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We investigate the role of fluctuations in single-molecule measurements of torque-link �t-lk� curves. For
semiflexible polymers of finite persistence length �i.e., polymers with contour length L comparable to the
persistence length LP�, the torque versus link curve in the constant-torque �isotorque� ensemble is distinct from
the one in the constant-link �isolink� ensemble. Thus, one encounters the conceptually interesting issue of a
“free energy of transition” in switching ensembles while making torque-link measurements. We predict the
dependence on the semiflexibility parameter �=L /LP of this extra contribution to the free energy, which shows
up as an area in the torque-link plane. This can be tested against future torque-link experiments with single
biopolymers. We bring out the inequivalence of torque-link curves for a stiff polymer and present explicit
analytical expressions for the distinct torque-link relations in the two ensembles and the free-energy difference
in switching ensembles in this context. The predictions of our work can be tested against single-molecule
experiments on torsionally constrained biopolymers.
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I. INTRODUCTION

The statistical mechanics of semiflexible polymers is of
great current interest. Research in this area has been moti-
vated by experiments �1,2� on biopolymers in which single
molecules are stretched and twisted to measure elastic prop-
erties. These experiments are designed to understand the role
of semiflexible polymer elasticity �3–5� in, for instance, the
packaging of these polymers in a cell nucleus. The process of
DNA transcription can generate supercoiling. It is also regu-
lated by supercoiling �6�. In a typical experiment �6� probing
the twist elasticity of a DNA molecule, the ends of a single
molecule of double-stranded DNA are attached to a glass
plate and a magnetic bead. Magnetic fields are used to rotate
the bead and magnetic field gradients to apply forces on the
bead. By such techniques the molecule is stretched and
twisted and the extension of the molecule is monitored by
the location of the bead. One can thus measure the extension
of the molecule as a result of the applied link and force �6�
and also make a measurement of the torque versus applied
link �7�.

In the context of force-extension measurements, an iso-
metric setup is described by the Helmholtz free energy,
whereas an isotensional setup is described by the Gibbs free
energy �8�. In statistical mechanics, these two ensembles are
distinct �9–11�. In the thermodynamic limit these two de-
scriptions agree, but semiflexible polymers �those with con-
tour length L comparable to the persistence length LP—i.e.,
�=L /LP�1� are not at the thermodynamic limit.

In the present paper we explore this issue in the context of
torque-link measurements. The two distinct statistical-
mechanical ensembles here are the constant-torque ensemble
�isotorque ensemble� and the constant-link ensemble �isolink
ensemble�. Here we focus on the role of fluctuations in
single-molecule torque-link experiments. In order to cor-
rectly interpret such experiments one needs to understand the

effect of fluctuations on the measured quantities. For in-
stance, it turns out that an experiment in which the link ap-
plied to a polymer molecule is fixed �isolink� and the torque
fluctuates yields a different result from one in which the
torque is held fixed �isotorque� and the link fluctuates �12�.
This difference can be traced to large fluctuations about the
mean value of the torque or the link, depending on the ex-
perimental setup. Experimentally, both isolink and isotorque
ensembles are realizable. Here is a schematic description of
an experimental setup for torque-link measurements of single
biopolymer molecules. A polymer molecule attached to a
glass plate on one end is suspended in a suitable medium
with a magnetized bead attached to the other end. The mag-
netized bead is kept in a magnetic trap. One can realize an
isolink setup by using a “stiff magnetic trap” and an iso-
torque setup by using a “soft magnetic trap,” which allows
the applied link to fluctuate, but applies a fixed torque to the
molecule �13,14�. The fluctuations in torque-link measure-
ments vanish only in the thermodynamic limit of very long
polymers. In the next section we describe the setup in more
detail.

The paper is organized as follows. In Sec. II we discuss
the isolink and isotorque ensembles. In Sec. III we illustrate
the phenomenon of inequivalence of ensembles in torque-
link measurements by explicitly presenting analytical expres-
sions in the context of a stiff polymer. In Sec. IV we draw
attention to the notion of the free energy of a transition in
going from one ensemble to another and its dependence on
semiflexibility, which can be tested against future single-
molecule experiments on torsionally constrained polymers
and simulations. Finally, we conclude the paper in Sec. V.

II. CONSTANT-LINK AND CONSTANT-TORQUE
ENSEMBLES

Consider an experiment, as described in the Introduction,
in which one end of a biopolymer molecule is attached to a
glass plate and the other end is attached to a magnetized bead

�of magnetic moment �� � kept in a magnetic field B� , which is*supurna@rri.res.in
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used to rotate the bead. We suppose both B� and �� are parallel
to the glass plate. The energy of the bead is given by

E = − �� · B� = − �B cos�� − �0� , �1�

where �0 describes the direction of the magnetic field and �
the direction of the magnetic moment �� . The variables lk and
lk0, which keep track of the number n of turns of the bead,
are related to � and �0 as follows: lk=�+2n� and lk0=�0
+2n�. Consider P�lk�dlk, the number of configurations
�counted with Boltzmann weight� for a polymer of contour
length L and bend persistence length LP, characterized by a
semiflexibility parameter �= L

LP
, in a link interval dlk of lk.

The free energy defined by ��lk�=− 1
� ln P�lk� is the free

energy pertaining to a fixed link. The partition function
�11,15� for the combined system consisting of the polymer
molecule and the magnetized bead in the magnetic field is
given by

Z�lk0,�� = �
−�

+�

dlk e−���lk�e��B cos�lk−lk0� �2�

A. Constant-link ensemble: The limit of a stiff trap

In the limit of a stiff trap ��B→��, �� follows B� closely

and lk� lk0. Thus cos�lk−lk0��1−
�lk−lk0�2

2 . In this limit the
partition function for the combined system �molecule�trap�
reduces to

Z�lk0,�� = e��B�
−�

+�

dlk e−�	�lk�e−��B�lk − lk0�2/2. �3�

Clearly, in this limit the Gaussian factor pertaining to the
magnetic trap approaches a 
 function and we have

Z�lk,�� � e−���lk�. �4�

Here we have switched notation to write lk in place of lk0.
Thus a stiff trap realizes the constant-link �isolink� ensemble
by constraining fluctuations in lk. In order to change the
applied link from lk to lk+dlk, one applies a torque �t	= ��

�lk .
Thus one gets a torque-link ��t	 , lk� curve by plotting �t	
versus lk.

B. Constant-torque ensemble: The limit of a soft trap

In the opposite limit of a soft trap, �B is small, but large
enough that the polymer does not get untwisted. In such a
situation the link fluctuates. One can adjust lk0 such that lk

−lk0�� /2. The magnitude of the torque, 
t�
= 
�� �B� 
= t
=�B, is held fixed for a particular measurement. In this limit
the torque t is the control parameter, which can be changed
from one reading to the next by changing the magnitude B of
the magnetic field. A feedback loop is used to ensure that
�lk−lk0	 is maintained at � /2. Clearly, the potential energy
for the trap, on expanding around lk−lk0=� /2 and retaining
terms to linear order in lk−lk0, takes the form

E = − �� · B� = �B�lk − lk0� = t�lk − lk0� . �5�

Thus, in this limit Eq. �2� gives the following expression for

the partition function Z̃�t ,��=Z�lk0 ,��e�tlk0 �where lk0 is de-
termined by the condition �lk−lk0	= �

2 � for the combined
system consisting of the polymer molecule and the trap
�11,15�:

Z̃�t,�� = �
−�

+�

dlk e−���lk�e�tlk. �6�

Thus in a soft trap link lk fluctuates, but torque fluctuations
are constrained �16�. One thus realizes the constant-torque

�isotorque� ensemble. Z̃�t� �17� is the generating function for
the lk distribution. Given the constant-torque free energy

��t�=− 1
� ln Z̃�t�, one gets the mean link �lk	=− ��

�t and
�t , �lk	� torque-link relation.

Notice that Z̃�t� is the Laplace transform of Z�lk�. In the
thermodynamic limit of long polymers ��→�� the Laplace
transform integral �6� is dominated by the saddle-point value
and therefore ��lk� and ��t� are related by a Legendre trans-
form

��lk� = ��t� + tlk. �7�

For finite �—i.e., for a polymer of finite extent—the saddle-
point approximation no longer holds true and fluctuations
about the saddle-point value of the free energy become im-
portant. Thus one finds that, for a finite �, ��lk� and ��t� are
not Legendre transforms of each other, but are related via a
Laplace transform �Eq. �6��.

III. INEQUIVALENCE OF ENSEMBLES IN TORQUE-LINK
MEASUREMENTS: A SPECIAL CASE

We illustrate the issue of the inequivalence of ensembles
in the context of torque-link measurements explicitly by con-
sidering an analytically tractable and instructive special case:
the torque-link relation for a stiff polymer.

Our starting point is the wormlike chain �WLC� Hamil-
tonian with bend and twist degrees of freedom in the pres-
ence of a stretching force f and a torque t �12�:

H = p�
2/2 + �p	 − A	�2/2 sin2 � − f cos � − 
t2/2. �8�

Here p� and p	 are momenta conjugate to the Euler angles �
and 	. The momentum conjugate to the Euler angle � is
p�= it, a constant of motion, which contributes a term −
t2 /2
to the Hamiltonian where 
 is the ratio of the bend persis-
tence length LP to the twist persistence length LT. The “vec-
tor potential” A	= it�1−cos �� �4,12�. For a stiff polymer
with one end clamped along the ẑ direction, we can approxi-
mate the sphere of directions by a tangent plane at the north
pole of the sphere as the angular coordinate � always re-
mains small. In this limit �the paraxial wormlike chain
�PWLC� model �4�� where the tangent vector never wanders
too far away from the north pole of the sphere of directions,
the polymer Hamiltonian �3,4,12,18� reduces to
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HPWLC =
p�

2

2
+

�p	 − A	�2

2�2 −

t2

2
− f�1 −

�2

2
� = HP − f −


t2

2
,

where HP is the Hamiltonian of interest in the paraxial limit
after we take out a constant piece. In this limit A	= it�2

2 . We
introduce Cartesian coordinates �1=� cos 	 and �2=� sin 	
on the tangent plane R2 at the north pole.

The PWLC model has been applied earlier in the context
of flexible polymers at high tension �4�. Here we apply it in
the context of stiff polymers at f =0. In the stiff limit, the
tangent vector to the polymer points essentially along a fixed
direction �north pole� even at f =0. As in Ref. �4�, we restrict
ourselves to the case of 
=0 �19�.

In Ref. �20� we have derived the partition function Z�f� of
a stiff polymer with both end tangent vectors pointing along
a fixed direction ẑ at a force f . In the presence of a force f
and a torque t this expression goes over to

Z̃f�t� = 
f − t2/4 exp��f�/�2� sinh��
f − t2/4�� . �9�

Notice that the “effective force” 
�f − t2 /4� replaces f when
there is a competition between a force f and a torque t. This
is simply due to the fact that the Hamiltonian HP in the
presence of a force f and a torque t pertains to that of a
two-dimensional harmonic oscillator with frequency �
=
�f − t2 /4� rather than �=
f , which is the expression for
the frequency of a two-dimensional harmonic oscillator in
the presence of a force f and no torque.

At zero force, the expression simplifies and reduces to

Z̃�t� = t/�4� sin��t/2�� . �10�

From the partition function Z̃�t�, we get the following ana-
lytical expression for the torque-link �t , �lk	� relation in the
isotorque ensemble:

�lk	 =
1

�t
−

1

2
cot��t

2
� . �11�

Given Z̃�t�, one can get the partition function Z�lk� in the
conjugate domain of an isolink ensemble �see Sec. II�
�20,21�:

Z�lk� = ��/2��/�cosh��lk��2. �12�

This leads to the following torque-link ��t	 , lk� relation:

�t	 = �2�/��tanh��lk� . �13�

Thus, the torque-link �t , �lk	� relation obtained in the iso-
torque ensemble �Eq. �11�� is distinct from the one ��t	 , lk�
obtained in the isolink ensemble �Eq. �13�� �see Fig. 1�.

In the next section we derive explicit expressions for the
extra contribution to the free energy due to changes in the
ensemble.

IV. FREE ENERGY OF THE TRANSITION IN TORQUE-
LINK MEASUREMENTS

In an isotorque setup, torque is the control parameter and
one measures the mean link to plot the torque-link �t , �lk	�
curve. In an isolink setup the roles of link and torque are

interchanged. Consider going from a small torque �lk1 , t1� to
a large torque �lk2 , t2� configuration via an isotorque setup
and returning from a large link �lk2 , t2� to a small link
�lk1 , t1� configuration via an isolink setup. Since the torque-
link relation depends on the chosen ensemble, in general
there will be two distinct curves joining the points �lk1 , t1�
and �lk2 , t2� in the torque-link plane describing the two pro-
cesses. Such a transformation could lead to a net area being
enclosed in the torque-link plane. This appears paradoxical
since it seems to suggest that one can extract work from the
system via a cyclic process. The resolution of this paradox is
as follows. In completing the cycle and returning to the ini-
tial state, one is in fact changing ensembles twice at the two
end points. Such ensemble changes in a cyclic transforma-
tion involve finite changes in free energy, which need to be
taken into consideration. In particular, we notice for the spe-
cial case of a stiff polymer the torque-link relations �Eqs.
�11� and �13�� lead to a free-energy difference of

�stiff =
2

�
ln� cosh��lk2�

cosh��lk1�
� − �t2lk2 − t1lk1�

+
1

��ln� t2

t1
� − ln� sin��t2

2
�

sin��t1

2
���

for a transformation between the states �lk1 , t1� and �lk2 , t2�.
In the stiff regime �i.e., at small �� the dependence of the
free energy on � will be dominated by the first term. In other
words, the free-energy difference �stiff�

1
� . This is a predic-

tion of our analysis, which can be tested against experiments
with stiff biopolymers like actin filaments.

An analysis similar to the one in Ref. �9� applied to the
context of torque-link measurements shows that one gets a
contribution �= 1

2� ln ���lk�� to the free energy coming from
fluctuations around the long-polymer ��→�� limit by ex-
panding ��lk�=��lk�− tlk around the saddle-point value lk
=lk� pertaining to the long-polymer limit. Here ��lk� corre-
sponds to the isolink free energy. This extra contribution
��lk� vanishes in the limit of �→�. For finite �, this non-
zero contribution to the free energy accounts for the transi-
tion between the constant-link ensemble and the constant-
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FIG. 1. Torque-link curve in the isolink �upper curve� and iso-
torque �lower curve� ensembles for �=1.
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torque ensemble. Work is done on the bead by the trap in
making the trap stiffer, while in going from a stiff trap to a
soft trap work is extracted from the bead by the trap. The net
work done is the difference between the work done at the
two ends of the torque-link curves in switching ensembles.
This net work exactly cancels out the nonzero area enclosed
in the torque-link plane. The net area enclosed in the torque-
link plane pertaining to the “free energy of transition” scales
as 1 /� and therefore grows with the rigidity of the polymer.
These predictions of our study can be tested against future
simulations and single-molecule experiments.

V. CONCLUSION

To summarize, in this paper we have studied the inequiva-
lence of ensembles for torque-link measurements. We have
calculated the free-energy difference between torque-link
measurements in the isotorque and isolink ensembles for a
stiff polymer. In addition, we have determined the contribu-
tion to the “free energy of transition” in going between the
isolink and isotorque ensembles by expanding the free-
energy difference ��lk� around the long-polymer limit. We

predict the dependence on the semiflexibility parameter � of
this extra contribution to the free energy, which shows up as
an area in the torque-link plane. For the special case of a stiff
polymer we find explicit analytical expressions for the
torque-link �t , �lk	� relation obtained in the isotorque en-
semble �Eq. �11�� and show that it is distinct from the one
��t	 , lk� obtained in the isolink ensemble �Eq. �13��. We also
show that in this stiff regime the free-energy difference
�stiff�

1
� . All the predictions mentioned here can be qualita-

tively and quantitatively tested against future single-
molecule experiments on torsionally constrained biopoly-
mers.

The theoretical predictions presented in this study are ex-
pected to generate interest in torsionally constrained single-
molecule experiments, which will eventually lead to a deeper
understanding of the role of twist elasticity in biological pro-
cesses involving gene regulation �22�.
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