean motion n and by one of the eccentricities (we chose to be et – the “time”
eccentricity in Kepler’s equation (5.26b) 7)

2. Now we numerically invert the equation for the mean anomaly ` = u−et sin u to obtain
the function u(`). This can be done either by using the series representation in terms
of Bessel functions,

u = ` + 2
+∞
∑

s=1

1
s

Js(s et) sin(s `), (5.100)

or numerically by finding the root of ` = u − et sin u. We find the latter method to
be more efficient and accurate method and employ it using the FindRoot routine in
Mathematica. A table of 20 000 points of u and ` between 0 and 2π (for each value
of et) was generated for this purpose. The above inversion allows us to re-express all
functions of the eccentric anomaly u as functions of the mean anomaly `. If required,
one can attempt a more accurate implementation, in the future, for solving Kepler’s
equation along the lines of [192].

3. There is a discontinuity in the u dependence of V in Eq. (5.28). To avoid it we use

V(u) = u + 2 arctan
( βφ sin u

1 − βφ cos u

)

, (5.101)

7The semi-major axis ar and the other eccentricities er and eφ are deduced from n and et using Eqs. (5.30)–
(5.33).
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where βφ ≡ [1 − (1 − e2
φ)1/2]/eφ. We thus have the Fourier coefficients (m)Ii j(`) defined

in Eq. (5.50a) as explicit (numerical) functions of `.

4. These functions also have a dependence on the mass ratio ν and the PN parameter x
defined by (mω)2/3 where ω = n K. To avoid assuming numerical values for ν and x
and hence to preserve the full generality of the result, we split the function (m)Ii j into

I
(m)

i j(`, et, ν, x) = I
(m)

00
i j (`, et) + x

[

I
(m)

10
i j (`, et) + ν I

(m)
11
i j (`, et)

]

. (5.102)

The various (m)I ab
i j are now functions of ` and et only. Fourier coefficients of these

terms are evaluated in the next step.

5. For a fixed value of et, it is straightforward to obtain the plot of (m)I 00
i j versus `. Equiv-

alently, we can also express the Fourier decomposition of (m)I 00
i j (`) as

I
(m)

00
i j (`) =

+∞
∑

p=−∞
I

(p,m)
00
i j ei p `. (5.103)

Next we find a numerical fit to Eq. (5.102), in powers of eip`, to extract out the coeffi-
cients (p,m)I 00

i j . The same procedure is adopted for different values of et and for (p,m)I 10
i j

and (p,m)I 11
i j .

6. Substituting the Fourier coefficients into Eq. (5.71) we generate numerical values of
the averaged angular momentum flux 〈FJmass quad〉 for the different values of et, and
hence get the numerical values of the enhancement functions, and most importantly of
the 1PN ones αJ(et) and θJ(et) defined by (5.96). The plots of these functions reported
in Sec. 5.6.1 readily follow.

The above procedure is quite general, and provides a method which could be extended
to higher PN orders. However, at the Newtonian order it is in fact much more efficient to
make use of the well-known Fourier decomposition of the Keplerian motion. Using this
we can derive the components of the multipole moments (at Newtonian order) as series of
combinations of Bessel functions. Then it is simple to compute numerically the associated
“Newtonian” enhancement functions [namely the functions ϕJ(e), βJ(e), γJ(e) and χJ(e) de-
fined in Sec. 5.6.1]. For the convenience of the reader we provide in Appendix 5.10 all the
expressions of the components of the required Newtonian moments [I (N)

i j , I(N)
i jk and J(N)

i j ] as
series of Bessel functions, we have used to compute numerically the functions ϕ(e), βJ(e),
γJ(e) and χJ(e)8.

8On the other hand, for the Newtonian tail terms, we could proceed exactly in the same way as for the 1PN
term, following the steps 1 - 8. We have verified that both methods agree well.
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5.7 The hereditary contribution to the 3PN angular mo-
mentum flux

5.7.1 Final expression of the tail terms

Based on the treatment outlined above of a numerical scheme for the computation of the
orbital average of the hereditary part of the angular momentum flux up to 3PN, we finally
provide the complete results for the numerical plots of the dimensionless enhancement fac-
tors. It is convenient for the final presentation to redefine in a minor way the “elementary”
enhancement functions of Sec. 5.6.1, which were directly given by simple Fourier decompo-
sitions. Let us choose

ψJ(e) ≡ 13 696
8191

αJ(e) − 16 403
24 573

βJ(e) − 112
24 573

γJ(e), (5.104a)

ζJ(e) ≡ −1424
4081

θJ(e) + 16 403
12 243

βJ(e) + 16
1749

γJ(e), (5.104b)

κJ(e) ≡ FJ(e) + 59 920
11 6761χJ(e). (5.104c)

Considering thus the 1.5PN and 2.5PN terms, composed of tails, and the 3PN terms, com-
posed of the tail-of-tail and the tail-squared terms, the total hereditary contribution to the
angular momentum flux (5.7) when averaged over ` (and normalized to the Newtonian value
for circular orbits) finally reads

〈(F J i)hered〉 =
32
5 ν2 m x7/2

{

4π x3/2 ϕJ(et) + π x5/2
[

−8191
672 ψJ(et) −

583
24 ν ζJ(et)

]

+x3
[

−116 761
3675

κJ(et) +
[

16
3
π2 − 1712

105
C − 1712

105
ln (4ω r0)

]

FJ(et)
]}

zi.

(5.105)

All enhancement functions above reduce to one in the circular case, when et = 0, so the
circular-limit is easily obtained from Eq. (5.105). It is seen to be in complete agreement
with Refs. [135, 116] where expressions for the hereditary contributions to the energy flux
for circular orbits are given. The comparison is readily made when one notes that, in the
circular-limit, 〈F 〉 = ω 〈F J i〉 zi. The function FJ(et) was computed in Section. 5.6, and we
recall here its expression,

FJ(et) =
1 + 229

32 e2
t +

327
64 e4

t +
69

256 e6
t

(1 − e2
t )5 . (5.106)

However the other enhancement functions ϕJ(et), ψ(et)J , ζ(et)J and κ(et)J in Eq. (5.105)
(very likely) do not admit any analytic closed-form expressions. We have given the details
of the numerical calculation of these functions in Sec. 5.6.2. Here we provide the numer-
ical plots of the final functions ψJ(et), ζJ(et) and κJ(et) in Figs. 5.5–5.6 as functions of the
eccentricity et [recall that the function ϕJ(et) has already been given in Fig. 5.1] 9.

As seen from Eq. (5.105) the final result depends on the constant r0 at the 3PN order. The
9The numerical results used for the figures 1-6 are available in the form of Tables on request
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Figure 5.5: Variation of ψJ(e) and ζJ(e) with eccentricity e. In the circular orbit limit, ψJ(0) =
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Figure 5.6: Variation of κJ(e) with the eccentricity e. In the circular orbit limit we have
κJ(0) = 1.

dependence on the constant r0 comes exclusively from the contribution of tails-of-tails (i.e.
the cubic multipole interaction M2 × Ii j) as can be seen from the expression of the radiative
mass-quadrupole in Eq. (5.2). We refer the reader to Section VI of Ref. [185] for a rigorous
confirmation of this fact. Now, we know from the study of the circular-orbit case (cf. [116])
that the dependence on r0 is cancelled out with a similar term contained in the expression
of the source-type quadrupole moment Ii j at 3PN order. This cancellation must be true for
general sources, and has been proved on general grounds in Ref. [135]. In fact, the expres-
sion for FJ(et) was guessed demanding the cancellation of the log r0 term in the total angular
momentum flux in Ref. [188] (see Eq. (6.55) of [188]). Our derivation confirms this guess
and thereby provides an interesting check of our calculations in this chapter. Expansions of
our final enhancement functions upto the first order in e2

t in the small eccentricity regime
(et → 0) are useful for compare the perturbative limit of the complete angular momentum
flux at 3PN order (including all instantaneous terms) with the result of black-hole perturba-
tions. These expansions are obtained analytically as follows. For the functions which are
Newtonian we can either use the Fourier coefficients in the Appendix 5.10 and expand them
at first order in e2

t or follow the general procedure explained in Sec. 5.6.2 for the relevant
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moments but expanding Eq. (5.100) to first order in e2
t , namely,

u = ` + et sin ` +
e2

t

2 sin 2` + O
(

e3
t

)

. (5.107)

The two 1PN functions [ψJ(et) and ζJ(et)], on the other hand, are obtained directly using the
latter procedure. We find

ϕJ (e) = 1 + 209
32

e2 + O
(

e4
)

, (5.108a)

ψJ (e) = 1 − 17 416
8191 e2 + O

(

e4
)

, (5.108b)

ζJ (e) = 1 + 102 371
8162 e2 + O

(

e4
)

, (5.108c)

κJ (e) = 1 +
(

389
32 −

549
32 ln 2 + 2187

128 ln 3
)

e2 + O
(

e4
)

, (5.108d)

and of course [since this is immediately deduced from Eq. (5.106)]

FJ (e) = 1 + 389
32 e2 + O

(

e4
)

. (5.109)

We have checked that the numerical results of Figs. 5.1, 5.5 and 5.6 agree well with
Eqs. (5.108) in the limit of small eccentricities.

5.8 Evolution of orbital elements under radiation reaction:
hereditary contributions

The most important application of the hereditary part of the 3PN angular momentum flux
computed in this chapter and the hereditary terms in the energy flux obtained in Ref [185]
is to obtain the time evolution of the orbital elements of the binary under gravitational radi-
ation reaction. Note that, by 3PN evolution of orbital elements under gravitational radiation
reaction we mean its evolution under 5.5PN terms beyond leading Newtonian order in the
equation of motion. In this Section, we compute the evolution of n, et, ar and k (averaged
over an orbit) due to the hereditary terms upto 3PN accuracy. This extends the earlier works
at Newtonian order by Peters [47], 1PN computation of Refs [172, 175] and at 2PN order
by Ref [174, 180]. The 1.5PN hereditary effects also have been incorporated in the orbital
element evolution in Refs [158, 173].

To this end, we start with expressions for the orbital elements in terms of the conserved
energy (E) and angular momentum (J) (taken, as usual, per unit reduced mass). The expres-
sions for ar ,n, et, and k in terms of E & J were already given in Section 5.3.2. We recall
them here for convenience.

ar = −
m

2E

{

1 +
(

7
2
− ν

2

)

E

}

, (5.110a)

n =
(−2 E)3/2

m

{

1 +
(

15
4 −

ν

4

)

E

}

, (5.110b)
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et =

{

1 + 2 E J2

m2

[

1 +
(

17
2 −

7
2ν

)

E +
(2 − 2ν)m2

J2

]

}1/2
, (5.110c)

k =
3 m2

J2 . (5.110d)

Note that we have taken all the above relations to be 1.5PN accurate, (see Section 5.3.2,
where they are written with G & c) a decision which we justify soon. The 3PN accurate
evolution of these orbital elements due to instantaneous terms are computed in Ref. [188].
Taking time derivatives of Eq. (5.110) we get expressions for rate-of-changes of the orbital
elements linear in dE

dt and dJ
dt . For example,

dar

dt
=

m
2E2

dE
dt
, (5.111a)

dk
dt
= −6 m2

J3
dJ
dt
. (5.111b)

Let us now use the heuristic balance equations for energy and angular momentum flux,
i.e.

dE
dt
= − F

νm
, (5.112a)

dJ
dt
= −F

J

νm
. (5.112b)

where F & F J are the far-zone energy and angular momentum fluxes respectively and F J
being simply F J i.zi. Recall that E & J are defined per-unit-reduced-mass.

On replacing F & F J with 〈(F )hered〉 & 〈(F J )hered〉 respectively, we finally obtain the
evolution of the orbital elements due to hereditary terms averaged over the binary orbit.
〈(F )hered〉 has been calculated upto 3PN order in Ref. [185]. Here we simply reproduce the
final result (taken from Eq.(6.2) in Ref. [185]), expressed in terms of enhancement functions
of eccentricity all of which reduce to 1 in the circular-orbit case.

〈(F )hered〉 =
32
5 ν2 x5

{

4π x3/2 ϕ(et) + π x5/2
[

−8191
672 ψ(et) −

583
24 ν ζ(et)

]

+x3
[

−116 761
3675 κ(et) +

[

16
3 π2 − 1712

105 C − 1712
105 ln (4ω r0)

]

F(et)
]}

.

(5.113)

Like the angular momentum flux, closed form expressions exist only for F(et). All the
other enhancement functions have been numerically computed at different values of et in
Ref. [185]. F(et) comes from the contribution of tails-of-tails and is given by (compare with
Eq. (5.106)),

F(et) =
1 + 85

6 e2
t +

5171
192 e4

t +
1751
192 e6

t +
297

1024 e8
t

(1 − e2
t )13/2 . (5.114)

Inspection of Eqs. (5.113) & (5.105) show that both the fluxes start at relative 1.5PN
order beyond the leading order. As the time derivatives of the orbital elements are linear in
the fluxes of E & J (which in turn start from 1.5PN order), 1.5PN accurate relations for the
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orbital elements are sufficient to calculate their 3PN evolution.
We also need 1.5PN accurate expressions for E & J, which we express below in terms of

the PN parameter x.

E = −1
2 x

[

1 + x

(

5
4 −

ν

12 −
2

(1 − e2)

)]

, (5.115a)

J = m
√

1 − e2 x−1/2
[

1 + x

(

3
2 +

1 + 5e2

6(1 − e2) ν
)]

. (5.115b)

5.8.1 Evolution of ar & n

From Eqs. (5.110), we see that the orbital elements ar & n depend only on E upto the accu-
racy we need. Therefore hereditary terms in the angular momentum flux do not contribute in
the time evolution of ar & n upto 3PN order. Using Eqs. (5.112), (5.113), & (5.115) in the
expressions of the derivatives of the orbital elements (like Eqs. (5.111)) , we get the averaged
evolution of the orbital elements ar & n due to hereditary terms accurate upto 3PN order.

〈dar

dt
〉 = −64

5 ν x3
{

4π x3/2 ϕ(et) + π x5/2
[

−4159
672 ψ(ar )(et) −

189
8 ν ζ(ar)(et)

]

+x3
[

−116 761
3675 κ(et) +

[

16
3 π2 − 1712

105 C − 1712
105 ln (4ω r0)

]

F(et)
]

}

,

(5.116a)

〈dn
dt
〉 = 96

5
ν

m2 x11/2
{

4π x3/2 ϕ(et) + π x5/2
[

−17599
672

ψ(n)(et) −
189

8
ν ζ(n)(et)

]

+x3
[

−116 761
3675

κ(et) +
[

16
3
π2 − 1712

105
C − 1712

105
ln (4ω r0)

]

F(et)
]

}

.

(5.116b)

The functions of eccentricity appearing above are either present in Eq. (5.113), or are
linear combinations of them. All the new functions of eccentricity introduced above reduce
to one in the circular orbit limit (et → 0). The plots for the enhancement functions in the
expression for 〈 dn

dt 〉 are provided in Fig. 5.7. Below, we provide the explicit expressions of
the new enhancement functions in Eq. (5.116). These are

ψ(ar)(et) = −
1344
4159

3 + 5e2
t

1 − e2
t

ϕ(et) +
8191
4159 ψ(et), (5.117a)

ζ(ar)(et) =
583
567 ζ(et) −

16
567 ϕ(et), (5.117b)

ψ(n)(et) =
1344

17 599
7 − 5e2

t

1 − e2
t

ϕ(et) +
8191

17 599 ψ(et) (5.117c)

ζ(n)(et) =
583
567 ζ(et) −

16
567 ϕ(et). (5.117d)

The expansions of the new enhancement functions for 〈 dn
dt 〉 in the limit of small eccentricities

are also easily obtained. We use the small et expansions already obtained in Eq. (5.108) and
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Figure 5.7: Variation of ϕ(e), ψ(n)(e), ζ(n)(e), κ(e) and F(e) with eccentricity e. In the circular
orbit limit, i.e., e → 0, all these functions approach unity. Note the similarity of ψ(n)(e) with
ψJ(e) in Fig. 5.5.

also similar expansions in Eqs. (6.9 & 6.10) and insert them in Ref. [185] in Eq. (5.117).

ψ(n)(e) = 1 + 94 115
17 599 e2 + O

(

e4
)

, (5.118a)

ζ(n)(e) = 1 + 9215
441 e2 + O

(

e4
)

. (5.118b)

5.8.2 Evolution of et

From Eq. (5.110), we see that et is the only orbital element which depends on both the
conserved energy and angular momentum upto 1.5PN order. Therefore, the hereditary effects
upto 3PN in the fluxes of both E & J affect the evolution of et. We therefore require both
Eqs. (5.113), & (5.105) for the respective fluxes. Plugging these expressions into the time
derivative of et together with Eq. (5.115), we obtain the averaged evolution of the time-
eccentricity et due to hereditary contributions. Recall that the other eccentricities er and
eφ appearing in the quasi-Keplerian representation Eq. (5.26) are related by simple 1PN
relations (see Eq. (5.33)) and are the same in the Newtonian limit. The averaged time-
evolution of et is

〈det

dt
〉 = −32

5
et
ν

m
x4

{

4π x3/2 ϕ(et)(et) + π x5/2
[

−ψ(et)(et) − ν ζ(et)(et)
]

+x3
[

−116 761
3675

κ(et)(et) +
[

16
3
π2 − 1712

105
C − 1712

105
ln (4ω r0)

]

F(et)(et)
]

}

.

(5.119)
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The functions of eccentricity appearing Eq. (5.119) all reduce to zero in the circular orbit
limit. This is expected, because the circular orbit is always of eccentricity zero. This be-
haviour obviously holds true for the instantaneous terms also. We provide the plots of the
enhancement functions in Eq. (5.119) in Fig. 5.8. In terms of the enhancement functions
appearing in Eqs. (5.113) &(5.105) they are

ϕ(et)(et) =
(

1 − e2
t

et

)

ϕ(et) −














√

1 − e2
t

et















ϕJ(et), (5.120a)

ψ(et)(et) =
14
et















(

1 − 11
7

e2
t

)

ϕ(et) −
1 − 3

7 e2
t

√

1 − e2
t

ϕJ(et)














+
8191
672















(

1 − e2
t

et

)

ψ(et) −














√

1 − e2
t

et















ψJ(et)














, (5.120b)

ζ(et)(et) = −
22
3 et















(1 − e2
t )ϕ(et) −

1 − 5
11 e2

t
√

1 − e2
t

ϕJ(et)














+
583
24















(

1 − e2
t

et

)

ζ(et) −














√

1 − e2
t

et















ζJ(et)














, (5.120c)

κ(et)(et) =
(

1 − e2
t

et

)

κ(et) −














√

1 − e2
t

et















κJ(et), (5.120d)

F(et)(et) =
(

1 − e2
t

et

)

F(et) −














√

1 − e2
t

et















FJ(et). (5.120e)

The function F (et)(et) is known in closed form and is given by (using Eqs. (5.114) & (5.106))

F(et)(et) =
769 et

96 (1 − e2
t )11/2

(

1 + 2782
769

e2
t +

10 721
6152

e4
t +

1719
24 608

e6
t

)

. (5.121)

The small eccentricity limits of the new enhancement functions are obtained below. Like
in the previous subsection, we use the known small et limits of the enhancement functions in
the RHS of Eq. (5.120).

ϕ(et)(e) = 985
192 e + O

(

e3
)

, (5.122a)

ψ(et)(e) = 55 691
1344 e + O

(

e3
)

, (5.122b)

ζ(et)(e) = 19 067
126

e + O
(

e3
)

, (5.122c)

κ(et)(e) =
(

769
96
+

44 662 487
11 209 056

ln 2 − 58 788 747
14 945 408

ln 3
)

e + O
(

e3
)

. (5.122d)

The last of the functions in Eq. (5.120) is easily reduced to its small eccentricity limit with
the help of its closed form expression in Eq. (5.121). It is

F(et)(e) = 769
96 e + O

(

e3
)

. (5.123)
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Figure 5.8: Variation of ϕ(e)(e), ψ(e)(e), ζ(e)(e), κ(e)(e) and F(e)(e) with eccentricity e. In the
circular orbit limit, i.e., e → 0, all these functions approach zero. Again note the similarity
in behaviour of ψ(e)(e) with ψJ(e) in Fig. 5.5.

5.8.3 Evolution of k

The final orbital element whose evolution we discuss in this chapter is k. Recall that k
represents the relativistic precession of periastron. The advance of the angle of periastron
during a single return to periastron is given by (modulo 2 π) 2 π k. It first appears in the
1PN description of the orbit. We also note that, below 2PN, it is only a function of J (see
Eq. (5.110)) and thus, hereditary terms solely from the angular momentum flux control its
evolution upto 3P order due to hereditary effects. The orbital time-scale averaged evolution
equation for k is

〈dk
dt
〉 = 192

5
ν

m
x5

{

4π x3/2 ϕ(k)(et) + π x5/2
[

−20287
672

ψ(k)(et) −
631
24

ζ(k)(et)
]

+x3
[

−116761
3675 κ(k)(et) +

[

16
3 π2 − 1712

105 C − 1712
105 ln (4ω r0)

]

F(k)(et)
]

}

,

(5.124)

where we note that the PN order of the leading term in dk
dt is 1PN higher than the same for

det

dt even though they are dimensionally same (compare Eqs. (5.119) & (5.124) . This is
obviously due to the fact that k itself is zero for the Kepler ellipse and first appears at 1PN
order. All the new functions of eccentricity appearing in Eq. (5.124) reduce to one in the
circular orbit limit (et → 0). These are

ϕ(k)(et) =
ϕJ(et)

(1 − e2
t )3/2 , (5.125a)

ψ(k)(et) =
12096
20287

ϕJ(et)
(1 − e2

t )3/2 +
8191

20287
ψJ(et)

(1 − e2
t )3/2 , (5.125b)
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ζ(k)(et) =
583
631

ζJ(et)
(1 − e2

t )3/2 +
48

631
(1 + 5e2

t )
(1 − e2

t )5/2 ϕJ(et), (5.125c)

κ(k)(et) =
κJ(et)

(1 − e2
t )3/2 , (5.125d)

F(k)(et) =
FJ(et)

(1 − e2
t )3/2 . (5.125e)

5.9 Conclusion and future directions

The far-zone angular momentum flux comprises hereditary contributions that depend on the
entire past history of the source. Using the GW generation formalism consisting of a multi-
polar post-Minkowskian expansion and supplemented by matching to a PN source, we have
computed the hereditary contributions from the inspiral phase of a binary system of compact
objects moving on quasi-elliptical orbits up to 3PN order using a semi-analytical method.
The method requires the 1PN quasi-Keplerian representation of elliptical orbits and exploits
the doubly periodic nature of the motion to average the flux over the binary’s orbit. Together
with the instantaneous contributions evaluated in Ref [188] and the complete 3PN energy
flux obtained in Refs. [186, 185], it provides crucial inputs for the construction of ready-
to-use templates for binaries moving on eccentric orbits, an interesting class of sources for
the ground based gravitational wave detectors LIGO/Virgo and especially space based de-
tectors like LISA. The extension to compute the 3.5PN terms for elliptical orbits is currently
not possible due to some as yet uncalculated terms in the generation formalism at this or-
der for general orbits. It would also require the use of the 2PN generalised quasi-Keplerian
representation for some of the leading multipole moments.

Recent advances in the field of numerical relativity (NR) [37, 38, 39, 40] has led to
high-accuracy comparisons between the PN predictions and the numerically-generated wave-
forms. Such comparisons and matching to the PN results for quasi-circular orbits have
proved currently to be very successful [41, 42, 43, 44]. However, evolution of quasi-circular
orbit binaries are relatively simple in the sense that the waveforms exhibit a steady “chirp”,
that is, a monotonic increase in amplitude and frequency. Eccentric binaries have the feature
that the waveform amplitude and frequency have oscillations. Therefore, a comparison with
NR for eccentric binaries provide a more stringent test of the PN formalism. The first NR
studies of binaries in eccentric orbits have been completed [193, 194] and have naturally been
followed up by comparison exercises [195]. In Ref. [195], an equal-mass non-spinning bi-
nary with initial eccentricity e ' 0.1 has been evolved using NR. The evolution carried out
over 8 cycles show an agreement of within 0.1 radians when the phase is compared with that
of an eccentric PN model with 2PN radiation reaction. The NR & PN phase difference grows
to about 0.8 radians about 5 cycles before merger. The agreement is better when one uses
the gauge-invariant PN expansion parameter x = (mω)2/3 (which is also our choice in this
chapter) instead of the mean-motion related parameter ξ = m n.
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5.10 Appendix: Fourier coefficients of the multipole mo-
ments

In this Appendix we provide the expressions of the Fourier coefficients of the Newtonian
multipole moments in terms of combinations of Bessel functions. We decompose the com-
ponents of the moments as Fourier series,

I(N)
L (t) =

+∞
∑

p=−∞
I
(p)

(N)
L eip`, (5.126a)

J(N)
L−1(t) =

+∞
∑

p=−∞
J
(p)

(N)
L−1 eip`, (5.126b)

where the Fourier coefficients can be obtained by evaluating the following integrals

I
(p)

(N)
L =

1
2π

∫ 2π

0
d` I(N)

L (t) e−ip`, (5.127a)

J
(p)

(N)
L−1 =

1
2π

∫ 2π

0
d` J(N)

L−1(t) e−ip`. (5.127b)

The evaluation of these integrals is standard. The reader is referred to the book by Plummer
[196] for details. For the mass quadrupole moment at Newtonian order we have10

I
(p)

(N)
xx = − 2

e2
t

Jp (p et) +
(

2
p et
− 2 et

p

)

J′p(p et) , (5.128a)

I
(p)

(N)
xy = i

√

1 − e2
t

[(

2
p
− 2

e2
t p

)

Jp (p et) +
2

et p2 J′p(p et)
]

, (5.128b)

I
(p)

(N)
yy =

(

− 2
p2 +

2
e2

t p2

)

Jp (p et) +
(

− 2
p et
+

2 et

p

)

J′p(p et) , (5.128c)

where a ′ denotes derivative with respect to the argument. For the mass octopole moment we
find

I
(p)

(N)
xxx =

(

− 9
e3

t p2 +
12

et p2 −
3 et

p2

)

Jp (p et) +
(

− 18
5 p3 +

6
e2 p3 −

6
p
+

3
e2

t p
+

3 e2
t

p

)

J′p(p et) ,

(5.129a)

I
(p)

(N)
xxy = i

√

1 − e2
t

[(

− 6
e3

t p3 +
6

5et p3 −
3

e3
t p
+

6
et p
− 3et

p

)

Jp (pet) +
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(5.129c)
10Note that the Fourier coefficients we provide are for normalized multipole moments as defined in

Eqs (5.83a)–(5.83b).
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Finally, for the current quadrupole moment,

J
(p)

(N)
xz =

√

1 − e2
t

2 p
J′p (p et) , (5.130a)

J
(p)

(N)
yz = −i

1 − e2
t

2 et p
Jp (p et) . (5.130b)
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[25] T. Damour and G. Esposito-Farèse. Phys. Rev. D 58, 042001 (1998).
gr-qc/9803031.

[26] B. F. Schutz. Gravitational radiation. Notes to lectures at Hanover University.

[27] L. P. Grishchuk, V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, and B. S.
Sathyaprakash. Physics Uspekhi 44, 1 (2001). astro-ph/0008481.

[28] L. Finn. Phys. Rev. D 46, 5236 (1992).

[29] A. Buonanno and T. Damour. Phys. Rev. D 62, 064015 (2000). gr-qc/0001013.

[30] L. Blanchet. Living Rev. Rel. 5, 3 (2002). gr-qc/0202016.

[31] T. Damour. Gravitational radiation and the motion of compact bodies. In N. Deruelle
and T. Piran, eds., Gravitational Radiation, pp. 59–144 (North-Holland Company,
Amsterdam, 1983).

[32] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet. Phys. Rev. D 65, 061501(R) (2002).
Erratum-ibid 71, 129902(E) (2005), gr-qc/0105099.

[33] T. Damour, B. R. Iyer, and B. S. Sathyaprakash. Phys. Rev. D 57, 885 (1998).
gr-qc/9708034.

[34] T. Damour, B. R. Iyer, and B. S. Sathyaprakash. Phys. Rev. D 62, 084036 (2000).
gr-qc/0001023.

[35] T. Damour, B. R. Iyer, and B. S. Sathyaprakash. Phys. Rev. D 63, 044023 (2001).
Erratum-ibid. D 72 (2005) 029902, gr-qc/0010009.

[36] A. Buonanno and T. Damour. Phys. Rev. D 59, 084006 (1999). gr-qc/9811091.

[37] F. Pretorius. Phys. Rev. Lett. 95, 121101 (2005). gr-qc/0507014.

[38] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter. Phys. Rev. Lett.
96, 111102 (2006). gr-qc/0511103.

142



[39] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower. Phys. Rev. Lett. 96,
111101 (2006). gr-qc/0511048.

[40] J. Baker, M. Campanelli, F. Pretorius, and Y. Zlochower. Class. Quant. Grav 24, S25
(2007).

[41] A. Buonanno, G. B. Cook, and F. Pretorius. Phys. Rev. D 75, 124018 (2007).
gr-qc/0610122.

[42] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Brueg-
mann. Phys. Rev. D 76, 064034 (2007). gr-qc/0703053.

[43] M. Hannam, S. Husa, U. Sperhake, B. Brugmann, and J. A. Gonzalez. Phys. Rev. D
77, 044020 (2008). arXiv:0706.1305.

[44] M. Boyle et al. Phys. Rev. D 76, 124038 (2007). arXiv:0710.0158.

[45] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter. Phys. Rev. D 73,
104002 (2006). gr-qc/0602026.

[46] K. D. Kokkotas and B. G. Schmidt. Living Rev. Rel. 2, 2 (1999). gr-qc/9909058.

[47] P. Peters. Phys. Rev. 136, B1224 (1964).

[48] Y. Kozai. Astron. J 67, 591 (1962).

[49] M. C. Miller and D. P. Hamilton. Astrophys. J. 576, 894 (2002). astro-ph/0202298.

[50] J. Taylor and J. Weisberg. Astrophys. J. 253, 908 (1982).

[51] http://lisa.jpl.nasa.gov.

[52] P. L. Bender. Lisa: Laser interferometer space antenna for the detection and observa-
tion of gravitational waves: Pre-phase: A report (1995). Unpublished.

[53] C. Cutler. Phys. Rev. D 57, 7089 (1998). gr-qc/9703068.

[54] N. J. Cornish and S. L. Larson. Phys. Rev. D 67(10), 103001 (pages 15) (2003).

[55] J. W. Armstrong, F. B. Estabrook, and M. Tinto. Astrophys. J. 527, 814 (1999).

[56] F. B. Estabrook, M. Tinto, and J. W. Armstrong. Phys. Rev. D 62(4), 042002 (2000).

[57] S. V. Dhurandhar, K. R. Nayak, and J.-Y. Vinet. Phys. Rev. D 65(10), 102002 (2002).

[58] M. Tinto and S. Dhurandhar. Living Rev. Relativity 8, 4 (2005).

[59] L. Ferrarese and D. Merritt. Astrophys. J. 539, L9 (2000). astro-ph/0006053.

[60] D. Richstone, E. A. Ajhar, R. Bender, G. Bower, A. Dressler, S. M. Faber, A. V.
Filippenko, K. Gebhardt, R. Green, L. C. Ho, J. Kormendy, T. Lauer, J. Magorrian,
and S. Tremaine. Nature 395, A14 (1998). astro-ph/9810378.

143



[61] S. A. Hughes. Mon. Not. R. Astron Soc. 331, 805 (2002). astro-ph/0108483.

[62] E. Berti, A. Buonanno, and C. M. Will. Phys. Rev. D 71(8), 084025 (2005).
gr-qc/0411129.

[63] E. Berti, A. Buonanno, and C. M. Will. Class. Quantum Grav. 22, S943 (2005).
gr-qc/0504017.

[64] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash. Class. Quantum
Grav. 23, L37 (2006). gr-qc/0604018.

[65] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash. Phys. Rev. D 74,
024025 (2006). gr-qc/0604067.

[66] S. A. Hughes and K. Menou. Astrophys. J. 623, 689 (2005). astro-ph/0410148.

[67] B. F. Schutz. Nature (London) 323, 310 (1986).

[68] P. J. E. Peebles and B. Ratra. Rev. Mod. Phys. 75, 559 (2003). astro-ph/0207347.

[69] D. E. Holz and S. A. Hughes. Astrophys. J 629, 15 (2005). astro-ph/0504616.

[70] N. Dalal, D. E. Holz, S. A. Hughes, and B. Jain. Phys. Rev. D 74, 063006 (2006).
astro-ph/0601275.

[71] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer. Phys. Rev. Lett. 93,
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