
Chapter 3

2.5PN GW polarizations from

inspiralling compact binaries on circular

orbits: Hereditary terms and the

complete waveform

3.1 Introduction

One of the key assumptions one often makes in describing a physical system is its localiz-

ability in space and time. This facilitates very accurate predictions about the evolution of the

system as if it were (i) isolated from other sources located far away in space and that (ii) its

present state is uncorrelated with its states at remote earlier epochs. General relativity neces-

sitates spacetime nonlocality with its two key features: finite propagation velocity of physical

effects and infinite nonlinearity (see Ref [56] for a more detailed physical description of this

effect).

If one uses a multipolar description of gravitational fields, it can be shown that evolution

of the individual multipoles are not independent but each multipole couples with other mul-

tipoles (including themselves) [56, 57, 58, 59] via nonlinear Einstein’s field equations. Since

we use the MPM formalism to compute the gravitational waveform hi j and the correspond-

ing polarizations, there will be nonlocal contributions to the waveform and polarizations.

Computation of such nonlocal contributions to the two independent gravitational wave po-

larizations from an isolated compact binary system is the topic of discussion of this chapter 1.

We call these nonlocal contributions ‘hereditary terms’.

Hereditary terms can be of different types. For instance, the hereditary term entering the

1Henceforth nonlocal always refers to nonlocal in time since we deal with isolated sources.
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expression for gravitational waveform include:

1. The GW tails: They are due to the nonlinear interaction between the mass quadrupole

Mi j and the total ADM mass energy content of the spacetime M [56, 57]. Physically,

this effect can be visualized as the backscattering of the linear waves (described by

Ii j) off the constant spacetime curvature generated by the mass energy M. This can be

viewed as a part of the gravitational field propagating inside the light cone (e.g. [56]).

This is the leading hereditary effect which first appears at 1.5PN in the waveform 2.

Since tail integrals appear at 1.5PN for different radiative multipoles, tail effect due to

higher multipoles occur at higher PN orders (see Eq. (3.3)) .

2. Nonlinear memory term: This is one of the most interesting components in the 2.5PN

GW polarizations presented in this chapter. It is due to the re-radiation of stress-energy

distribution of linear waves [155, 156, 157, 57]. As we shall discuss in this chapter,

there are oscillatory and non-oscillatory parts constituting the memory effect.

3. Tails of tails: These are contributions to the GW polarizations due to the cubic in-

teraction of quadrupole moment Mi j with two monopoles M [58, 59]. This is a 3PN

effect irrelevant for the computation of the present 2.5PN polarization. However this

is one of the most important new features one would encounter in calculating the 3PN

polarization.

Besides these three, there is an additional tail-square effect in the computation of GW fluxes

which is due to the square of the 1.5PN term in the waveform [59].

The 1.5PN tail contribution was calculated independently by Blanchet and Schäfer [108]

and Wiseman [141]. Blanchet, Damour and Iyer calculated the tail contribution at 2PN in the

waveform [140] arising from the mass octupole and current quadrupole. Blanchet in Ref [98]

computed the 2.5PN tail contribution to the GW luminosity. Later, Blanchet evaluated the

‘tails of tails’ and ‘ tail-squared’ terms at the 3PN order in the luminosity which was used

in Refs [143, 99] to calculate the 3.5PN GW energy flux and the associated 3.5PN GW

phasing. This phasing formula of Ref [99] is being used to analyse the data of LIGO by

different research groups across the world.

This chapter deals with the explicit computation of the ‘tails’ and ‘memory’ terms in

the complete 2.5PN GW polarizations. While we follow a procedure similar to Blanchet-

Schäfer [108] for the calculation of the tails, we compute newly for the first time an explicit

closed-form expression for the 2.5PN memory contribution.

2Recall that 1.5PN here is relative to the leading Newtonian order.
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3.2 The 2.5PN gravitational waveform

We discuss the individual hereditary contributions to the GW polarizations at 2.5PN order

in this section. Based on the expressions for the mass and current type radiative moments

(Eqs (2.3)-(2.4)) and using Eq. (2.1) for the waveform, the total waveform is given by

hTT
km =

(

hTT
km

)

inst +
(

hTT
km

)

hered . (3.1)

The hereditary terms up to 2.5PN consists of ‘tails’ and ‘memory’ contributions.

(

hTT
km

)

hered =
(

hTT
km

)

tail +
(

hTT
km

)

memory + O(6) . (3.2)

The structure of these terms and the necessary inputs needed for their evaluation are dis-

cussed in the next section.

3.2.1 The hereditary contributions to the waveform

Concerning hereditary parts, we have the tail integrals (dominantly 1.5PN) which read as

(

hTT
km

)
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)
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5
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]

εab(iJ
(5)
j)ac(V)

}

, (3.3)

and the non-linear memory integral (which is purely of order 2.5PN) given by

(

hTT
km

)

memory =
2G
c4R
Pi jkm

G
c5

∫ TR

−∞
dV

{

−2
7

I(3)
a<i(V)I(3)

j>a(V) +
Nab

30
I(3)
<i j(V)I(3)

ab>(V)

}

. (3.4)

The latter expression is in complete agreement with the results of [156, 57, 58].

3.2.2 Source multipole moments required at the 2.5PN order

Unlike the instantaneous part, the hereditary calculations require source multipole mo-

ments with much lesser accuracy. The highest accuracy moment needed is the 1PN mass
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quadrupole given in Ref [107]. The relevant multipole moments are rewritten below up to

the required accuracy. We need,

Ii j = νm STFi j

{

xi j

[

1 + γ

(

− 1
42
− 13

14
ν

)]

+
r2

c2
vi j

[

11
21
− 11

7
ν + γ

(

1607
378

− 1681
378

ν +
229
378

ν2

)]

+ O(4) , (3.5a)

Ii jk = νm (X2 − X1) STFi jk

{

xi jk
}

, (3.5b)

Ii jkl = νm STFi jkl

{

xi jkl [1 − 3ν]
}

. (3.5c)

Further, the current moments are given by,

Ji j = νm (X2 − X1) STFi j

{

εabix
javb

}

, (3.6a)

Ji jk = νm STFi jk

{

εkabxai jvb [1 − 3ν]
}

. (3.6b)

[We recall that X1 =
m1
m , X2 =

m2
m , and ν = X1X2; the PN parameter γ is defined by (2.17); the

STF projection is mentioned explicitly in front of each term.]

With all the latter source moments valid for a specific matter system (compact binary in

circular orbit) the gravitational waveform is fully specified up to the 2.5PN order. The only

other input which we need is the 1PN equation of motion of Ref [159]

dv
dt
= −ω2 x + O(4) , (3.7)

where

ω2 =
G m
r3

{

1 +
[

−3 + ν
]

γ + O(4)
}

. (3.8)

Using the above given inputs, we describe the computations of the tails and memory integrals

in what follows. What is different is that unlike for the evaluation of the instantaneous part

where one only requires the equation of motion of the binary, the hereditary calculation,

involving an integration over the binary’s entire past, requires a model for the binary’s orbit.

3.3 Computation of the hereditary terms at the

2.5PN order

We now come to the computation of the hereditary terms, i.e. terms made up of integrals

extending over all the past history of the non-stationary source, from −∞ in the past up to

TR = T −R/c. In the following we shall refer to TR as the current time – the one at which the
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observation of the radiation field occurs. As we have seen in Sec. 2.2.2, at the 2.5PN order

the waveform contains two types of hereditary terms: tail integrals, given by Eq. (3.3), and

the non-linear memory integral (3.4).3

Evidently, in order to evaluate the hereditary terms, one must take into account the fact

that the binary’s orbit will have evolved, under gravitational radiation reaction, from early

time to today. However we shall show, following Refs. [108, 141], the tails can basically

be computed using the binary’s current dynamics at time TR, i.e. a circular orbit travelled

at the current orbital frequency ω(TR) (this will be true modulo negligible 4PN terms in the

waveform). Concerning the memory integral however, the result in general depends on the

details of the model of the binary evolution in the entire past.

3.3.1 Model for adiabatic inspiral in the remote past

In this chapter we adopt a simplified model of binary’s past evolution in which the orbit

decays adiabatically because of gravitational radiation damping according to the standard

quadrupolar (i.e. Newtonian) approximation. We shall justify later that such a model is

sufficient for our purpose – because we shall have to take into account the PN corrections

in the tails only at the current epoch. The orbit will be assumed to remain circular, apart

from the gradual inspiral, at any time V < TR. We shall ignore any astrophysical (non-

gravitational) processes such as the binary’s formation by capture process in some dense

stellar cluster, the successive supernova explosions and associated core collapses leading to

the formation of the two compact objects, etc.

Let us recall the expressions of the binary’s orbital parameters as explicit functions of

time V in the quadrupolar circular-orbit approximation [139]. The orbital separation r(V)

evolves according to a power law, namely

r(V) = 4

[

G3m3ν

5 c5
(Tc − V)

]1/4

, (3.9)

where Tc denotes the coalescence instant, at which the two bodies merge together and the

orbital frequency formally tends to infinity. The factor 1/c5 therein represents the 2.5PN

order of radiation reaction. We assume that our current detection of the binary takes place

before the coalescence instant, TR < Tc, in a regime where the binary inspiral is adiabatic

and the approximation valid.4

3Notice that in the gravitational-wave flux (in contrast to the waveform), the non-linear memory integral is
instantaneous – it is made of a simple time anti-derivative and the flux depends on the time-derivative of the
waveform.

4The formal PN order of the time interval left till coalescence is the inverse of the order of radiation-reaction,
Tc − TR = O(c5) = O(−5).
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The orbital frequencyω in this model (ω = 2π/P, where P is the orbital period), is related

at any time to the orbital separation (3.9) by Kepler’s (Newtonian) law G m = r3 ω2. [Again

we shall justify later our use of a Newtonian model for the early-time inspiral]. Hence,

ω(V) =
1
8

[

G5/3m5/3ν

5 c5
(Tc − V)

]−3/8

. (3.10)

Instead of ω it is convenient to make use of the traditional frequency-related post-Newtonian

parameter x ≡ (G mω/c3)2/3 already considered in (2.21). It is given by

x(V) =
1
4

[

ν c3

5 G m
(Tc − V)

]−1/4

. (3.11)

The orbital phase φ =
∫

ω dt = c3

G m

∫

x3/2dt, namely the angle between the binary’s separa-

tion and the ascending node N , reads as

φ(V) = φc −
1
ν

[

ν c3

5 G m
(Tc − V)

]5/8

, (3.12)

where φc is the value of the phase at the coalescence instant.

The latter expressions are inserted into the various hereditary terms, and integrated from

−∞ in the past up to now. In order to better understand the structure of the integrals, it is

advisable to re-express the above quantities (3.9)–(3.12) in terms of their values at the current

time TR. A simple way to achieve this is to introduce, following [108], the new time-related

variable

y ≡ TR − V
Tc − TR

, (3.13)

and to make use of the power-law dependence in time of Eqs. (3.9)–(3.12). This leads im-

mediately, for the orbital radius r(V) and similarly for ω(V) and x(V), to

r(V) = r(TR)(1 + y)1/4 , (3.14)

where r(TR) refers to the current value of the radius. For the orbital phase we get

φ(V) = φ(TR) − 1
ν

[

ν c3

5 G m
(Tc − TR)

]5/8
[

(1 + y)5/8 − 1
]

. (3.15)

The latter form is however not the one we are looking for. Instead, we want to make explicit

the fact that the phase difference between TR and some early time V will become larger when

the inspiral rate gets slower, i.e. when the relative change of the orbital frequency ω in one

corresponding period P becomes smaller.
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To this end we introduce a dimensionless “adiabatic parameter” associated with the in-

spiral rate at the current time TR. This is properly defined as the ratio between the current

period and the time left till coalescence. We adopt the definition 5

ξ(TR) ≡ 1
(Tc − TR)ω(TR)

. (3.16)

The adiabatic parameter ξ is of the order 2.5PN. Written in terms of the PN variable x defined

by (3.11), it reads

ξ(TR) =
256 ν

5
x5/2(TR) . (3.17)

Now Eq. (3.15) can be expressed with the help of ξ(TR) in the more interesting form

φ(V) = φ(TR) − 8
5 ξ(TR)

[

(1 + y)5/8 − 1
]

, (3.18)

which makes clear that the phase difference ∆φ = φ(TR)−φ(V), which is 2π times the number

of orbital cycles between V and TR, tends to infinity when ξ(TR) → 0 on any “remote-past”

time interval for which y is bounded from below, for instance y > 1. What is important is

that (3.18) depends on the current value of the adiabatic parameter, so we shall be able to

compute the hereditary integrals in the relevant limit where ξ(TR) → 0, appropriate to the

current adiabatic regime. Notice that, at recent time, when V → TR or equivalently y → 0,

we have

φ(V) = φ(TR) − y

ξ(TR)
+ O

(

y2
)

, (3.19)

which is of course the same as the Taylor expansion

φ(V) = φ(TR) − (TR − V)ω(TR) + O
[

(TR − V)2
]

. (3.20)

3.3.2 The nonlinear memory integral

We tackle the computation of the novel hereditary term at the 2.5PN order, namely the non-

linear memory integral given by (3.4). As we shall see the computation boils down to the

evaluation of only two “elementary” hereditary integrals, below denoted I(TR) and J(TR). A

third type of elementary integral, K(TR), will be necessary to compute the tail integrals in

Sec. 3.3.3.

The two wave polarisations corresponding to Eq. (3.4), calculated with our conventions

and notation explained after (2.31), are readily obtained from the Newtonian approximation

5We have ξ = 8
3 ω̇/ω

2 so our definition agrees with the actual relative frequency change ∝ ω̇/ω2 in one
period. It is also equivalent to the one adopted in [108]: ξ = ξBS/π.
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to the quadrupole moment Ii j [first term in (3.5)], and cast into the form

(

h+
)

memory(TR) =
2G
c4R

G4m5ν2 sin2 i
c5

∫ TR

−∞

dV
r5(V)

{

−12
5
+

2
15

sin2 i

+

(

4
15
− 2

15
sin2 i

)

cos[4φ(V)]

}

, (3.21a)

(

h×
)

memory(TR) =
2G
c4R

G4m5ν2 sin2 i
c5

∫ TR

−∞

dV
r5(V)

{

4 cos i
15

sin[4φ(V)]

}

. (3.21b)

In our model of binary evolution the radius of the orbit, r(V), and orbital phase, φ(V), are

given by Eqs. (3.9) and (3.12), at any time such that V < TR < Tc. Because r(V) ∝ (Tc−V)1/4

we see that the integrals in (3.21) are perfectly well-defined, and in fact absolutely convergent

at the bound V → −∞. There are two distinct types of terms in (3.21). A term, present only

in the plus polarisation (3.21a), is independent of the orbital phase φ, and given by a steadily

varying function of time, having an amplitude increasing like some power law but without

any oscillating behaviour. This “steadily increasing” term is specifically responsible for the

memory effect. The other terms, present in both polarisations, oscillate with time like some

sine or cosine of the phase, in addition of having a steadily increasing maximal amplitude.

Consider first the steadily growing, non-oscillating term. Its computation simply relies,

as clear from (3.21a), on the single elementary integral

I(TR) ≡ (G m)4

c7

∫ TR

−∞

dV
r5(V)

, (3.22)

where we find convenient to factorize out an appropriate coefficient in order to make it di-

mensionless. The calculation of (3.22) is easily done directly, but it is useful to perform our

change of variable (3.13), as an exercise to prepare the treatment of the (somewhat less easy)

oscillating terms. Thus, we write in a first stage

I(TR) =
(G m)4

c7

Tc − TR

r5(TR)

∫ +∞

0

dy
(1 + y)5/4

. (3.23)

The factor in front is best expressed in terms of the dimensionless PN parameter x(TR), and

of course the remaining integral is trivially integrated. We get

I(TR) =
5

256 ν
x(TR)

∫ +∞

0

dy
(1 + y)5/4

=
5

64 ν
x(TR) . (3.24)

With this result we obtain the steadily-increasing or memory term in Eq. (3.21a). How-

ever, as its name indicates, this term keeps a “memory” of the past activity of the system. As

a test of the numerical influence of the binary’s past history on Eq. (3.24), let us suppose that
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the binary was created ex nihilo at some finite initial time T0 in a circular orbit state. This

premise is not very realistic – we should more realistically assume e.g. a binary capture in

some stellar cluster and/or consider an initially eccentric orbit – but it should give an estimate

of how sensitive is the memory term on initial conditions. In this crude model we have to

consider the integral I0(TR) extending from T0 up to TR. We find that the ratio of I0(TR) and

our earlier model I(TR) is

I0(TR)
I(TR)

= 1 −
(

Tc − TR

Tc − T0

)1/4

= 1 − r(TR)
r(T0)

. (3.25)

Let us choose the observation time TR such that the binary is visible by the VIRGO/LIGO

detectors. At the entry of the detectors’ frequency bandwidth, say ωseismic ' 30 Hz, we

obtain Tc − TR ' 103 s and r(TR) ' 700 km in the case of two neutron stars (m = 2.8 M�).

For a binary system initially formed on an orbit of the size of the Sun, r(T0) ' 106 km

(corresponding to Tc − T0 ' 108 yr), we find that the fractional difference between our two

models I0 and I amounts to about 10−3. For an initial orbit of the size of a white dwarf,

r(T0) ' 104 km, the fractional difference is of the order of 10% – rather large indeed. So

we conclude that indeed the memory term in (3.21a), depends rather severely on detailed

assumptions concerning the past evolution of the binary system. We shall have to keep this

feature in mind when we present our final results for this term.

Turn next our attention to the phase-dependent, oscillating terms in Eqs. (3.21). Clearly

these terms are obtained once we know the elementary integral

J(TR) ≡ (G m)4

c7

∫ TR

−∞
dV

e4iφ(V)

r5(V)
. (3.26)

Inserting (3.14) and (3.18) into it we are led to the form [which exactly parallels (3.24)]

J(TR) =
5

256 ν
x(TR) e4iφ(TR)

∫ +∞

0

dy
(1 + y)5/4

e−
32i

5ξ(TR) [(1+y)5/8−1] . (3.27)

We shall compute this integral in the form of an approximation series, valid in the adiabatic

limit ξ(TR) → 0. The easiest way to obtain successive approximations is to integrate by

parts. We obtain

∫ +∞

0

dy
(1 + y)5/4

e−
32i
5ξ [(1+y)5/8−1] =

ξ

4i

{

1 − 7
8

∫ +∞

0

dy
(1 + y)15/8

e−
32i
5ξ [(1+y)5/8−1]

}

. (3.28)

A further integration by parts shows that the integral in the curly brackets of (3.28) is itself
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of order ξ, so we have the result 6

∫ +∞

0

dy
(1 + y)5/4

e−
32i
5ξ [(1+y)5/8−1] =

ξ

4i

{

1 + O (ξ)
}

. (3.29)

A standard way to understand it is to remark that, when y is different from zero, the phase of

the integrand of (3.29) oscillates very rapidly when ξ → 0, so the integral is made of a sum

of alternatively positive and negative terms and is essentially zero. Consequently, the value

of the integral is essentially given by the contribution due to the bound at y = 0, which can

be approximated by
∫

0
dy e−

4iy
ξ =

ξ

4i
. (3.30)

Because ξ(TR) is of order 2.5PN the result (3.29) is sufficient for the control of the 2.5PN

waveform, thus our elementary integral reads, with the required precision,

J(TR) = x7/2(TR)
e4iφ(TR)

4i

{

1 + O (ξ)
}

. (3.31)

We find that the “oscillating” integral J(TR) is an order 2.5PN smaller than the “steadily

growing” or “memory” integral I(TR). This can be interpreted by saying that the cumulative

(secular) effect of the integration over the whole binary inspiral in I(TR) is comparable to

the inverse of the order of radiation reaction forces – a quite natural result. By contrast the

oscillations in J, due to the sequence of orbital cycles in the entire life of the binary system,

compensate (more or less) each other yielding a net result which is 2.5PN smaller than for I.

Furthermore, the argument leading to the evaluation of (3.30) shows that J, contrarily to I,

is quite insensitive to the details of the binary’s past evolution.

Substituting Eqs. (3.24) and (3.31) into (3.21) we finally obtain the hereditary memory-

type contributions to the polarisation waveforms as

(

h+
)

memory =
2 G m ν x

c2R
sin2 i

{

−17 + cos2 i
96

+
ν

30
x5/2(1 + cos2 i) sin(4φ)

}

,

(3.32a)
(

h×
)

memory =
2 G m ν x

c2R
sin2 i

{

− ν
15

x5/2 cos i cos(4φ)
}

, (3.32b)

where of course all quantities correspond to the current time TR. The phase-independent

term is the non-linear memory or Christodoulou effect [155, 156, 157, 57, 58] in the case

6By successive integration by parts one generates the asymptotic series (divergent for any value of ξ)

∫ +∞

0

dy

(1 + y)5/4
e−

32i
5ξ [(1+y)5/8−1] ∼ −8

+∞
∑

n=1

(5n − 3)(5n − 8) · · · (12)(7)
( iξ
32

)n

,

where we have used the standard notation ∼ for equalities valid in the sense of asymptotic series.
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of inspiralling compact binaries. Our calculation, leading to a factor ∝ sin2 i(17 + cos2 i),

agrees with the result of Wiseman and Will [156].7 The non-linear memory term stricto-

sensu affects the plus polarisation but not the cross polarisation, for which it is exactly zero.

As we have said, it represents a part of the waveform whose amplitude grows with time, but

which is nearly constant over one orbital period. It is therefore essentially a zero-frequency

(DC) effect, which has rather poor observational consequences in the case of the LIGO-

VIRGO detectors, whose frequency bandwidth is always limited from below by ωseismic > 0.

In addition, we know that detecting and analyzing the ICBs relies essentially on monitoring

the phase evolution, which in turn is determined by the total gravitational-wave flux. But we

have already noticed that the non-linear memory integral (3.4) is instantaneous in the flux

(and in fact it does not contribute to the phase in the circular orbit case [98]). It thus seems

that the net cumulative “memory” change in the waveform of ICBs is hardly detectable. On

the other hand, the frequency-dependent terms found in Eq. (3.32) form an integral part of

the 2.5PN waveform.

An important comment is in order. As we have seen the memory effect, i.e. the DC term

in Eq. (3.32a), is “Newtonian” because the cumulative integration over the binary’s past just

compensates the formal 2.5PN order of the hereditary integral. Thus we expect that some

formal PN terms strictly higher that 2.5PN will actually contribute to the 2.5PN waveform

via a similar cumulative integration. For instance at the 3.5PN level there will be a memory-

type integral in the radiative quadrupole moment Ui j, which is quadratic in the mass octupole

moment (of the symbolic form Iab<i × I j>ab). After integration over the past using our model

of adiabatic inspiral, we expect that the “steadily-growing” part of the integral should yield a

DC contribution to the waveform at the relative 1PN order. In the present chapter we do not

consider such higher-order post-Newtonian DC contributions, and leave their computation

to future work.

3.3.3 Gravitational-wave tails

The tails up to 2.5PN order are given by Eq. (3.3). Because of the logarithmic kernel they

involve, the tails are more complicated than simple time anti-derivatives, and they constitute

a crucial part of both the waveform and the energy flux, and in particular of the orbital phase

with important observational consequences (for a review see [44]).

The computation of tails reduces to the computation of a new type of “elementary” in-

tegral, differing from J(TR) given in (3.26) by the presence of an extra logarithmic factor in

7The difference of a factor of−2 of between their and our result is here probably due to a different convention
for the polarisation waveforms.
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the integrand, and given by 8

K(TR) ≡ (G m)4

c7

∫ TR

−∞
dV

e4iφ(V)

r5(V)
ln

(

TR − V
Tc − TR

)

. (3.33)

For convenience we have inserted into the logarithm of (3.33) the constant time scale Tc−TR

instead of the normalization 2b more appropriate for tails [or, for instance, 2b e−11/12, see

(3.3)], but we can do this at the price of adding another term which will be proportional to

J(TR) already computed in Sec. 3.3.2.

With the help of the y-variable (3.13) we transform the latter integral into

K(TR) =
5

256 ν
x(TR) e4iφ(TR)

∫ +∞

0

dy ln y
(1 + y)5/4

e−
32i

5ξ(TR) [(1+y)5/8−1] . (3.34)

Because of the factor ln y we are not able to directly integrate by parts as we did to compute

J(TR). Instead we must split the integral into some “recent-past” contribution, say y ∈]0, 1[,
and the “remote-past” one, y ∈]1,+∞[

. In the remote-past integral, whose lower bound at

y = 1 allows for differentiating the factor ln y, we perform the integrations by parts in a way

similar to (3.28). This leads to

∫ +∞

1

dy ln y
(1 + y)5/4

e−
32i
5ξ [(1+y)5/8−1] = O

(

ξ2
)

, (3.35)

which is found to be of the order of O
(

ξ2
)

instead of O (ξ) in Eq. (3.29). This is a conse-

quence of the ln y which is zero at the bound y = 1, and thus kills the all-integrated term.

Hence we deduce from (3.35) that the contribution from the remote past in the tail integrals

is in fact quite small. The details concerning the remote-past activity of the source are negli-

gible when computing the tails. More precisely, because ξ = O(5), we can check that terms

such as (3.35) do not contribute to the waveform before the 4PN order, so the tail integrals

can be legitimately approximated, with 2.5PN accuracy, by their “recent-past” history (in

agreement with the findings of [108, 141]).

Now, in the recent-past integral, i.e. y ∈]0, 1[, we are allowed to replace the integrand

by its equivalent when y → 0, modulo terms of the same magnitude as (3.35). This fact has

been proved rigorously in the Appendix B of [108]. Here we shall not reproduce the proof

8Actually in order to describe the tails we should consider the more general integrals

Kn,p(TR) =
(G m)p−1

c2p−3

∫ TR

−∞
dV

einφ(V)

rp(V)
ln

(

TR − V
Tc − TR

)

.

The dominant tails at the 1.5PN order correspond to p = 4 and n = 2, the tails at the 2PN order have p = 9/2
and n = 1, 3, and those at the 2.5PN order have p = 5 and n = 2, 4. Here we deal with the particular case p = 5,
n = 4 because the calculation parallels the one of I(TR) and J(TR) in Sec. 3.3.2. The other cases are treated in
a similar way.
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but simply state the end result, which reads

∫ 1

0

dy ln y
(1 + y)5/4

e−
32i
5ξ [(1+y)5/8−1] =

∫ 1

0
dy ln y e−

4i y
ξ + O

(

ξ2 ln ξ
)

. (3.36)

As we see, the remainder is O
(

ξ2 ln ξ
)

, instead of being merely O
(

ξ2
)

as in Eq. (3.35). The

integral in the R.H.S. of (3.36) gives the main contribution to the tail integral (the only one to

be taken into account up to very high 4PN order). It is easily computed by using a standard

formula,9
∫ 1

0
dy ln y e−

4i y
ξ =

ξ

4i

[

π

2i
− ln

(

4
ξ

)

− C

]

+ O
(

ξ2
)

, (3.37)

where C = 0.577 · · · is the Euler constant.

Finally the required result is

K(TR) = x7/2(TR)
e4iφ(TR)

4i

{

π

2i
− ln

(

4
ξ(TR)

)

− C + O (ξ ln ξ)

}

, (3.38)

where it is crucial that all the binary’s parameters are evaluated at the current time TR. It is

interesting to compare (3.38) with our earlier result for J(TR) given by (3.31), in order to see

the effect of adding a logarithmic-type kernel into an oscillating, phase-dependent integral.

Eq. (3.38), together with its trivial extension to Kn,p, is used for the computation of all the

tails in the waveform at the 2.5PN order (and it could in fact be used up to the order 3.5PN

included). Actually we still have to justify this because during the derivation of (3.38) we

employed a Newtonian model for the binary’s inspiral in the past, e.g. we assumed the Kepler

law G m = r3(V)ω2(V) at any time V < TR. In the case of the memory term (3.4) this is okay

because it needs to be evaluated with Newtonian accuracy. But in the case of tails, Eq. (3.3),

the dominant effect it at the 1.5PN order, so we have to take into account a 1PN relative

correction in order to control the 2.5PN waveform. Nevertheless, our model of Newtonian

inspiral in the past is compatible with taking into account 1PN effects, for the basic reason

that for tails, the past behaviour of the source is negligible, so the 1PN effects have only to be

included into the current values of the parameters, i.e. x(TR), φ(TR) and ξ(TR), in Eq. (3.38).

To see more precisely how this works, suppose that we want to replace the “Newtonian”

9For any real number ε we have

ε

∫ 1

0
dy ln y eiεy + i

∫ +∞

1

dy
y

eiεy = −π
2

sgn(ε) − i
(

ln |ε| +C
)

,

where sgn(ε) and |ε| denote the sign and absolute value of ε.
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inspiral (3.9) by the more accurate 1PN law,

r(V) = 4

[

G3m3ν

5c5
(Tc − V)

]1/4

+
G m η

c2
, (3.39)

where η ≡ − 1751
1008−

7
12ν (see e.g. [44]). Substituting the variable ywe obtain the 1PN equivalent

of (3.14) as

r(V) = r(TR)(1 + y)1/4
{

1 + η
[

(1 + y)−1/4 − 1
]

x(TR)
}

, (3.40)

where we parametrized the 1PN correction term by means of the variable x evaluated at

current time TR (we consistently neglect higher PN terms). For the orbital phase we get

φ(V) = φ(TR) − 8
5 ξ(TR)

{

[

(1 + y)5/8 − 1
](

1 + ζ x(TR)
)

+ τ
[

(1 + y)3/8 − 1
]

x(TR)
}

, (3.41)

where ζ = − 743
672 − 11

8 ν, τ =
3715
2016 +

55
24ν. We insert those expressions into our basic integral

(3.33), and split it into recent past and remote past contributions. Exactly like in (3.35) we

can prove that the remote past of that integral, for which y ∈]1,+∞[

, is negligible – of the

order of O(ξ2). Next, in the recent-past integral, y ∈]0, 1[, we expand at the 1PN order [i.e.

x(TR)→ 0], to obtain some 1PN correction term, with respect to the previous calculation, of

the form
∫ 1

0

dy ln y
(1 + y)5/4

[

(1 + y)α − 1
]

e−
32i
5ξ [(1+y)5/8−1] , (3.42)

where α can take the values − 1
4 ,

3
8 or 5

8 . Now the point is that this integral, like the remote-

past one, is also of the order of O(ξ2) or, rather, O(ξ2 ln ξ). Indeed, the new factor (1+y)α−1

in the integrand of (3.42) is crucial in that it adds (after taking the equivalent when y → 0)

an extra factor y, and we have thus to treat the following equivalent,

∫ 1

0
dy y ln y e−

4i y
ξ = O

(

ξ2 ln ξ
)

, (3.43)

which is smaller by a factor ξ = O(5) than the integral (3.37), as easily seen by integrating by

parts. This means that the order of magnitude of the correction induced by our more sophis-

ticated 1PN model for inspiral in the past is negligible. In conclusion, even at the relative PN

order, one can use Eq. (3.38) for computing the tails, but of course the current values of the

binary’s orbital parameters x(TR), φ(TR) and ξ(TR) must consistently include their relevant

PN corrections. This is what we do in the present chapter, following the computation in Refs.

[98, 59] of the higher-order tails up to relative 2PN order (i.e. 3.5PN beyond quadrupolar

radiation).

Finally our results for the 2.5PN-accurate tail terms are as follows. It is convenient,
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following [101], to introduce, in place of the “natural” constant time-scale b entering the

tails and defined by (2.6), a constant frequency-scale ω0 given by

ω0 ≡
e

11
12−C

4 b
. (3.44)

Like b, it can be chosen at will, for instance to be equal, as suggested in [101], to the seismic

cut-off frequency of some interferometric detector, ω0 = ωseismic. Then we find that all the

dependence of the tails in the logarithm of the orbital frequency, i.e. the terms involving lnω

and coming from the logarithm present in the R.H.S. of (3.37), can be factorized out, up to

the 2.5PN order, in the way

(

h+,×
)

tail =
(

k+,×
)

tail − 2 x3/2
[

1 − ν
2

x
]

∂h+,×
∂φ

ln

(

ω

ω0

)

, (3.45)

where all the dependence upon ln(ω/ω0) is given as indicated [i.e. the (k+,×)tail’s are indepen-

dent of ln(ω/ω0)]. In the above expression the factor 1− ν
2 x comes from the relation between

the total ADM mass M and the binary’s rest mass m = m1 + m2, namely M = m
[

1 − ν
2 x

]

.

Because we are computing the tails with 1PN relative precision, this means that the factor

of ln(ω/ω0), namely ∂h+,×/∂φ and therefore also h+,× itself, is given at the relative 1PN or-

der. The existence of this structure implies an elegant formulation of the 2.5PN waveform

in terms of a new phase variable ψ given by Eq. (3.48) below. The phase ψ was already

introduced in [101], and we have shown here that it is also valid, interestingly enough, for

tails at the relative 1PN order. The “main” tails contributions are then given, up to 2.5PN

order, by

(

k+
)

tail =
2 G m ν x

c2R

{

−2πx3/2(1 + c2
i ) cos 2φ

+
si

40
δm
m

x2
[(

11 + 7c2
i + 10(5 + c2

i ) ln 2
)

sinφ

−5π(5 + c2
i ) cos φ − 27[7 − 10 ln(3/2)](1 + c2

i ) sin 3φ

+135π(1 + c2
i ) cos 3φ

]

+x5/2
[

π

3

(

19 + 9c2
i − 2c4

i + ν(−16 + 14c2
i + 6c4

i )
)

cos 2φ

+
1
5

(

−9 + 14c2
i + 7c4

i + ν(27 − 42c2
i − 21c4

i )
)

sin 2φ

−16π
3

(1 − c4
i ) (1 − 3ν) cos 4φ

+
8

15
(1 − c4

i )(1 − 3ν) (21 − 20 ln 2) sin 4φ

]}

, (3.46a)

(

k×
)

tail =
2 G m ν x

c2R

{

−4πx3/2ci sin 2φ
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−3 si ci

20
δm
m

x2 [

(3 + 10 ln 2) cos φ + 5π sinφ

−9[7 − 10 ln(3/2)] cos 3φ − 45π sin 3φ
]

+x5/2

[

2π
3

ci

(

13 + 4 s2
i + ν(2 − 12 s2

i )
)

sin 2φ

+
2
5

ci(1 − 3ν)
(

−6 + 11 s2
i

)

cos 2φ

−32π
3

ci s2
i (1 − 3ν) sin 4φ

+
16
15

ci s2
i (1 − 3ν) (−21 + 20 ln 2) cos 4φ

]}

. (3.46b)

Here ci and si denote the cosine and sine of the inclination angle i, and δm = m1 − m2 is the

mass difference (so that δm/m = X1 − X2). Up to the 2PN order, we have agreement with the

results of [101].

3.4 Results for the 2.5PN polarisation waveforms

3.4.1 The complete plus and cross polarisations

We have computed all the five different contributions to the waveform contained in Eq. (3.1).

This together with the results of [140] provides a complete 2.5PN accurate waveform for the

circular orbit case. In this Section, from the 2.5PN waveform, we present the result for the

two gravitational-wave polarisations, extending a similar analysis at the 2PN order in Ref.

[101].

The polarisations corresponding to the instantaneous terms are computed using

Eqs. (2.29) and (2.30), while those corresponding to the hereditary terms where obtained

in Eqs. (3.32) and (3.45)–(3.46). As in the earlier work [101], these polarisations are repre-

sented in terms of the gauge invariant parameter x ≡ (Gmω/c3)2/3, where ω represents the

orbital frequency of the circular orbit, accurate up to 2.5PN order. This requires the relation

between γ and x, which has already been given in Eq. (2.20). The final form of the 2.5PN

polarisations may now be written as,

h+,× =
2 G m ν x

c2 R

{

H(0)
+,× + x1/2 H(1/2)

+,× + x H(1)
+,× + x3/2 H(3/2)

+,× + x2 H(2)
+,× + x5/2 H(5/2)

+,×
}

. (3.47)

In particular, we shall recover the 2PN results of [101]. However, for the comparison we

have to employ the same phase variable as in [101], which means introducing an auxiliary

phase variable ψ, shifted away from the actual orbital phase φ we have used up to now, by

Eq. (5) of [101]. Furthermore, the phase ψ given in [101] is a priori adequate up to only the

2PN order, but we have proved it to be also correct at the higher 2.5PN order. Indeed, the
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motivation for the shift φ −→ ψ is to “remove” all the logarithms of the frequency [i.e. lnω

or, rather, ln(ω/ω0)] in the two polarisation waveforms and to absorb them into the definition

of the new phase angle ψ. As a result, the two polarisation waveforms, when expressed in

terms of ψ instead of φ, become substantially simpler. From Eq. (3.45) we see that if we

re-express the waveform by means of the phase [101]

ψ = φ − 2x3/2
[

1 − ν
2

x
]

ln

(

ω

ω0

)

, (3.48)

we are able to move all the lnω-terms into the phase angle. Notice that the possibility of

this move is interesting because it shows that in fact the lnω-terms, which were originally

computed as some modification of the wave amplitude at orders 1.5PN, 2PN and 2.5PN, now

appear as a modulation of the phase of the wave at the relative orders 4PN, 4.5PN and 5PN.

The reason is that the lowest-order phase evolution is at the inverse of the order of radiation-

reaction, i.e. c5 = O(−5), so as usual there is a difference of 2.5PN order between amplitude

and phase. This shows therefore that the modification of the phase in (3.48) is presently

negligible (it is of the same order of magnitude as unknown 4PN terms in the orbital phase

evolution when it is given as a function of time). It could be ignored in practice, but it is

probably better to keep it as it stands the definition of templates of ICBs. The phase shift

(3.48) corresponds to some spreading of the different frequency components of the wave, i.e.

the “wave packets” composing it, along the line of sight from the source to the detector (see

[108] for a discussion).

With this above choice of the phase variable, the same as in [101], all terms up to 2PN

match with those listed in Eqs. (3) and (4) of [101], though we recast them in a slightly

different form for our convenience to present the 2.5PN terms. We find,

H(0)
+ = −(1 + c2

i ) cos 2ψ − 1
96

s2
i (17 + c2

i ) , (3.49a)

H(0.5)
+ = − si

δm
m

[

cosψ

(

5
8
+

1
8

c2
i

)

− cos 3ψ

(

9
8
+

9
8

c2
i

)]

, (3.49b)

H(1)
+ = cos 2ψ

[

19
6
+

3
2

c2
i −

1
3

c4
i + ν

(

−19
6
+

11
6

c2
i + c4

i

)]

− cos 4ψ

[

4
3

s2
i (1 + c2

i )(1 − 3ν)

]

, (3.49c)

H(1.5)
+ = si

δm
m

cosψ

[

19
64
+

5
16

c2
i −

1
192

c4
i + ν

(

−49
96
+

1
8

c2
i +

1
96

c4
i

)]

+ cos 2ψ
[

−2π(1 + c2
i )
]

+ si
δm
m

cos 3ψ

[

−657
128
− 45

16
c2

i +
81

128
c4

i
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+ ν

(

225
64
− 9

8
c2

i −
81
64

c4
i

)]

+ si
δm
m

cos 5ψ

[

625
384

s2
i (1 + c2

i )(1 − 2ν)

]

, (3.49d)

H(2)
+ = π si

δm
m

cosψ

[

−5
8
− 1

8
c2

i

]

+ cos 2ψ

[

11
60
+

33
10

c2
i +

29
24

c4
i −

1
24

c6
i

+ ν

(

353
36
− 3 c2

i −
251
72

c4
i +

5
24

c6
i

)

+ ν2

(

−49
12
+

9
2

c2
i −

7
24

c4
i −

5
24

c6
i

)]

+π si
δm
m

cos 3ψ

[

27
8

(1 + c2
i )

]

+ cos 4ψ

[

118
15
− 16

5
c2

i −
86
15

c4
i +

16
15

c6
i

+ ν

(

−262
9
+ 16 c2

i +
166

9
c4

i −
16
3

c6
i

)

+ ν2

(

14 − 16 c2
i −

10
3

c4
i +

16
3

c6
i

)]

+ cos 6ψ

[

−81
40

s4
i (1 + c2

i )
(

1 − 5ν + 5ν2
)

]

+ si
δm
m

sinψ

[

11
40
+

5 ln 2
4
+ c2

i

(

7
40
+

ln 2
4

)]

+ si
δm
m

sin 3ψ

[(

−189
40
+

27
4

ln(3/2)

)

(1 + c2
i )

]

, (3.49e)

H(0)
× = −2ci sin 2ψ , (3.50a)

H(0.5)
× = sici

δm
m

[

−3
4

sinψ +
9
4

sin 3ψ

]

, (3.50b)

H(1)
× = ci sin 2ψ

[

17
3
− 4

3
c2

i + ν

(

−13
3
+ 4 c2

i

)]

+ci s2
i sin 4ψ

[

−8
3

(1 − 3ν)

]

, (3.50c)

H(1.5)
× = sici

δm
m

sinψ

[

21
32
− 5

96
c2

i + ν

(

−23
48
+

5
48

c2
i

)]

−4π ci sin 2ψ

+ sici
δm
m

sin 3ψ

[

−603
64
+

135
64

c2
i + ν

(

171
32
− 135

32
c2

i

)]
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+ sici
δm
m

sin 5ψ

[

625
192

(1 − 2ν) s2
i

]

, (3.50d)

H(2)
× = sici

δm
m

cosψ

[

− 9
20
− 3

2
ln 2

]

+ sici
δm
m

cos 3ψ

[

189
20
− 27

2
ln(3/2)

]

− sici
δm
m

[

3 π
4

]

sinψ

+ci sin 2ψ

[

17
15
+

113
30

c2
i −

1
4

c4
i

+ ν

(

143
9
− 245

18
c2

i +
5
4

c4
i

)

+ ν2

(

−14
3
+

35
6

c2
i −

5
4

c4
i

)]

+ sici
δm
m

sin 3ψ

[

27π
4

]

+ci sin 4ψ

[

44
3
− 268

15
c2

i +
16
5

c4
i

+ ν

(

−476
9
+

620
9

c2
i − 16 c4

i

)

+ ν2

(

68
3
− 116

3
c2

i + 16 c4
i

)]

+ci sin 6ψ

[

−81
20

s4
i (1 − 5ν + 5ν2)

]

. (3.50e)

Notice a difference with the results of [101], in that we have included the specific effect of

non-linear memory the polarization waveform at the Newtonian order, c.f. the term propor-

tional to s2
i (17 + c2

i ) in H(0)
+ given by (3.49a) above. This is consistent with the order of

magnitude of this effect, calculated in Sec. 3.3.2. However, beware of the fact that the mem-

ory effect is rather sensitive to the details of the entire time-evolution of the binary prior to

the current detection, so the zero-frequency (DC) term we have included (3.49a) may change

depending on the binary’s past history (see our discussion in Sec. 3.3.2). Nevertheless, we

feel that it is a good point to include the “Newtonian” non-linear memory effect, exactly as

it is given in Eq. (3.49a), for the detection and analysis of ICBs.10

The purely 2.5PN contributions, in the plus and cross polarisations, constitute, together

10We already remarked that we have not computed the DC terms possibly present in the higher-order har-
monics of the 2.5PN waveform.
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with the memory term in (3.49a), the final result of this chapter. They read as,

H(2.5)
+ = si

δm
m

cosψ

[

1771
5120

− 1667
5120

c2
i +

217
9216

c4
i −

1
9216

c6
i (3.51)

+ ν

(

681
256
+

13
768

c2
i −

35
768

c4
i +

1
2304

c6
i

)

+ ν2

(

−3451
9216

+
673

3072
c2

i −
5

9216
c4

i −
1

3072
c6

i

)]

+π cos 2ψ

[

19
3
+ 3 c2

i −
2
3

c4
i + ν

(

−16
3
+

14
3

c2
i + 2 c4

i

)]

+si
δm
m

cos 3ψ

[

3537
1024

− 22977
5120

c2
i −

15309
5120

c4
i +

729
5120

c6
i

+ ν

(

−23829
1280

+
5529
1280

c2
i +

7749
1280

c4
i −

729
1280

c6
i

)

+ ν2

(

29127
5120

− 27267
5120

c2
i −

1647
5120

c4
i +

2187
5120

c6
i

)]

+ cos 4ψ

[

−16π
3

(1 + c2
i ) s2

i (1 − 3ν)

]

+si
δm
m

cos 5ψ

[

−108125
9216

+
40625
9216

c2
i +

83125
9216

c4
i −

15625
9216

c6
i

+ ν

(

8125
256

− 40625
2304

c2
i −

48125
2304

c4
i +

15625
2304

c6
i

)

+ ν2

(

−119375
9216

+
40625
3072

c2
i +

44375
9216

c4
i −

15625
3072

c6
i

)]

+
δm
m

cos 7ψ

[

117649
46080

s5
i (1 + c2

i )(1 − 4ν + 3ν2)

]

+ sin 2ψ

[

−9
5
+

14
5

c2
i +

7
5

c4
i + ν

(

96
5
− 8

5
c2

i −
28
5

c4
i

)]

+s2
i (1 + c2

i ) sin 4ψ

[

56
5
− 32 ln 2

3
− ν

(

1193
30
− 32 ln 2

)]

.

H(2.5)
× =

6
5

s2
i ci ν (3.52)

+ ci cos 2ψ

[

2 − 22
5

c2
i + ν

(

−154
5
+

94
5

c2
i

)]

+ ci s2
i cos 4ψ

[

−112
5
+

64
3

ln 2 + ν

(

1193
15
− 64 ln 2

)]

+ si ci
δm
m

sinψ

[

− 913
7680

+
1891

11520
c2

i −
7

4608
c4

i
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+ ν

(

1165
384

− 235
576

c2
i +

7
1152

c4
i

)

+ ν2

(

−1301
4608

+
301

2304
c2

i −
7

1536
c4

i

)]

+π ci sin 2ψ

[

34
3
− 8

3
c2

i − ν
(

20
3
− 8 c2

i

)]

+ si ci
δm
m

sin 3ψ

[

12501
2560

− 12069
1280

c2
i +

1701
2560

c4
i

+ ν

(

−19581
640

+
7821
320

c2
i −

1701
640

c4
i

)

+ ν2

(

18903
2560

− 11403
1280

c2
i +

5103
2560

c4
i

)]

+ s2
i ci sin 4ψ

[

−32π
3

(1 − 3ν)

]

+
δm
m

si ci sin 5ψ

[

−101875
4608

+
6875
256

c2
i −

21875
4608

c4
i

+ ν

(

66875
1152

− 44375
576

c2
i +

21875
1152

c4
i

)

+ ν2

(

−100625
4608

+
83125
2304

c2
i −

21875
1536

c4
i

)]

+
δm
m

s5
i ci sin 7ψ

[

117649
23040

(

1 − 4ν + 3ν2
)

]

.

Note that the latter cross polarisation contains a zero-frequency term [first term in Eq.

(3.52)], which comes from the inst(r) contribution given by (2.30). We employ the same

notation as in [101], except that ci and si denote respectively cosine and sine of the inclina-

tion angle i (which is defined as the angle between the vector N, along the line of sight from

the binary to the detector, and the normal to the orbital plane, chosen to be right handed with

respect to the sense of motion, so that 0 ≤ i ≤ π). In particular the mass difference reads

δm = m1 −m2. Like in [101], our results are in terms of an alternate phase variable ψ related

to the actual orbital phase φ (namely the angle oriented in the sense of motion between the

ascending node N and direction of body one – i.e. φ = 0 mod 2π when the two bodies lie

along p) by a transformation given by Eq. (3.48). We have verified that the plus and cross

polarizations (3.51)-(3.52) reduce in the limit ν → 0 to the result of black hole perturbation

theory as given in the Appendix B of Tagoshi and Sasaki [135] (the phase variable used in

[135] differs from ours by ψTS = ψ + π/2 + 2x3/2[ln 2 − 17/12] and we have θTS = π − i).11.

Equations (3.51) and (3.52), together with (3.49)–(3.50), provide the 2.5PN accurate tem-

11We spotted a misprint in the Appendix B of [135], namely the sign of the harmonic coefficient ζ×7,3 (i.e.
having l = 7, m = 3, and corresponding to the cross polarisation) should be changed, so that one should read
ζ×7,3 = +

729
10250240 cos(θ)(167 + ...) sin(θ)(v5 cos(3ψ) − ...).
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plate for the ICBs moving on quasi-circular orbits, extending the results of [101] by half a PN

order. They are complete except for the possible inclusion of memory-type (zero-frequency

or DC) contributions in higher PN amplitudes (1PN and 2PN). These wave polarisations to-

gether with the phasing formula of Ref. [99], i.e. the crucial time variation of the phase φ(t),

constitute the currently best available templates for the data analysis of ICB for ground based

as well as space-borne GW interferometers.

3.4.2 Comments on the 3PN hereditary waveform

In this section we comment on the further inputs needed for the computation of the hereditary

terms in the 3PN GW polarization. This complements the list given in Sec 2.3.2 of chapter 2.

Concerning the inst(c) terms, which are the instantaneous terms coming from the differ-

ence between the canonical moments ML, S L and the general source ones IL, JL, · · · [c.f.

Eqs. (2.7)–(2.8)], it does not seem simple to even guess their structure. The crucial new in-

put we would need at 3PN order concerns the relation between the canonical mass octupole

Mi jk (and current quadrupole S i j) to the corresponding source octupole moments moments

Ii jk (and current quadrupole Ji j) at 2.5PN order, using for instance an analysis similar to the

one in [98].

Finally, at 3PN order we would have to extend the present computation of hereditary

terms. In the case of quadratic tails, like in (3.3), the computation would probably be straight-

forward (indeed we have seen in Sec. 3.3.3 that the complications due to the influence of

the model of adiabatic inspiral in the past appear only at the 4PN order), but we have also to

take into account the tail-of-tail cubic contribution in the mass-quadrupole moment at 3PN

order, given in Eq. (4.13) of Ref. [59]. In addition the analysis should be extended to the

non-linear memory terms. The complete 3PN waveform and polarisations can be computed

only after all the points listed above are addressed.

3.5 Concluding remarks

3.5.1 Summary of the results

Using the multipolar post-Minkowskian formalism, we have computed the expression for

the 2.5PN accurate ‘plus’ and ‘cross’ polarizations. The ‘instantaneous’ and the ‘heredi-

tary’ contributions are computed separately. This together with the 3.5PN accurate phasing

formula of Ref [99, 100] provides the most accurate complete waveform for the nonspin-

ning inspiralling compact binaries in circular orbits. For completeness we present below the

3.5PN phasing formula of [99].
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φ = −1
ν

{

τ5/8 +

(

3715
8064

+
55
96
ν

)

τ3/8 − 3
4
πτ1/4

+

(

9275495
14450688

+
284875
258048

ν +
1855
2048

ν2

)

τ1/8 +

(

− 38645
172032

+
65

2048
ν

)

π ln

(

τ

τ0

)

+

(

831032450749357
57682522275840

− 53
40
π2 − 107

56
C +

107
448

ln
(

τ

256

)

+

[

−123292747421
4161798144

+
2255
2048

π2 +
385
48

λ − 55
16
θ

]

ν +
154565

1835008
ν2 − 1179625

1769472
ν3

)

τ−1/8

+

(

188516689
173408256

+
488825
516096

ν − 141769
516096

ν2

)

πτ−1/4
}

, (3.53)

x =
1
4
τ−1/4

{

1 +

(

743
4032

+
11
48
ν

)

τ−1/4 − 1
5
πτ−3/8

+

(

19583
254016

+
24401

193536
ν +

31
288

ν2

)

τ−1/2 +

(

−11891
53760

+
109
1920

ν

)

πτ−5/8

+

(

−10052469856691
6008596070400

+
1
6
π2 +

107
420

C − 107
3360

ln
(

τ

256

)

+

[

15335597827
3901685760

− 451
3072

π2 − 77
72
λ +

11
24
θ

]

ν − 15211
442368

ν2 +
25565

331776
ν3

)

τ−3/4

+

(

−113868647
433520640

− 31821
143360

ν +
294941

3870720
ν2

)

πτ−7/8
}

, (3.54)

where x0 is determined by the initial conditions, tc is the time for coalescence and τ is defined

by

τ =
νc3

5Gm
(tc − t) , (3.55)

The ambiguity parameters appearing in the above formula have been fixed and are given by

λ = − 1987
3080 ' −0.6451 and θ = − 11831

9240 ' −1.28 [100].

The present work extends the earlier calculation of Ref [101]. The complete waveform

would be useful for data analysis (both detection and parameter estimation) of ground based

GW detectors as well as space based ones.

3.5.2 Implications of the full waveform for data analysis: Recent

progress

As mentioned in Sec. 2.1, the full waveform incorporating the amplitude corrections from

the higher PN order polarizations could be important for many data analysis purposes and

one needs to investigate this possibility and implications systematically.

Recently Van den Broeck [125] initiated this by examining the change in SNR of the
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GWs when one includes the amplitude corrections coming from polarizations up to 2.5PN

computed in this thesis [102]. There are two kinds of effects when one goes beyond the

standard restricted waveform approximation. One is the amplitude correction to the domi-

nant harmonic which is twice the orbital frequency and the other is the appearance of higher

harmonics. Van den Broeck showed that in the estimation of SNRs the former plays a more

important role than the latter. The implications of the full 2.5PN waveform (which means

2.5PN amplitude terms together with the 3.5PN phasing of [99]) in the context of parameter

estimation is presently under investigation [126].

3.6 Future Directions

We summarize below some of the applications of the 2.5PN GW polarizations discussed in

this chapter and the previous one and possible generalizations of them in the future.

1. The generalization of the present work including the spin-effects will be a valuable

asset to the field and would complement the 2.5PN phasing recently computed in

Refs [160, 119]. One would need some of the multipole moments to higher accu-

racy than those provided in Refs [119], the most important ones being Ji jk and Ii jkl up

to 1.5PN.

2. Including the effects of orbital eccentricity in the 2.5PN waveform calculation would

be another step forward. This would be generalizing the earlier work by Ref [111].

This will involve also tackling the tail terms in the waveforms at 1.5PN, 2PN and

2.5PN and also the memory terms at 2.5PN. In calculating the tails, one might follow

the approach of Refs [115] though tails in the waveforms may prove to be more difficult

to handle than those in the fluxes.

3. One should exhaustively analyse the implications of the full 2.5PN waveform com-

puted here beyond that in Ref [125]. This would involve studying the effect of the

higher harmonics and amplitude corrections to the leading harmonic in the case of pa-

rameter estimation of the binary for the ground based and space based detectors. The

recent proposal to test the nonlinear aspects of gravity using GW observations [22, 23]

should be revisited with the full waveform. There can be new dimensions to the whole

problem due to the presence of δm/m, which appears in the full waveform since this

term is proportional to the difference of the masses whereas the terms in the phase are

proportional to the total mass.

4. The measurability of the ‘memory’ term, which is the most important feature of the

hereditary contribution at 2.5PN presented here, should be examined in detail in the
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future. Though there have been earlier work along these lines [161, 157, 162], a study

focused on the ‘memory’ effect of the inspiral waveform would be interesting, with

the explicit expressions we provide for this effect, especially in the LISA context.
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