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Abstract. The quantum Zeno effect arises due to frequent observations. That implies the
existence of some experimenter and its interaction with the system. In this contribution, we
examine what happens for a closed system if one considers a quantum Zeno type of question,
namely what is the probability of a system, remaining always in o particular subspace. This
has implications to the arrival time problem that is also discussed. We employ the decoherent
histories approach to quantum theory, as this is the better developed formulation of closed
system quantum mechanics, in particular, dealing with questions that involve time in a non-
trivial way. We get a very restrictive decoherence condition, that implies that even if we do
introduce an environment, there will be very few cases that we can assign probabilities to these
histories, but in those cases the quantum Zeno effect is still present.

1. Motivation

A remarkable property of quantum mechanics is the so called quantum Zeno effect [1]. This effect
is that frequent observation slow down the evolution of the state, with the limit of continuous
observation leading to “freezing” of the state!. This has been experimentally verified. The
intuitive explanation is that the interaction of the observer with the system leads to this apparent
paradox. It would therefore be interesting to see whether this effect persists if we consider a
closed system. We would try to see what the probability is, of a closed system remaining in a
particular subspace of its Hilbert space with no external observer. This directly relates to the
arrival time problem as well (e.g. [2, 3]). Having said that, we should emphasize that in closed
systems we cannot in general assign probabilities to histories, unless they decohere and it is this
property that resolves the apparent paradox that arises.

2. This paper

This contribution is largely based on Ref. [3]. In Section 3 we revise the quantum Zeno effect
and the decoherent histories, and introduce a new formula for the restricted propagator that will
be of further use. In Section 4.1 we see what probabilities we would get if we had decoherence,
that highlights the persistence of the quantum Zeno effect. In Section 4.2 we get the decoherence
condition that in Section 5 is stressed how restrictive is, by considering the arrival time problem.
We conclude in Section 6.

1 To be more precise, restriction to a subspace.
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3. Introductory material
3.1. Quantum Zeno effect
In standard Copenhagen quantum mechanics, the measurement is represented by projecting
the state to a subspace defined by the eigenstates that correspond to the range of eigenvalues
of the measured physical quantity. The latter is represented by a self-adjoint operator. The
state otherwise evolves unitarily: U(t) = exp(—iHt) where H is the Hamiltonian. It is then
a mathematical fact that frequent measurements of the same quantity (subspace) lead to slow
down of the evolution, i.e. decrease the probability that the state evolves outside the subspace
in question. This resembles the ancient Greek, Zeno paradox (Z7vwv), and thus the name.
The continuum measurement limit leads to zero probability of leaving the observed subspace.
The state continues to evolve (unitarily), but restricted in the subspace of observation [4].
This implies that if we project to a one-dimensional subspace, the state stops evolving. In
most literature, the question is of a particle decaying or not, so the last comment applies. In
particular, the above phenomenon is still present for infinite dimensional Hilbert spaces, but
provided that the restricted Hamiltonian (H, = PH P) is self-adjoint, as we will see later.

3.2. Decoherent histories
Decoherent histories approach to quantum theory is an alternative formulation designed to deal
with closed systems and it was developed by Griffiths [5], Omnés [6], and Gell-Mann and Hartle
[7]. There is no external observer, no a-priori environment-system split. The main mathematical
aim of this approach is to see when it is meaningful to assign probabilities to a history of a closed
quantum system and of course to determine this probability.

Here we will revise the standard non-relativistic quantum mechanics in decoherent histories
formulation. To each history (a) corresponds a particular class operator Cy,

C, = P, e H{tn=tn1) p. » ...e—ii‘f(lb—?fl)pa1 ) (1)

Here P,, etc are projection operators corresponding to some observable, H is the Hamiltonian,
and t, is the total time interval we consider. This class operator corresponds to the history,
the system is at the subspace spanned by P,, at time 1, at P,, at time 2, and so on. The
probability for this history, provided we had some external observer making the measurement

at each time ¢, would be
p(@) = D(a, a) = Tr(CapC}) (2)

where p is the initial state. In the case of a closed system, Eq.(2) fails in general to be probability
due to interference?.
There are, however, certain cases where we can assign probabilities. This happens if for a

complete set of histories, they pairwise obey
D(a,f) = Tx(CapCl) =0 ¥ a#p. (3)

In that case, the complete set of histories is called decoherent set of histories and we can assign
to each history of this set the probability of Eq.(2). In order to achieve a set of histories that
satisfy Eq.(3) in general we need to consider coarse grained histories, or/and very specific initial
state? p-

2 The additivity of disjoint regions of the sample space is not satisfied by Eq.(2).
3 Note that the interaction of a system with an environment that brings decoherence, in the histories vocabulary,
is just a particular type of coarse graining where we ignore the environment degrees of freedom.
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To sum up, in decoherent histories we need to first construct a class operator that corresponds
to the histories of interest*, and then confirm that these histories satisfy Eq.(3). Only then we
can give an answer.

3.8. The restricted propagator

A mathematical object that will be needed for computing the suitable class operators, is the
restricted propagator. This is the propagator restricted to some particular region A (of the
configuration space) that corresponds to a subspace of the total Hilbert space denoted by HAa.
The most common (but not the most general) is the path integral definition:

gr(2, | 2o, to) Z/ADﬂceXp(iS[ﬂ:(t)]) = (2lgr (t,0)|0) - (4)

The integration is done over paths that remain in the region A during the time interval [t, %o].
The S[z(t)] is as usual the action. The operator form of the above is given by [8, 9]:

gr(t,tg) = Jim Pe~H(tn—tn1)p ... pe=ifl{ti=to) p (5)

with t, = ¢, 6t — 0 and n — oo simultaneously keeping 0t x n = (¢t — ty). H is the Hamiltonian
operator. P is a projection operator on the restricted region A. We therefore have

gr(z,t | w0, t0) = (z|gr (¢, t0)|70) - (6)

Note here that the expression Eq.(5) is the defining one for cases where the restricted region is
not a region of the configuration space, but some other subspace of the total Hilbert space H.
The differential equation obeyed by the restricted propagator is:

(12— H)gr (1, 10) = [P, Hlgy (1 1) 1)

which is almost the Schrédinger equation, differing by the commutator of the projection to the
restricted region with the Hamiltonian.
The most useful form for our discussion was derived in Ref. [3]:

gr(t,to) = Pexp (—i(t —to)PHP) P . (8)

Note that PHP is the Hamiltonian projected in the subspace Ha. To prove Eq.(8) we multiply
Eq. (7) with P, we will then get

.0
(i = PHP)gy(t,10) = 0 )
using the fact that P[H, P]P = 0 and that the propagator has a projection P at the final time.
This is Schrodinger equation with Hamiltonian PHP. It is evident that this leads to the full
propagator in Ha provided that the operator PH P is self-adjoint in this subspace [4] (a detailed
proof of Eq. (5) can be found in [3]).

4. Quantum Zeno histories

In this section we will examine the question what is the probability for a system to remain in
a particular subspace, during a time interval At = t — ty. We will see the probabilities and
decoherence conditions for the general case, and then see what this implies for the arrival time
problem, which is just a particular example.

4 Note that the same classical question can be turned to quantum in several, possibly inequivalent ways. Due to
this property, the construction of the suitable class operator is important for questions such as, for example, the
arrival time or reparametrization invariant questions.
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4.1. The class operator and probabilities

There are several ways of turning the above classical proposition to a quantum mechanical one.
The most straightforward is the following. We consider a system being in one subspace by
projecting to that. The history always remaining in that subspace corresponds to the limit of
projecting to the region evolving unitarily but for infinitesimal time and then projecting again,
i.e. taking the dt between the propositions to zero. The class operator for histories remaining
always in that subspace follows from Eq.(1) by taking each P, being the same (P) and taking
the limit of (¢ — tx_1) to zero for each k. We then have

Ca (ta tO) =9r (ta tO) (10)

and the class operator for not remaining at this subspace during all the interval is naturally

Cﬂ(ta tO) = g(tatO) — gr (tatO) (11)

with g(¢,t0) = exp(—iH (t — tp)) being the full propagator.
Let us, for the moment, assume that the initial state |1) is such, that we do have decoherence.
We will return later to see when this is the case. The (candidate) probability is

p(e) = (g (t:t0)gr (¢, t0) ) - (12)

Following Eq.(8) it is clear® that
gl (t, to)gr(t,to) = P (13)
which then implies
pla) = ($|Ply) . (14)

For an initial state that is in the subspace defined by P, the probability to remain in this
subspace is one. This is the usual account of the quantum Zeno effect. As it is stressed in other
literature, to have the quantum Zeno it is crucial that the restricted Hamiltonian H, = PHP be
self-adjoint operator in the subspace. Note, that this only states that the system remains in the
subspace, but it does not “freeze” completely and in particular follows unitary evolution in the
subspace with the restricted Hamiltonian H,. The form of Eq.(8) of the restricted propagator
makes the latter comment more transparent.

4.2. Decoherence condition
All this is well understood for open systems with external observers. To assign the candidate
probability (12) as a proper probability of a closed system, we need the system to obey the
decoherence condition, i.e.

D(a, ) = ($|C}Caltp) =0 (15)
and this implies that
(¥lgl (£, t0)g(t, to)|¥) = (| P) (16)

which is a very restrictive condition and only very few states satisfy this, as we will see in
the arrival time example. The condition essentially states that the overlap of the time evolved
state (g(t,to)|w)) with the state evolved in the subspace (g,(t,to)|%)) should be the same at the
times tp and t. Given that the restricted Hamiltonian leads, in general, to different evolution,
the condition refers only to very special initial states with symmetries, or for particular time
intervals At.

5 Provided PHP is self-adjoint in the subspace. This is true for finite dimensional Hilbert spaces and has been
shown to be true for regions of the configuration space in a Hamiltonian with at most quadratic momenta [4].
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5. Arrival time problem

The arrival time problem is the following: What is the probability that the system crosses a
particular region A of the configuration space, at any time during the time interval At = (t—tp).
One can attempt to answer this by considering the probability that the system remains always
in the complementary region A. So if Q is the total configuration space, we have AUA = Q and
AN A = (). Taking this approach to the arrival time problem, the relation with the quantum
Zeno histories is apparent, since it is just the special case, where the subspace of projection is a

region of the configuration space (A) and the Hamiltonian is quadratic in momenta, i.e.

P o= [ lo)eldz,

A~

H = p*/2m+V(%). (17)

This particular case is infinite dimensional, but as shown in Ref. [4] the restricted Hamiltonian
is indeed self-adjoint and the arguments of the previous section apply.

Before proceeding further, we should point out that one could construct different class
operators that would also correspond to the (classical) arrival time question. For example,
one could consider POVM’s (Positive Operator Valued Measures) instead of projections at each
moment of time, or could have a finite (but frequent) number of projections (not taking the
limit where 6¢ — 0). These and other approaches are not discussed here.

Let us see now, what the quantum Zeno effect implies for the arrival time. It states that a
system initially localized outside A will always remain outside A (if it decoheres) and therefore
we can only get zero crossing probabilities. This is definitely surprising since for a wave packet
that is initially localized in A and its classical trajectory crosses region A, we would expect to
get crossing probability one. The resolution comes due to the decoherence condition as will be
argued later.

Returning to the decoherence condition (16) we see that there is the overlap of the time
evolved state with the restricted time evolved state. In the arrival time case, the restricted
Hamiltonian corresponds to the Hamiltonian in the restricted region (A) but with infinite
potential walls on the boundary (i.e. perfectly reflecting). We then get decoherence in the
following four cases.

(a) The initial state |1) is in an energy eigenstate, and it also vanishes on the boundary of the
region.

(b) The restricted propagator can be expressed by the method of images® and the initial state
shares the same symmetry.

(c) The full unitary evolution in the time interval At remains in the region A.

(d) Recurrence: Due to the period of the Hamiltonian and the restricted Hamiltonian their
overlap happens to be the same after some time ¢ as it was in time ¢3. This depends
sensitively on the time interval and it is thus of less physical significance.

It is now apparent that most initial states do not satisfy any of those conditions. In particular,
the wavepacket that classically would cross the region A, will not satisfy any of these conditions,
and we would not be able to assign the candidate probability as a proper one, and thus we
avoid the paradox. The introduction of an interacting environment to our system, that usually

 Note that the restricted propagator can be expressed using the method of images, if and only if there exist a
set of energy eigenstates, vanishing on the boundary, that when projected on the region A forms a dense subset
of the subspace Hx, i.e. span Hx. This is equivalent with requiring that the restricted energy spectrum (i.e.
spectrum of the restricted Hamiltonian H,) is a subset of the (unrestricted) energy spectrum, which is not in
general the case.
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produces decoherence by coarse-graining the environment, does not change the probabilities
and contrary to the intuitive feeling, it does not provide decoherence for the particular type of
question we consider. This still leave us with no answer for any of the cases where the system
would classically cross the region. The latter implies, that the straightforward coarse grainings
we used, were not general enough to fully answer the arrival time question”.

As a final note, we should point out that the quantum Zeno effect in the decoherent histories,
has implications for the decoherent histories approach to the problem of time (e.g. Refs. [9, 3]).

6. Conclusions

We examined the quantum Zeno type of histories of a closed system, using the decoherent
histories approach. We show that the quantum Zeno effect is still present, but only for the very
few cases where we have decoherence. The situation does not change with the introduction of
interacting environment. We see that while in the open system quantum Zeno the delay of the
evolution arises as interaction with the observer, in the closed system we have the decoherence
condition “replacing” the observer and resolving the apparent paradox.
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" For more details, examples and discussion see Ref. [3].





