
On recovering continuum topology from a causal set
Seth Majora�

Department of Physics, Hamilton College, Clinton, New York 13323

David Rideoutb�

Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom

Sumati Suryac�

Raman Research Institute, Bangalore 560 080, India

�Received 7 June 2006; accepted 19 December 2006; published online 6 March 2007�

An important question that discrete approaches to quantum gravity must address is
how continuum features of space-time can be recovered from the discrete substruc-
ture. Here, we examine this question within the causal set approach to quantum
gravity, where the substructure replacing the space-time continuum is a locally
finite partial order. A new topology on causal sets using “thickened antichains” is
constructed. This topology is then used to recover the homology of a globally
hyperbolic space-time from a causal set which faithfully embeds into it at suffi-
ciently high sprinkling density. This implies a discrete-continuum correspondence
which lends support to the fundamental conjecture or “Hauptvermutung” of causal
set theory. © 2007 American Institute of Physics. �DOI: 10.1063/1.2435599�

I. INTRODUCTION

Space-time discretization is a common calculational device used to regularize background
dependent physics. Typically, the discretization is topologically trivial, with the space-time con-
tinuum replaced by a lattice which is regular in a preferred reference frame. Physical results are
then obtained by taking this cutoff to zero. Two important issues which arise as a result of a naive
space-time discretization are already apparent in quantum field theory on Minkowski space-time.
The first is the breaking of Poincaré invariance, and the second, the loss of global topological
information. Since discreteness is used only as a calculational tool, these issues only pose practical
limits on the discretization, since relevant physics is, by and large, recovered in the continuum
limit.

However, both issues assume a more fundamental role in discrete approaches to quantum
gravity, in which the continuum is taken to arise as an approximation rather than as a limit. Instead
of being a means to regulate the theory, space-time discreteness is taken to be fundamental, much
like the atomicity of an apparently continuous fluid. The choice of the discrete building blocks in
a given approach to quantum gravity then determines the manner in which these two issues
manifest themselves.

In many discrete approaches to quantum gravity, local Lorentz invariance is explicitly broken,
and much recent work has been devoted to quantifying such violations. For instance, in the case of
modified dispersion relations, threshold analyses demonstrate that current astrophysical observa-
tions place severe constraints on cubic modifications.1 Significantly, in the causal set approach to
quantum gravity, no such violation occurs. This unique property arises from the fact that the
continuum approximation of the theory obtains from a random process.2
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In this work, we address the question of how to recover continuum topology from the discrete
substructure within the framework of causal set quantum gravity.3,4 In this approach, the space-
time continuum is replaced by a causal set or causet which is a locally finite partially ordered set.
The continuum approximation of the theory obtains from a “faithful embedding” � :C→M of the
causet C to a space-time �M ,g� at space-time density �, i.e., ��C��M is a high probability
random �Poisson� distribution of points on M at density � such that the order relation in C is
mapped to a causal relation in �M ,g�. A causet embedded in �M ,g� thus resembles a random
space-time lattice, where the directed links between two points indicate a causal relation.

A key conjecture of causal set theory, the “Hauptvermutung,” states that the continuum ap-
proximation of a causet is unique up to an approximate isometry; thus, if � :C→ �M ,g� is a
faithful embedding at density �, then �M ,g� is unique up to isomorphisms at “scales above �−1.”
While this has been proven rigorously in the infinitely fine grained limit, G�→0,5 there is evi-
dence from calculations of dimensions and geodesic distance that provide support for the conjec-
ture in the finite case.6,7 For example, for a causet C which faithfully embeds into d-dimensional
Minkowski space-time Md, the “Myrheim-Meyer” dimension of an interval in C gives a good
estimate of the continuum dimension.6 Thus, if a causet C embeds faithfully into Md1 and Md2 at
the same sprinkling density, then d1�d2.

It is therefore of interest to seek a correspondence between the continuum topology and an
appropriately defined topology on the causal set. Such a correspondence would then imply that if
a causet faithfully embeds into two space-times with topologies M1 and M2, then there is an
approximate homeomorphism M1�M2. This would also imply that M1 and M2 are homologous at
scales larger than �−1. In this work we make considerable progress in establishing a correspon-
dence between the homology of thickened antichains which are special subcausets of C and that of
a globally hyperbolic space-time into which it faithfully embeds. Under certain assumptions, this
implies a homological version of the Hauptvermutung.

The random nature of the sprinkled causal set makes the task of finding a correspondence
fairly nontrivial. In approaches using simplicial methods such as dynamical triangulations or spin
foams, the discrete structure can be taken to be a triangulation of the given manifold, which
though nondiffeomorphic to the continuum, by construction, carries all continuum homological
information.8 Conversely, an abstract simplicial complex is associated with a given manifold only
if it can be mapped bijectively to a triangulation of that space. In causal set theory, however, this
connection is apparently more tenuous, since the discretization does not preserve continuum
topological information in an obvious way.

However, a nontrivial partial order does possess sufficient structure compared to the unor-
dered set of points on a lattice and hence admits nontrivial topologies.9,10 For example, a chain
complex on C is constructed by mapping every k-element chain, or totally ordered subset, to a
k-simplex, while the interval topology is constructed from sets which are analogs of the Alexan-
drov intervals in a space-time.10 Indeed, it has been recently shown that a globally hyperbolic
space-time is a so-called bicontinuous poset �in particular, this means that the poset is not locally
finite, and hence not a causal set according to our definition� whose interval topology is the same
as the manifold topology.11 Thus, partially ordered sets admit very rich topological structures.

For a locally finite causal set, however, it is unclear how these topologies relate to the
continuum topology. An important first step is to realize that the topology of the continuum
approximation is too rich and contains “irrelevant” information on scales below the discreteness
scale �−1. Thus, the assumption of a fundamental discreteness is incompatible with the require-
ment that there exists a strict homeomorphism between the causal set topology and the continuum
topology. Physical significance cannot be attributed to continuum structures of characteristic size
smaller than �−1 and hence only macroscopic topological information, such as homology or ho-
motopy at scales ��−1 can be considered relevant to the causet. This observation is true of any
finitary topology.12

In this work we provide a prescription for constructing a map between discrete and continuum
homologies for the class of causal sets that faithfully embed into globally hyperbolic space-times.
The simplicial complex we construct for the causal set uses the discrete analog of a Cauchy
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hypersurface, i.e., an inextendible antichain or a maximal set of unordered points in the causal
set.13 While an inextendible antichain, being endowed with only the trivial topology, does not
itself suffice to capture any continuum topological information, it does inherit a nontrivial struc-
ture from its embedding in the larger causal set to which it belongs. As in Ref. 13, starting with an
inextendible antichain A we define the discrete analog of a space-time volume “thickened” Cauchy
hypersurface or thickened antichain

Tn�A� � ��p� ���p	 � Past�p�� � ��A	 � Fut�A��� � n	 , �1�

where n�N, �X� is the cardinality of a set X and Past�p� and Fut�p� are the past and future of p,
respectively. For finite n, every element in Tn�A� has a finite past in Tn�A�, and hence one can find
the set of maximal or future-most points in Tn�A�. A nerve simplicial complex is then constructed
from the shadows of the past sets of these maximal elements onto A, details of which will be
described in the following sections. Nontrivial overlaps of these shadows imply a nontrivial
simplicial complex from which one can extract homological information.

On the face of it, there is nothing to suggest that the above construction is more natural than
the chain or interval topologies. However, preliminary numerical simulations in 1+1 dimensions
suggest the existence of a robust correspondence between this causal set topology and the con-
tinuum topology.14 In this work, using purely analytical tools, we show that the continuum ana-
logue of this construction in a globally hyperbolic space-time does indeed yield a nerve simplicial
complex which is not only homologous but homotopic to the space-time. Moreover, we show that
there exists an isomorphism between the homology groups of the discrete and continuum nerves
for causets which faithfully embed into globally hyperbolic space-times.

We begin with some basic definitions in Sec. II. We then construct the nerve simplicial
complex for the discrete and the continuum cases in Sec. III. In Sec. IV, we prove an important
continuum result. Namely, we show that the continuum nerve is a simplicial complex which is
homotopic to the space-time manifold M for a class of “volume thickenings” of a Cauchy surface.
We make crucial use of a theorem due to De Rham and Weil on the nerve of a locally finite convex
cover. Finally, we prove our main result in Sec. V, i.e., we show for a class of inextendible
antichains in a faithful embedding that with high probability the order-theoretic nerve simplicial
complex is homologically equivalent to the manifold for sufficiently high sprinkling densities �.
We summarize our results in Sec. VI and conclude with a discussion of some of the open ques-
tions. Since this work is heavy with notation, the Appendix provides a table of the symbols used
and their definitions.

II. PRELIMINARIES

Here we set down some definitions and notations that we will need.

A. The causal set

A causal set C is a set with an order relation � which is �i� transitive, i.e., x�y and y
�z⇒x�z�, �ii� irreflexive, i.e., x�x, and �iii� locally finite, i.e., �Past�x��Fut�y� � �� for any
x ,y ,z�C, where Past�y�= �x �x�y	, Fut�y�= �x �y�x	, and �A� denotes set cardinality.

These discrete analogs of the causal future/past sets of the continuum do not include x because
of the irreflexive condition. Since such an inclusion will find use in our constructions, we define
the inclusive future and past sets as IFut�x��x�Fut�x� and IPast�x�Past�x�, respectively.

B. Causal relations in the continuum

We will use the notation and results from Ref. 15. I±�p� denotes the chronological future/past
of an event p and J±�p� its causal future/past. We will refer to the region spacelike to p by S�p�
�M \ �J+�p��J−�p��. The Alexandrov interval is defined to be the open set I�p ,q�
� I+�p�� I−�q�. The generalization of these definitions for sets is straightforward, as is the nota-
tion. In a globally hyperbolic space-time �M ,g�, I�p ,q� is compact for any p ,q�M. For p ,q
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�M we will use the notations p��q, p�q, and p→q to denote chronological, causal, and null
relations, respectively. We will find use for the result p��q, q�r⇒ p��r.

Let F be a function which assigns to each event x in M an open set F�x��M. Then F is said
to be inner continuous if for any x and any compact K�F�x�, there exists a neighborhood U of x
with K�F�y� for all y�U, F is said to be outer continuous if for any x and any compact set
K�M \F�x�, there exists a neighborhood U of x with K�M \F�y� ∀y�U.

In a time-orientable distinguishing space-time �M ,g�, the sets I+�x� and I−�x� are inner
continuous,16 but need not be outer continuous. A space-time is said to be causally continuous if
for all events x�M, I+�x� and I−�x� are outer continuous. A globally hyperbolic space-time is
causally continuous.

A convex normal neighborhood �CNN� N�M is an open set such that for any p�N, there
exists a map expp from the tangent space TpN to N which is a diffeomorphism. An important
feature of N is that any two points in N are joined by a unique geodesic which lies entirely in N.

C. Some definitions from Riemannian geometry

In a Riemannian space �� ,h�, the distance function d�x ,y� between two points on � is the
length of the shortest path between x and y. A curve between x ,y is a segment if its length is
d�x ,y�. The convexity radius at a p�� is the largest rp such that the distance function d�x , p� is
a convex function on the open ball B�p ,rp� and any two points in B�p ,rp� are joined by a unique
segment lying entirely in B�p ,rp�. The convexity radius r of � is given by the infimum of rp for
all p��. Thus, if d�p ,q��r for any p ,q��, then there exists a unique geodesic from p to q of
arclength �r. An open set N�� is said to be convex with respect to r if for any p ,q�N, the
�unique� geodesic between them of arclength �r lies entirely in N. The intersection of two convex
sets is then also convex with respect to r. A convex cover of � with respect to r is a locally finite
cover of � with each element a convex set with respect to r. diam�N� is the diameter of an open
set N which is the length of the longest geodesic between any two points in N.17

III. THE NERVE SIMPLICIAL COMPLEX

We begin by constructing the nerve simplicial complex for an arbitrary causal set. Let C be a
causal set with A�C an inextendible antichain, and Tn�A� an associated thickened antichain for
some n	0 as defined in Eq. �1�. Let M be the set of maximal or future-most elements in Tn�A�
and Pi��IPast�mi�� IFut�A�, mi�M. The collection P��Pi	 is a covering of Tn�A�, i.e., �iPi

=Tn�A�, since Pi�Tn�A� for all i and any x�Tn�A� belongs to the inclusive past of some maxi-
mal element of Tn�A�. For each Pi, define the shadow sets Ai� Pi�A�A. Again, since Ai�Tn�A�
for all i, and any a�A lies to the inclusive past of a maximal element of Tn�A�, the collection
A��Ai	 covers A.

The nerve simplicial complex N�A� of A is then constructed by mapping each Ai to a vertex,
every nonvanishing intersection Ai0

�Ai1
�0” to a 1-simplex, and in general, every nonvanishing

intersection Ai0
�Ai1

¯Aik
�0” to a k-simplex.18 This construction is illustrated in Fig. 1. The nerve

simplicial complex N�P� of Tn�A� can be similarly constructed.
We now show that there exists a map 
* :N�P�→N�A� which is a bijection. Let us define the

projection map 
 :P→A, i.e., 
�Pi�= Pi�A=Ai. By definition, 
 is onto. However, for an
arbitrary causal set, it is possible that 
 is not one-to-one: Pi�A= Pj �A need not imply that i
= j, so that the shadows Ai and Aj are identical as subsets of A. Strictly speaking, then, the
collection A= �Ai	 is a cover of A, only if such “redundant” subsets are removed from it. Let us,
however, drop the requirement that A be a cover of A and retain these redundant elements. Since
now every Ai comes from a unique Pi, 
 is a bijection. Moreover, by set inclusion, any nonvan-
ishing intersection Ai0. . .ik

�Ai0
�Ai2

¯ �Aik
�0” has an associated nonvanishing Pi0. . .ik

� Pi0
� Pi2

¯Pik
�0” . Hence, a k-simplex in N�A� maps to a k-simplex in N�P�, i.e., the map


* :N�A�→N�P� is one-to-one. Moreover, if Pi0. . .ik
�0” , then Pi0. . .ik

�A�0” : every x� Pi0. . .ik
has

a nonempty inclusive past in Tn�A�, IPast�x�� IFut�A�, which, by transitivity, is a subset of Pi0. . .ik
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which means that ∃a� Pi0. . .ik
such that a�A. Or, Pi0. . .ik

�A= �Pi0
�A�� �Pi1

�A�� ¯ �Pik
�A�

=Ai0. . .ik
�0” . Thus, a k-simplex in N�P� maps to a k-simplex in N�A�, which means that �
*�−1

is one-to-one, thus establishing 
* as a bijection.
Preliminary numerical investigations for causets which faithfully embed into 1+1 dimen-

sional space-times show that N�A� is homologically equivalent to the continuum for a large range
of values of n.14 In Fig. 2 we show the results of numerical simulations for a causal set embedded
into an M =S1�R cylinder space-time. In the continuum, the nonvanishing Betti numbers are
b0�M�=b1�M�=1, and there is no torsion. For n�15, Tn�A� splits into disconnected pieces, so that
b0�T��b0�M�. Similarly, for n	504, �bi�T�	� �bi�M�	. However, there exist a large range of
thickenings, 16�n�503, for which �bi�T�	= �bi�M�	. Details will be discussed elsewhere,14 but
for now, it serves to justify our use of the discrete simplicial complex N�A� as the appropriate
starting point of our subsequent analytical investigations.

The first task is to find an appropriate continuum analog of the nerve N�A� and to ask how it
is related to the space-time topology. For a globally hyperbolic space-time �M ,g�, we first note
that a Cauchy hypersurface � is an appropriate continuum analog of the inextendible antichain A
since every point in �M ,g� is either to the future or past of �.13 The continuum analog of the
thickened antichain Tn�A� can be obtained by correlating the number of elements to the space-time
volume. Starting with a Cauchy hypersurface �, one thus obtains a “volume thickened” region
either to the past or future of �. We now describe this construction in detail.

Define the volume function v on M with respect to a Cauchy hypersurface �:

v�p� = 
vol�I��,p�� , p � I+���
− vol�I�p,��� , p � I−���
0, p � � ,

� �2�

where vol�X� denotes the space-time volume of a region X�M. Let 
a denote a continuous
future-directed timelike vector field on �M ,g� and 
�s� an associated integral curve of 
a, where
s��. For a globally hyperbolic space-time �M ,g� with compact Cauchy surface � we show the
following.

Lemma 1: v�p� is a monotonically increasing (decreasing) continuous function along the
integral curves 
�s� of 
a to the causal future (past) of �, where s��.

FIG. 1. �Color online� Constructing a nerve simplicial complex N�A� from an inextendible antichain A.
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Proof: Monotonicity is immediate. Let � be the parameter along the integral curves 
��s�. Let
q, r be two points on 
��s� which lie in I+��� such that r� I+�q�. The interval I�q ,r� is nonempty
and with compact closure, since �M ,g� is globally hyperbolic. Hence vol�I�q ,r�� is finite and
nonzero. Since I�q ,r�� I�� ,r�, but I�q ,r�� I�� ,q�, v�r�	v�q�+vol�I�q ,r��, or v�r��v�q�. Since
there exists a �1��2 such that q=
�1

�s� and r=
�2
�s�, we see that v��1��v�q��v��2��v�r� for

any �1��2.
Next, we show that v is a continuous function on 
�s�. For a given s��, the points in 
�s� can

simply be labeled by the parameter �. Let �0 be such that 
�0
�s� lies in I+�s�. Define

Ī±�Lt�→0I�� ,�0±�� for ��0 and v±�vol�Ī±�=vol�Lt�→0I�� ,�0±���=Lt�→0v��0±��. Monoto-
nicity implies that v��0−���v��0��v��0+�� for ��0 and hence v−�v��0��v+.

Let v−�v��0� be a strict inequality. This means that I�� ,�0� contains a set S of finite volume
such that S� I�� ,�0−�� for any ��0. For any compact subset K�S, this implies that K� I−��0�,
but K� I�� ,�0−��∀��0. Using the set decomposition I−��0−��= I�� ,�0−��� �I−��0

−������ I−��I−��0−������, we see that since K neither is in or to the past of �, K� I−��0−��.
Thus, even though K� I−��0�, every neighborhood of �0 contains a p� I−��0� such that K� I−�p�,
i.e., I−��0� is not inner continuous, which is a contradiction.

Now let v+�v��0� be a strict inequality. This means that I+ is not simply the closure of
I−�� ,�0�, and hence there exists an S� int�I+� of finite volume such that S� I�� ,�0�. Since
I−��0�= I�� ,�0�� I−��0�� I−��� and S is neither in nor to the past of �, S� I−��0�. Thus, for any
compact K�S, K� I−��0�. However, K� I�� ,�0+�� for all ��0, which means that every neigh-
borhood of �0 contains a p� I+��0� such that K� I−�p�, which means that I−��0� is not outer
continuous. For �M ,g� globally hyperbolic, this is not possible.

Thus, v+=v��0�=v−, and hence v��� is a continuous function. The proof for the time-reversed
case is identical. �

Since v is a continuous, monotonically increasing function along 
�s� to the future of �, we
can reparametrize the curves 
��s� to 
v�s�. 
v�s� then provides us with a one-parameter family of

FIG. 2. �Color online� The first three plots show the first three Betti numbers bi vs thickening volume n for a causet
sprinkled onto a region of the cylinder space-time S1�R, whose nonvanishing Betti numbers are b0=1, b1=1. Superim-
posing these plots then helps us determine the range of thickenings �16�n�503� for which the thickened antichain
homology matches that of the continuum. �The torsion vanishes uniformly and is hence not plotted.�
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homeomorpisms between � and v=const hypersurfaces �v to its future. The space-time region
Mv� I�� ,�v� can be regarded as a volume thickening of � and is the desired continuum analog of
a thickened antichain.

The continuum nerve simplicial complex analogous to N�A� may then be constructed from
Mv as follows. �v are the maximal or future-most elements of Mv, and the past of any point p
��v casts a shadow

��p� � I−�p� � � �3�

on �. The set S�����p� � p��v	 is an open cover of �, since for every s�� there is a p��v
such that s� I −�p�. The associated nerve N�S�� is an infinite dimensional simplicial complex,
arising from nonvanishing intersections of arbitrarily many sets in S�.

In the continuum limit in which the discreteness scale is taken to zero, N�A�→N�S��.
However, since our interest lies in the continuum approximation for which the discreteness scale
is not taken to zero, it is more appropriate to use a locally finite subcover of S�. We do so by
choosing a collection of points �mi	 on �v such that �a� the collection of shadows S����mi�	 is a
cover of � and �b� any open set in �v contains only a finite number of mi. Then S is a locally finite
cover of �, and N�S� is the required continuum analog of N�A�.

IV. A CONTINUUM RESULT

Of course, one of the main questions we want to address is whether such a continuum nerve
construction yields a simplicial complex which is homological to � and hence to M. For example,
in order to construct the Cěch cohomology, one starts with an ordered infinite collection
�S1 ,S2 , . . .Si , . . . 	 of locally finite open coverings of M, such that Si+1 is a refinement of Si. The
correct continuum cohomology is then recovered only in the limit i→�, i.e., the limit of infinite
refinement. This is reasonable in the continuum, since any finite refinement can contain sets that
are “too large,” with the result that the nerve simplicial complex masks nontrivial topological
information.

However, for any fundamentally discrete theory like causal set theory, continuum structures
smaller than the discreteness scale are unphysical. Hence, it should suffice to consider a finite
cover. In particular, we wish to ask what topological information of � is encoded in the nerve
N�S� of the locally finite cover S����mi�	 of �. More specifically, is N�S� homologous to �? A
look at a simple example tells us that the answer in general is no.

Consider the S1�R cylinder space-time ds2=−dt2+d�2, with �� �0,2��. If � is the t=0
circle, then v= ± t2 if t��. For t=3� /4, let us construct a cover S1 as follows. The shadows from
the pair of points m1= �3� /4 ,0� and m2= �3� /4 ,�� are sufficient to cover the t=0 slice and
��m1����m2� is the disjoint union of the two open intervals �� /4 ,3� /4�� �5� /4 ,7� /4� on the
t=0 circle. N�S1� is then a single 1-simplex, which is not homological to S1. On the other hand,
for t=� /2, a cover S2 is provided by the shadows from the three points m1= �� /2 ,0�, m2

= �� /2 ,2� /3�, and m3= �� /2 ,4� /3�. Their intersections on the t=0 slice are the intervals
��m1����m2�= �� /6 ,� /2�, ��m2����m3�= �5� /6 ,7� /6�, and ��m3����m1�= �3� /2 ,11� /6�,
respectively, from which we see that �i=1

3 ��mi�=0” . N�S2� is then the boundary of a 2-simplex and
therefore homological to S1. This simple example shows us that the choice of cover S is crucial for
determining whether N�S� has the correct homology.

A somewhat lesser known result in algebraic topology due to De Rham and Weil19 then gives
us a criterion for S such that N�S� is not only homological but homotopic to �.

Theorem 1. (De Rham-Weil): The nerve of a convex cover of � is homotopic to �.
Theorem 1 is also valid for a simple cover, whose elements are differentiably contractible as

are all intersections �since our interest here is restricted to homology, it suffices that the intersec-
tions are acyclic, i.e., they contain no nontrivial cycles�. From this we see why the two covers on
the cylinder space-time give such different results. While the shadows are themselves differentia-
bly contractible in the cover S1, their intersections are homotopic to two disconnected points, so
that S1 is neither convex nor simple. For S2, the shadows and their intersections are both convex
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and contractible, resulting in a nerve which is homological to S1 in accordance with Theorem 1.
The open cover of interest to us is the collection of shadow sets S. As we have seen in the

cylinder space-time, this is not always a convex cover. Nevertheless, as is apparent even for this
simple space-time, for times t�� /2, every shadow is, in fact, a convex set of the t=0 slice. This
suggests that for v below some critical value, one should always get shadows that are convex for
any globally hyperbolic space-time. We will now show that this is indeed the case when the
Cauchy surface � is taken to be compact. We will take �M ,g� and �� ,h� to be at least C2

differentiable.
Let r be the convexity radius on the Cauchy slice �� ,h�, where h is the induced spatial metric.

We again take 
a to be a continuous, future-directed timelike vector field and 
�s� its integral curve
which intersects � at s. We use the volume function v as defined in Eq. �2� to parametrize this
curve and denote the shadows of the past sets of 
v�s� on � by �s�v� for v�0. We also note that
for � compact, there exists a vcrit�0 such that ∀v	vcrit, there exist p��v such that ��p�=�.

Now, any s�� is contained in a CNN N of �M ,g� such that N�� is also a CNN of �� ,h�.
We will term such an N a Cauchy-CNN or C-CNN. One way of constructing such a C-CNN is
from a sufficiently small CNN N��s of �� ,h�, such that its domain of dependence D�N�� is itself
a CNN of �M ,g�.

Lemma 2: For every s�� and 
 a a future-directed timelike vector field, ∃ a vs, vcrit�vs

�0, such that for any 0�v�vs,

1. diam��s�v���r, the convexity radius of �, and
2. ��s�v� has positive principal curvatures with respect to its outward normal for space-time

dimension n	3.

Proof: We first show that for any v1, v2, vcrit�v1�v2�0, �s�v2���s�v1�. By transitivity,
�s�v2���s�v1�. The strict inclusion is proven as follows. Assume that �s�v2�=�s�v1� for v2�v1.
Any x���s�v2� lies on ��I−�v2�� which by global hyperbolicity means that x→
v2

�s�, i.e., they are
null related. Since 
v2

�s���
v1
�s�, this means that x��
v1

�s� or x lies in I−�
v1
�s��.15 But

x����s�v2�����I−�v1�� as well, which is a contradiction. Therefore, ��s�v2����s�v1�=0” and

hence �s�v2���s�v1�, which implies that �s�v2���s�v1�, since �s�v� is an open set. Thus, the
�s�vi� are nested one inside the other.

Now, for every CNN N��s, in �� ,h�, there exists a vs��0 such that �s�v��N�, for all
vs��v�0. Let D+�N�� be the future domain of dependence of N� �a closed achronal set� and
H+�N�� its future boundary. Let p�
v�s� such that s�� p��r, where r�
v�s��H+�N���0” .

Then, I−�p���=�s�v�p���N�¯ since p�D+�N��, so that �s�v�p��� N̄�. Assume equality. Then for
all x���s�v�p��=�N�, x→p��r, or x��r. But since r�H+�N��, by globally hyperbolicity,
there exists an x���N� for which x�→r, which implies a contradiction. Hence �s�v�p���N�.
Thus, for all v�vs��v�r�, �s�v��N�.

Moreover, let N� such that diam�N���r. Again, vs��0 is such that for all 0�v�vs�,
�s�v��N�. Let p ,q���s�v� such that d�p ,q�=diam��s�v�� which is the length of the �unique�
geodesic � in N� from p to q. Let ��0�� p, ��1��q, and ��1+���r. For small enough ��0,
r�N�. d�p ,r� is therefore the arclength of � from p to r, so that d�p ,r�=d�p ,q�+d�q ,r�, thus
implying that r�diam�N��	d�p ,r��diam��s�v��. This proves point 1.

We can do better, i.e., find the largest possible vs� for which point 1 is true by taking the
supremum over all such C-CNN’s N�, i.e., vs�

sup�supN�vs��0.
To prove point 2 we note that for a flat �i.e., zero extrinsic curvature� Cauchy hypersurface in

Minkowski space-time, the principal curvatures of the boundary of the shadows of a past light
cone on it are strictly positive. We show that we can construct “small enough” neighborhoods of
s such that the deviation from flatness is sufficiently small for this to be possible.

Since the boundaries of the shadows ���s�v�� do not intersect for different v�vcrit by outer
continuity, the n−2 dimensional surfaces ��s�v��Sn−2 provide a foliation of � centered at s. The
boundary of J−�
v�s�� is generated by past directed null geodesics which intersect � at ��s�v�. Let
y coordinatize these n−2 null directions, i.e., the Sn−2. In 2+1-dimensions, for example, y=� the
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coordinate on a circle, S1. Let F be the set of monotonically increasing functions of v which vanish
at v=0. Since the deviation from flatness decreases with v, a given function in F can serve to
parametrize the deviation from flatness of the metric in a CNN of s in �� ,h� along any given null
direction y projected onto �.

The set �v ,y� are therefore Riemann normal coordinates on a CCN N� of �� ,h�, centered at
s and the induced spatial metric is hab�v ,y�=�ab+O�f�, f�v��F, where the y dependence on the
right hand side is absorbed into the second term. Let na be the unit normal to N� in �M ,g�, so that
the extrinsic curvature of N� is Kab= 1

2Lnhab. Choose N� to be small enough so that na is nearly
constant over N�, i.e., na�v ,y�=na�s�+O�f�� with f��v��F, again with the y dependence ab-
sorbed into the second term. Since � is smoothly embedded into �M ,g�, na and hence Kab vary
smoothly in �M ,g�. Christoffels �ab

c �v ,y�=O�f� and vanish at s, so that extrinsic curvature Kab

=O� f̃�, where f̃ is the more dominating of the two functions f , f�, as v→0.
If lab�v ,y� is the induced metric on ��s�v� and ma�v� its outward normal, the foliation by

��s�v� allows us to express hab�v�= lab�v ,y�+ma�v ,y�mb�v ,y�. This means that lab�v ,y� and
ma�v ,y� each differ from their flat space counterparts, i.e., on �N� ,��, by at most some O�fm�,
fm�F, where fm can differ from f if it is more dominating as v→0. Thus, lab�v ,y�= lab

F �v ,y�
+O�fm� and ma�v ,y�=ma

F�v ,y�+O�fm�, where the F labels the quantities with respect to the flat
metric �ab on N�. The principal curvatures of ��s�v� are therefore �i�v ,y�=�i

F�v ,y�+O�fm�, i
=1, . . . ,n−2, with �i

F�v ,y� the principal curvature of these surfaces with respect to �ab on N�. For
example, for a spherically symmetric foliation about s in a flat metric, the �i

F�v� are positive and
diverge to +� as v→0.

In calculating the dominant contributions to the principal curvatures �i we have not yet made
any assumptions about the foliation ����s�v��	 which depends on the space-time metric. Without
this further input, the �i

F will not in general be positive.
Let us therefore choose a C-CNN N�s in �M ,g� such that not only does N��N�� satisfy

the above conditions but the space-time metric gab=�ab+O�f�� in N with f��v��F. For example,
for N strictly Minkowskian, and N� with zero extrinsic curvature, the ���vF� have strictly positive
�i

F, where vF represents the equivalent volume in Minkowski space-time. Thus, the volume v
=vF+O�f��, and the principal curvatures of ��s�v�, �i�v ,y�=�i

F�vF ,y�+O� f̃�, where f̃ is now the
more dominating of the functions fm , f� , f� as v→0. We therefore see that for any fixed null
direction y there exists a v�y��0 such that for all 0�v�v�y�, �i�v ,ya��0. Since � is a smooth
Cauchy hypersurface, the boundaries of the shadows are smooth in a C-CNN. Thus, �i�v ,y� is
continuous with respect to y, i.e., over the set of null directions Sn−2. If v�v�y� for some y
�Sn−2, then since �i�v ,y��0 there exists a neighborhood U of y in Sn−2 such that for all y�
�U, �i�v ,y���0. Thus, v�y��	v�y�. Now, for every y, v�y��0. However, if infyv�y�=0, then
there is an infinite sequence �v�yi�	→0. The corresponding sequence in Sn−2, �yi	→y0�Sn−2.
Thus, for every neighborhood U of y0 there exists a j such that for all i� j, v�yi��v�y0� and
v�y0��0. This is a contradiction. Hence, vs�=infyv�y��0, which proves point 2.

We may now obtain the largest possible vs� by now varying over all N� which satisfy the above
criteria to obtain vs�

sup=supN�vs��0.
Thus, for every s��, there exists a vs=min�vs�

sup ,vs�
sup��0 for which 1 and 2 are satisfied.

�

For a fixed timelike vector field 
a, although vs�0 for each s��, we now show that infsvs

�0 using global hyperbolicity and the compactness of the Cauchy hypersurfaces �. Let ���� be
a continuous curve in �� ,h� through s��, with ��0�=s. The homeomorphism 
v :�→�v takes
����→�v����
v �����. Let S����������v�, i.e., the closure of the shadows of past light cones of
points in �v��� onto �. ��S���	 is then a family of Sn−2’s. We now prove a couple of claims.

Claim 1: The family �S���	 is continuous with respect to �.
Proof: Let f�� ,v ,y�=0 be the functions defining the �S���’s. Assume that f is not continuous

at s or �=0, so that lim�→0 f�� ,v ,y�= f̃�0,v ,y�� f�0,v ,y�. Equivalently, lim�→0 S���= S̃�0�
�S�0�. Let �si	 be an infinite sequence of points on ���� which converge to s, with si����i� and

0��i+1��i. By definition S̃�0� is the limit set of �S��i�	, i.e., for every q� S̃�0� and any open
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O�q there exists a j such that for all i� j, O�S��i��0” . Let �pi	 be the corresponding sequence
on �v���, i.e., pi�
v�si�, which converges to p��v�0�.

Now, let q� S̃�0� \S�0�, which is nonempty by definition. Since S�0� is closed, there exists an
open O�q such that O�S�0�=0” . Any compact subset K of O therefore lies in S�0�c and hence in
I−�p�c. Let q�K�O and let q�O��K be open. For any such q, O�, then, there exists a j such

that ∀i� j, O��S��i��0” since q� S̃�0�. Therefore K�S��i��0” and K� I−�pi��0” . Thus, every
neighborhood of p contains a pi such that K� I−�pi�c�0” . This contradicts causal continuity. �

Claim 2: If v�vs then ∃��0 such that ∀0����, S��� satisfies points 1 and 2 of Lemma 2.
Proof: Continuity of the S��� with respect to � means continuity of its associated geometric

properties. Since S��� are continuous, there exists a homeomorphism �� :S�0�→S���. Let ��0, t�
be a �continuous� segment from x�0� to y�0� on S�0� mapped by �� to ��� , t� with end points
x��� ,y����S���. The length ����� , t�� is itself a continuous function of � because of the conti-
nuity of the metric hab on �. Hence, since ����0, t���r, this means that there exists a ��0 such
that for all 0����, ����� , t���r. Therefore d�x��� ,y�����r. Again, continuity of hab and the
�S��� means that the principal curvatures �i��� are continuous with respect to �. Since �i�0�
�0, there exists a ���0 such that ∀0�����, �i����0 for all i.

Thus, there exists a ��=min�� ,����0 such that ∀0����� points 1 and 2 of Lemma 2 are
satisfied. �

Thus, for every s��, there exists a neighborhood O of s such that for all s��O, vs�vs�.
Since � is compact, an argument similar to the one used to show vs��0 in the proof of Lemma 2

can be used to show that v�̃� infs��vs�0.
By varying over the timelike vector fields 
a, we obtain a convexity volume of � which is the

largest v� for a given �� ,h�� �M ,g�

ṽ � sup

a

ṽ�, 0 � ṽ � vcrit. �4�

The positivity of the principal curvatures of the boundaries of the shadows then implies, by
the maximum principle,17 that for any p ,q��s�v� and 0�v� ṽ, if there exists a geodesic from p
to q of arclength �diam��s�v��, then it is unique and lies in �s�v� for n	3. For n=2, we do not
require 2 since as long as 1 is satisfied, any geodesic from p to q in �s�v� of arclength
�diam��s�v�� must lie in �s�v�. Hence, �s�v� is convex with respect to r for all n	2.

Thus, the collection Sv
����s�v�	 for any v� ṽ forms an open covering of � whose elements

are convex sets with respect to r. A locally finite cover Sv can be obtained from Sv
� as follows.

Since � is paracompact, Sv
� admits a locally finite refinement, i.e., a locally finite cover V of �

such that for every Vi�V, there exists a �s�v��Sv
� such that Vi��s�v�. For every Vi, choose an

si such that Vj ��si
�v� implies j= i. Since V is a cover of �, so is Sv���si

�v�	. Local finiteness of
V implies that every p�� has a neighborhood N� p which intersects only a finite number of Vi.
Since each Vi is contained in a unique �si

�v�, N also intersects only a finite number of �si
�v�, so

that Sv is a locally finite convex cover of �. Sv is therefore a convex open cover of � and hence,
using Theorem 1 we have shown the following.

Theorem 2: The nerve N�Sv� is homotopic to � and thence to M.
In order to make the continuum-discrete comparison, which is the main goal of this paper, one

would like to obtain the discrete analog of the cover Sv. While it is tempting to use the obvious
identification with the collection A as suggested at the end of Sec. III, one must proceed with
caution. Since the continuum-discrete correspondence for causets maps space-time volume �and
not spatial volume� to cardinality, we need to find a collection of open sets in space-time corre-
sponding to Sv. The natural choice is the collection of past sets, Iv��Ii� I�� ,
v�si��	. For ease of
notation, let 
i�
�si�, mi=
v�si�, and �i��v�si�. Since �i= I−�mi��
, the map 
 :Iv→Sv is onto.
If 
 were in addition one-to-one, then �i=� j ⇒ i= j. Assume otherwise, i.e., �i=� j, i� j, so that
��̄i=�� j. Since the space-time is globally hyperbolic ∀x���̄i, x→mi and x→mj. Now,
si ,sj � I−�mi�� I−�mj�, which means that 
 j � �I�� ,mi�� I�� ,mj���0” . Since mi and mj are

spacelike to each other, 
 j must leave �I�� ,mi� at some y=
 j ��I−�mi�. Therefore, y→mi and y
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��mj. Since y��I−�mi�, there exists x���i such that x→y→mi. However, since x→y��mj,
this means that x��mj,

15 which is a contradiction. Hence 
 is one-to-one.
Consider the nonempty intersection �i1. . .ik

��i1
� ¯ ��ik

�0” , which lies in Ii1. . .ik
−

� I−�pi1
�� ¯ � I−�pik

�. Let a��i1. . .ik
and N�a such that N� Ii1. . .ik

− . Then, I+����N� Ii1. . .ik
� Ii1. . .ik

− � I+��� implies that Ii1. . .ik
�0” . Thus every k-simplex in N�S� maps to a k-simplex in N�I�,

i.e., 
* :N�I�→N�S� is onto. Since Ii1. . .ik
� I+���, for every y� Ii1. . .ik

�0” , there exists an
a�� such that a��y and hence a� Ii1. . .ik

− ��=�i1. . .ik
�0” . Thus �
*�−1 :N�Sv�→N�Iv� is onto

and hence 
* is a bijection. From Theorem 2, we see the following.
Corollary 1: N�Iv� is homotopic to � and thence to M.
The cover Sv of � obtained from the causal structure can therefore be used to obtain a

discretization of �, which is homotopic to �. This provides a new way of obtaining a faithful
finitary topology from �12 using the geometry of the space-time. It is tempting at this stage to
speculate on how geometrical information may be extracted from the finitary topology. Namely,
starting from a purely topological discretization of � using a simple open covering, if one simply
assumes this to be a convex cover Sv for some choice of v, then at least partial construction of a
space-time geometry may be possible. However, we leave such investigations aside for now.

It is important to understand the role played by the convexity volume ṽ associated with every
�. For any v� ṽ, there exist sets �i�Sv which do not satisfy 1 and 2 of Lemma 2 and hence are
not convex. However, while Theorem 1 gives a sufficient condition for N�Sv� to be homotopic to
�, it is not a necessary condition. In other words, it is possible that there exist v� ṽ such that
N�Sv� is homologically equivalent to �, even though Sv is not a convex cover, as long as it is a
simple cover. Thus, at best, ṽ is a lower bound for which Theorem 2 is valid.

For the purposes of the next section it will be useful to find a slight generalization of Iv and
Sv to accommodate sets associated with different v’s. Let M��mi=
vi

�si�	 be a collection of
spacelike related points, and I��Ii�� I�� ,mi�	, S���vi

�si�� I−�
vi
�si����	, for vi� ṽ, ∀i. Each

of the �vi
�si� is therefore convex. Further, if the M are chosen such that S is a cover of �, then

Theorem 2 and Corollary 1 imply the following.
Corollary 2: N�S� and N�I� are homotopic to � and thence to M.
We end this section with some qualitative comments on the above foliation ��v	�R of M.

Consider the sandwiched region Mv, with boundaries � and �v, for either v�0 or v�0. The
volume thickening has the effect of “smoothing out” �, so that �v has a more “uniformized” or
homogenized extrinsic curvature compared to �, both to the past and the future of �. This is a
“dissipative” process analogous to a heat equation and is therefore irreversible in general: the
volume foliation of M with respect to some �v0

, v0�0 is not in general equivalent to that with
respect to �, and the leaves of the foliation coincide only at �v0

, so that a past volume thickening
of �v0

will in general not contain � as a slice. Such uniformizing foliations may find an applica-
tion in studies of Lorentzian geometry, analogous to the Ricci flows in Riemannian geometry.20

V. THE CORRESPONDENCE

We start with a causal set C that faithfully embeds into a globally hyperbolic space-time
�M ,g� at density V c

−1,

�:C → �M,g� . �5�

Vc is the cutoff volume which sets the discreteness scale near which the manifold approximation of
the causal set C breaks down.

The probability of finding n points in a given volume V for a Poisson sprinkling at density V c
−1

is
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Pn�V� =
1

n!
exp−V/Vc � � V

Vc
�n

, �6�

which implies that n̄=V /Vc, with standard deviation �=�V /Vc. The relative width � / n̄ of this
distribution decreases with increasing n̄. Hence, for V�Vc not only is Pn�V� appreciable only for
n�1 but n=O�V /Vc� with probability close to 1. This feature of the Poisson distribution will help
guide us through the main results of this section.

In Sec. III we constructed the nerve N�P� associated with a thickened antichain Tn�A�. Our
objective is now to find an appropriate continuum analog I of P such that N�I� is homologous to
N�P�. If I further satisfies the conditions of Corollary 2 this would mean that N�P� is homolo-
gous to M.

For any inextendible antichain A, there exists an infinity of Cauchy surfaces containing it. This
makes the discrete-continuum correlation highly nonunique. Nevertheless, one can make a choice
of A such that this nonuniqueness becomes unimportant to recovering the continuum homology.

Let �1 ,�2 be a pair of Cauchy surfaces such that A��i, i=1,2. A spacing between the �i can
be defined via a space-time interval of the type I�p1 , p2�, or I�q2 ,q1�, for any pi ,qi��i, i=1,2
such that p1�� p2, and q2��q1.

Claim 3: For any pair of Cauchy hypersurfaces �1 ,�2�A, the spacings between them lie in
S�A�.

Proof: Without loss of generality, let there exist pi��i, i=1,2 such that p1�� p2. Then, by
transitivity, for any q� I�p1 , p2�, q� � I±�A�, since the �i are achronal. Further, if q��J±�A�, by
global hyperbolicity, this means that there exists an a�A such that a→q or q→a. Assuming the
former without loss of generality, since q�� p2, this means that a�� p2, which is a contradiction.
Thus, I�p1 , p2��S�A�. �

Since A is an inextendible antichain, S�A� must be made up entirely of voids, i.e.,
��C��S�A�=0” . Thus, for any pair of �i’s, the spacings between them must be empty of causal set
elements. Voids of volume V occur with probability P0�V�=exp−V/Vc. Thus, the probability for a
region of volume V�Vc to be a spacing �and hence a void� is �1. Given some �i�A, the
probability for any interval I�pi ,q� to its future or I�r , pi� to its past of volume V to be a spacing
is then roughly limited by the number N of such independent intervals. The probability that at least
one of these intervals be a spacing is then NP0�V�, which for N sufficiently small, or � sufficiently
compact, is still �1 for V�Vc.

Even for a space-time with a “sufficiently” compact �, it may be possible, although not
probable, to pick from ��C� an inextendible antichain A such that the volume of the spacings
between the �i�A is not of O�Vc�. We will henceforth only restrict to those A, for which this is
not the case, i.e., the spacings are all of order Vc. This ensures that the Cauchy hypersurfaces
containing such an A differ from each other by a relative volume of O�Vc� and hence may be
considered “equivalent” to each other at scales �Vc. We may therefore pick a � from this set with
the largest convexity radius ṽ and directly assign ṽ to A.

We now explore the obvious analogy between the thickened antichain Tn�A� for a likely A and
the thickened region, Mv sandwiched between ��A and �v, where v=nVc. Corollary 1 tells us
that for 0�v� ṽ, N�Iv� is homologous to the space-time. While the upper bound ṽ obtains from
continuum considerations, in the discrete context, one also expects a lower bound v0 arising from
the discreteness scale. Indeed, such a lower bound makes its appearance in our numerical inves-
tigations. For example, for v�Vc, there is a high probability for voids which “cut through” Mv in
a swiss-cheese-like fashion. If M= �mi	 are the maximal elements of Tn�A�, the set of shadows
���mi�	 on � will most likely not cover � for n�1 �v�Vc�. In other words, Mv is “too thin” to
be a good approximation to Tn�A�. Thus I��I�� ,mi�	 does not satisfy the conditions of Corollary
2, so that N�I� need not be homologous to the space-time. Thus, it seems necessary to impose the
condition that v�Vc. Clearly, this is not sufficient for obtaining an N�I� homologous to the
space-time since ṽ itself may be O�Vc� so that there exists no v�Vc with v� ṽ, and hence the
conditions of Corollary 2 are not satisfied. Hence we must further restrict to inextendible anti-
chains A for which ṽ�Vc.
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Mv can also fail to be a good continuum approximation of Tn�A�, even though ṽ�v�Vc,
since it could be too thin in local patches. For example, if the extrinsic curvature at a point on �
is relatively large in comparison with other points in its neighborhood, the spacings between
points on � and �v may still be of order Vc even for v�Vc. Figure 3 provides an illustration of
this. Let us define

�x�v� � sup
y��v

vol�I�x,y��, x � � , �7�

which is the size of the largest space-time interval between a given x�� and any y��v. If
��x��Vc, then Mv is once again too thin at x and not a good continuum approximation to Tn�A�.
Again, the probability of a void at x which cuts through Mv is high. On the other hand, if �x�v�
�Vc �which implies v�Vc� for all x��, then such voids are less probable. We may therefore
define the lower bound v0 on v such that ∀v�v0, �x�v��Vc, ∀x��.

In order to obtain the high probability discrete-continuum correspondence for the nerves, we
will find it necessary to impose a very strong separation of scales, Vc�v0�v� ṽ. This may be too
stringent a requirement in practice, but it allows us to make our arguments in as simple and
general a language as possible. It is useful to see if such a separation of scales lies within
physically reasonable bounds. We can assume that the continuum description is valid at least down
to length scales lc=10−25 m, which gives us a cutoff volume of Vc=10−100 m4. Let �x�v0�
�1012Vc which has an associated length scale of 10−22 m. A conservative choice for ṽ, which
corresponds to the shortest scales at which spatial intrinsic and extrinsic curvature effects become
important, is the nuclear scale �1040 Vc. Thus, a separation of scales 1040Vc�v�1012Vc�Vc is
possible within reasonable physical bounds, i.e., far above the Planck scale and far below the
nuclear scale.

We have therefore placed fairly stringent requirements on the inextendible antichain A with
respect to its faithful embedding into the space-time �M ,g� at a fixed density V c

−1. The obvious
question is how to identify such A in C without reference to the embedding ��C� in �M ,g�.
However, this requires a better understanding of intrinsic geometrical information in the causal set
than we presently have and is under current investigation.21 We instead adopt the following,
mathematically equivalent, approach. Starting with a given �M ,g�, we allow the sprinkling density
to vary such that any Mv with v� ṽ satisfies the condition v�v0�Vc. Thus, we pick only those
A’s from ��C� satisfying this separation of scales.

Given an A satisfying these above conditions, with associated ṽ= ñVc, v0=n0Vc, consider its
thickening, Tn�A�, where ñ�n�n0�1. For any y�J+���, define v�y��vol�I�� ,y�� and n�y�
��IFut�A�� IPast�y��.

We now list probabilities for certain occurrences which will subsequently be used to quantify
the “high probability” correspondence between the continuum and the discrete homologies. The
probability for a void of volume V��Vc is

P0 � exp−V�/Vc � 1. �8�

The probability for a region of volume v0 to have n sprinkled points with n�n0�1 is

FIG. 3. The largest interval between a given x�� and a point in �v.
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P1 � 

k=n

�
1

k!
exp−n0�n0�k = 1 −

��n,n0�
��n�

� 1, �9�

where ��x ,y� is the incomplete gamma function. This is the probability of an “overstuffed” region.
The probability for a region of volume ṽ= ñVc to contain n sprinkled points with 1�n� ñ is

P2 � 

k=0

n
1

k!
exp−ñ0�ñ0�k =

��n + 1,ñ�
��n + 1�

� 1. �10�

This is the probability of an “understuffed” region. One will need to calculate the total probability
for at least one such improbable situation �say, a void of volume �Vc� to occur anywhere in the
thickened space-time region Mv0

. Since the voids can overlap, one can set an upper bound on the
probability by considering nonoverlapping regions, which can be constructed from the nonover-
lapping shadows �i from events on �v0

. For a given A and associated �, the volume of a space-
time interval I�� , p� for any p��v0

is v0. Since vol�Mv0
� is roughly �v0

1/n vol���, where n is the
space-time dimension �since these intervals lie in CNN’s where the deviation from flatness is
small, this suffices to give a rough order of magnitude estimate, which is all we require�, the
number N of such nonoverlapping regions in Mv0

is

N � vol���v0
−�n−1�/n. �11�

For v�v0, the corresponding number of independent regions is Nv�N and hence we may use N

as an upper bound for all such v. Instead of encumbering ourselves with notation, we will then
simply use N itself as an adequate measure of the number of nonoverlapping regions, even for
v�v0. If N is very large, then � is correspondingly large and the total probability for a rare event
may be non-negligible. Thus, we quantify our requirement for � to be sufficiently compact by

NP0 � 1, NP1 � 1, NP2 � 1. �12�

It is instructive at this point to check how restrictive this is for our present universe. If we take A
to lie in a homogeneous isotropic �, assuming Vc=Vp, roughly, 10180�N�10240. The probability
that there are no voids of volume �104Vp, say, is then �10240�exp−10000�exp−9447�1.

We now demonstrate some results which will simplify the proof of our final Lemma.
Claim 4: For any x��, there exists at least one point in I+�x� which belongs to Tn�A� with

high probability.
Proof: For any x��, �x�v0��Vc, so that vol�I�x ,�v0

���Vc. The probability of finding at
least one sprinkled point in I�x ,�v0

� is therefore 1−P0, where P0�1. The probability of finding at
least one void in Mv0

of this kind is then �NP0�1.
For any p� I�x ,�v0

�, v�p��v0. The probability that it has n�p��n�n0 is less than P1�1.
Hence, the probability for at least one of the N nonoverlapping intervals to have such a point is
less than NP1. The total �joint� probability for this occurrence is then �1−NP0��NP1�NP1

�1. Conversely, the probability for every x�� to contain at least one point in its future belonging
to Tn�A� is 1−NP1�1. �

Note: The above claim also holds for any y� I+���such that v�y�=O�Vc�, since �y�v0��Vc.
Claim 5: Let M be the set of maximal elements in Tn�A�. Then with high probability, none of

the elements ei���C� with v�ei�=O�Vc� belong to M.
Proof: Let e1�Fut�A� such that v�e1�=O�Vc�. Then, v�e1��v0 and hence I�e1 ,�v0

��Vc.
Then I�e1 ,�v0

��Tn�A�=0” occurs with probability �P1�1 from Claim 4. Therefore e1 is not a
maximal element with probability �1−P1. The number of ei with v�ei�=O�Vc�⇒ I�ei ,�v0

��Vc

which are non-overlapping is �N, and hence the joint probability that none of them is a maximal
element is �1−NP1�1. �

Claim 6: Every x�� lies in a shadow �i� I−�mi��� with high probability.
Proof: The proof of this is immediate from Claim 4. Namely, the probability that there exists

at least one x�� which does not lie in a shadow is NP1 and hence with probability 1−NP1
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�1 every x lies in a shadow. �

Claim 7: Let I= �Ii	, with Ii� I�� ,mi�. N�I� is homotopic to M with high probability.
Proof: From Claim 6 with probability 1−NP1, S���i	 is a cover of �. Moreover, with

probability 1−NP2, v�mi�� ṽ, so that the joint probability for S to be a convex cover of � is
�1−N�P1+P2�. Thus, from Corollary 2, N�S� and N�I� are both homotopic to M with prob-
ability �1−N�P1+P2��1. �

We are now in a position to begin the discrete-continuum comparison.
Claim 8: Define the discrete collection of sets P= �Pi	, Pi�Fut�A�� IPast�mi�. There is a

one-to-one and onto map from I to P. Hence the vertices of N�P� and N�I� are in one-to-one
correspondence.

Note: The Pi does not include the elements of Ai in this definition and hence differ from the
Pi of Sec. III. The reason to adopt this modified choice comes from the fact that unlike in the
continuum, there is no natural distinction between elements which are causally related and those
that are strictly chronologically related in a causal set. In particular, Claim 9 would not be valid
without this modification.

Proof: For every mi there exists a unique Pi, since the set of maximal points M forms an
antichain �which need not be inextendible� and hence mi� Pj iff mi=mj. Moreover, because the
space-time is distinguishing, every mi has a unique I−�mi� and hence a unique Ii. �

This bijection between the vertices of N�P� and N�I� allows us to label the vertices as
m0 ,m1 , . . . ,m�M�. Therefore the largest possible dimension of a simplex in N�I� or N�P� is �M�.

Claim 9: N�P� is a subcomplex of N�I�.
Proof: For any p� Pi1. . .ik

� Pi1
� ¯ � Pik

�0” , p�mij
for all j=1, . . . ,k. Since p� I+���, ∃x

� I+��� such that p� I+�x�, so that mij
� I+�x�, for all j=1, . . . ,k, and hence p� Ii1. . .ik

� Ii1
� . . . � Iik

�0” . Note that without the modified definition of the Pi this would no longer be
true. For example, if the intersection is nonempty only on the light cones and on A, then any p
�A and does not lie in an intersection of Ii’s. �

However, N�I� is not in general a subcomplex of N�P� since there may exist nonempty
intersections Ii1. . .ik

�0” with vol�Ii1. . .ik
�=O�Vc�. There is then a high probability for such intersec-

tions to be voids, i.e., Pi1. . .ik
=0” . If this is the case, then there is no k-simplex in N�P� which maps

to this particular k-simplex in N�I�. In other words, N�P� and N�I� need not be homotopic to
each other.

Despite this, we now show that N�P� and N�I� are homologous to each other with high
probability, since N�P� is an adequate subcomplex of N�I� with high probability. We begin by
establishing some notation and reminding the reader of some basics of algebraic topology.18

We begin by setting an orientation on the simplicial complex N�I�, so that the set of vertices
�mi	=M is ordered as m0→m1→¯→m�M�. Let Cq�N�I�� be the free Abelian group with basis

Bq��b̂q
���	, where the b̂q

���= �ms0
, . . . ,msq

� are q-simplices in N�I�, such that �ms��0�
, . . . ,ms��q�

�
=sign����ms0

, . . . ,msq
� for � a permutation of the set �0,1 , . . . ,q	. Elements of Cq�N�I�� are

referred to as q-chains. For q� �M�, Cq�N�I��=0” . Zq�N�I���Cq�N�I�� are the simplicial q-cycles
and Bq�N�I���Cq�N�I�� the simplicial q-boundaries, so that the qth homology group
Hq�N�I���Zq�N�I�� /Bq�N�I��. It will be convenient to use the shortened notation K�N�I�,
Cq�Cq�N�I��, Zq�Zq�N�I��, Bq�Bq�N�I�� and denote with primes the associated sets for the
simplicial complex K��N�P�.

Now, a q-simplex �ms0
, . . . ,msq

� is an element of Bq iff the intersections Is0. . .sq
�0” ,

and similarly, �ms0�
, . . . ,msq�

� is an element of Bq� iff P�0�. . .�q�
�0” . We will use the notation

�s0 , . . . ,sq���ms0
, . . . ,msq

� and �s0 , . . . ,sq�� Is0. . .sq
, which also helps us switch more easily from

sets
to simplices and back. As in standard notation a q−1-simplex �s0 , . . . , ŝi , . . . ,sq� can be obtained
from a q-simplex �s0 , . . . ,sq� by simply dropping the ith vertex.

A subcomplex K� of a simplicial complex K is said to be adequate if for all q	0,

�1� if z�Zq, then there exists a z��Zq� with z−z��Bq and
�2� if z��Zq� and z�=�c for some c�Cq+1, then there exists a c��Cq+1� with z�=�c�.
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Lemma 3 (Rotman): If K� is an adequate subcomplex of K, then for every q, the map z�
+Bq��z�+Bq is an isomorphism

Hq�K�� � Hq�K� . �13�

Thus, our task is reduced to showing that N�P� is an adequate subcomplex of N�I�.
We will begin by defining a growth of a q+1-chain � from a given q-simplex, F0

��s0 , . . . ,sq�. We describe this construction in some detail, since it is crucial to the proof of the
main results of this section. Starting with some F0, let there exist an sq+1 such that there exists a
nonempty q+1-simplex

�1 � �s0, . . . ,sq,sq+1� � 0” . �14�

We have thus “grown” a q+1-chain �in this case simply a q+1-simplex� from F0. The boundary
of �1 then consists of the set of q-simplices,

F1 � ��s0, . . . , ŝi, . . . ,sq+1�	, ∀ i � �0,q� , �15�

and the original q-simplex F0. We may stop the growth here.
However, if for some i1� �0,q�, there exist an sq+2

�i1� �si1
such that

�2
�i1� � �s0, . . . , ŝi1

, . . . ,sq+1,sq+2
�i1� � � 0” , �16�

then the growth can be continued to obtain a larger q+1-chain containing �1. The q+1-simplex
�2

�i1� has the set of boundary q-simplices

F2
�i1� � ��s0, . . . , ŝi1

, . . . , ŝ j, . . . ,sq+1,sq+2
�i1� �	, ∀ j � �0, . . . î1, . . . q + 1� , �17�

along with �s0 , . . . , ŝi1
, . . . ,sq+1 , ŝq+2

�i1� �. �1 and �2
�i1� then share the single q-simplex along their

boundary

��i1� � �s0, . . . , ŝi1
, . . . ,sq+1, ŝq+2

�i1� � , �18�

and the boundary of the q+1-chain �1+�2
�i1� consists of the set of q-simplices

F0 � F1 � F2
�i1� − ��i1�. �19�

Again, we could stop the growth here along the i1th branch.

If for a given i1, there is an i2� �0, . . . , î1 , . . . ,q+1� such that there exists an sq+3
�i1i2��si1

,si2
such that

�3
�i1i2� � �s0, . . . , ŝi1

, . . . , ŝi2
, . . . ,sq+1,sq+2

�i1� ,sq+3
�i1i2�� � 0” , �20�

then we may continue the growth in the i1i2 branch. The q+1-simplex �3
�i1i2� consists of the set of

q-simplices on its boundary

F3
�i1i2� � ��s0, . . . , ŝi1

, . . . , ŝi2
, . . . , ŝk, . . . ,sq+3

�i1i2��	, ∀ j � �0, . . . , î1, . . . , î2, . . . ,q + 2� , �21�

along with �s0 , . . . , ŝi1
, . . . , ŝi2

, . . . , ŝq+3
�i1i2��. �2

�i1� and �3
�i1i2� then share a single q-simplex along their

boundary

��i1i2� � �s0, . . . , ŝi1
, . . . , ŝi2

, . . . , ŝq+3
�i1i2�� . �22�

The boundary of the q+1-chain �1+�2
�i1�+�3

�i1i2� then contains the set of q-simplices

F0 � F1 � F2
�i1� � F3

�i1i2� − � . �23�
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In this manner, we may carry on the growth of the q+1 chain along each branch up to the
point desired or until it cannot be grown further. For a finite simplicial complex this will end in a
finite number of steps. The final q+1-chain is

� � �1 + � 

i1�G1

��2
�i1� + 


i2�G12

��3
�i1i2� . . . ��� , �24�

whose boundary contains the set of q-simplices

F � F0 � �F1� �
i1�G1

F2
�i1�� �

i2�G12

F3
�i1i2� . . . ��� − � , �25�

where

� � � �
i1�G1

��i1�� �
i2�G12

��i1i2� . . . �� , �26�

and G1 is the set of i1, G12 the set of i2’s in the i1 branch, etc. Important in this growth is the set
� which has been “removed” from the boundary of �. We illustrate this for the simple case of the
growth of a 2-chain from a 1-simplex in Fig. 4. We will now use this growth process to eliminate
the set � of q-simplices which have volume O�Vc� or are “thin.” We will say that �s0 , . . . ,sq�
�0” is thin if ∀x� �s0 , . . . ,sq�, v�x�=O�Vc� and “fat” if there exists a maximal element x
� �s0 , . . . ,sq� such that v�x��Vc.

Claim 10: For every F0��s0 , . . . ,sq� such that vol�s0 , . . . ,sq�=O�Vc��0” , there exists, with
high probability, a q+1-chain � grown from F0 as in Eq. (24) with boundary made up of the set
of q-simplices F as in Eq. (25), all of which correspond to fat sets, save F0 itself.

Proof: Since �s0 , . . . ,sq� is thin, with probability P�q+1��1−P1 there exists an msq+1
which

lies in the future of a maximal event in �s0 , . . . ,sq�. This follows from Claim 4. By set inclusion,
�s0 , . . . ,sq ,sq+1�� �s0 , . . . ,sq� and moreover, �s0 , . . . ,sq ,sq+1��0” by transitivity, so that

�1 = �s0, . . . ,sq,sq+1� � 0” . �27�

This is the first stage of the growth process. Now, if there exists no i1 such that
�s0 , . . . , ŝi1

, . . . ,sq+1� is thin, then we may stop the growth process. The boundary of ���1 is made
up of the set of q-simplices F1�F0 �15� which are all fat, save F0.

Assume otherwise, i.e., let there be an i1�q+1 such that �s0 , . . . , ŝi1
, . . . ,sq+1� is thin. With

probability P�q+2��1−P1, there exists an msq+2

�i1� which lies to the future of a maximal event of
�s0 , . . . , ŝi1

, . . . ,sq+1�, such that

�s0, . . . , ŝi1
, . . . ,sq+1� � �s0, . . . , ŝi1

, . . . ,sq+2
�i1� � � 0” , �28�

so that

FIG. 4. �Color online� The growth of a 2-chain from a 1-simplex.
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�2
�i1� = �s0, . . . , ŝi1

, . . . ,sq+2
�i1� � � 0” . �29�

Now, choose the maximal event such that msq+2

�i1� �msi1
. If such a choice of msq+2

�i1� is not possible,

then we have reached the end of the growth. Thus, we prevent ourselves from picking up a vertex
that we previously dropped along any given branch of the growth. Then ���1+�2

�i1� has a bound-
ary made up of the simplices �19�.

The total probability for msq+2

�i1� and msq+1
to both occur is then bounded from below by P�q

+1�P�q+2��1−2P1.
Again, if there exists no i2 such that �s0 , . . . , ŝi1

, . . . , ŝi2
, . . . ,sq+2

�i1� � is thin, then we may again
stop the growth process and � is the q+1-chain �1+�2

�i1� whose boundary is made up of the set of
q-simplices �19�, all of which are fat, save F0.

Since there are only a finite number of elements of M, this process must stop in a finite
number of steps. If the end of the growth along any of the branches yields a final msq+k

�i1i2. . .ir� such

that there exist sets �s0 , . . . , ŝi1
, . . . , ŝir

,sq+r
�i1. . .ir�� which are not fat, then this occurs with probability

P1�1. Thus, with probability greater than 1−rP1�1, a given “final” intersection along a branch
i1i2 , . . . , ir is fat. Since there is a maximum of N nonoverlapping regions, this is true along all of
the branches with probability�1−NP1�1.

The end result of this growth thus yields a q+1 chain � �24� whose boundary is a collection
of q-simplices �25�, which are all fat, save F0, with high probability. �

Lemma 4: There exists an isomorphism Hq�N�P���Hq�M� with high probability.
Proof: Let K��N�P� and K�N�I�. C0 is isomorphic to C0� since the vertices of the com-

plexes K and K� are the same, by Claim 8. Thus, B0�B0� and any z�Z0 lies in Z0� and vice versa,
and every z�B0 lies in B0�, thus satisfying the two requirements for an adequate subcomplex,
when q=0. Henceforth we assume that q�0. We show one by one that both requirements are
satisfied by N�P� with high probability.

�i� If z1�Zq and z1�Bq, then for z�=0” , z1−z��Bq and we are done. Also, if z1�Zq�, then
setting z�=z1 gives us z1−z�=0”�Bq and again, we are done.

Therefore, we only need to consider z1�Zq such that z1�Bq, z1�Zq�. Bq��Bq is then a strict

inclusion. Let z1=
�=1
r ��b̂q

���. Since z1�Zq�, there exists a ����0, such that b̂q
�����Bq�. Now,

b̂q
������ms0

, . . . ,msq
� is such that �ms0

, . . . ,msq
��0” is a void. If �ms0

, . . . ,msq
� is fat, then one has

a void of volume V�Vc which occurs with probability P0�1 and is hence unlikely. The prob-
ability that there are no voids of volume V�Vc to the future of � is then �1−NP0�1. Hence,
with probability�1−NP0 any such �ms0

, . . . ,msq
� is thin. From Claim 10, then with probability

greater than 1−NP1, there exists a q+1-chain � whose boundary �� is made up of fat q-simplices,

save for b̂q
����. Moreover, any fat q-simplex in Bq is, with probability 1−P0, a basis element of Bq�.

Since these sets are not independent, the probability for all the fat q-simplices to be basis elements
of Bq� is bounded from below by 1−r�P0, where r� is the number of all ���0, save one, and is

such that r��N. Thus, for any basis element b̂q
�����Bq�, with probability 1−N�P0+P1�−r�P0

�1 we can associate a q+1-chain � whose boundary �� is made up of basis elements that belong

to Bq�, save for b̂q
����.

Then z2=z1− �−1�q+1������Zq and z1−z2�Bq. Moreover, writing z2=
�=1
r ��b̂q

��� gives ���
=0. If this was the only basis element in z1 not in Bq�, then we are done. We may thus “weed out”

all the thin intersections in z1 iteratively, until we finally get a zk=
�=1
r ��� b̂q

��� such that all for all

���0, the b̂q
��� are fat.

Then, with probability of at least 1−N�P1+2P0��1 for every z1�Zq there is a z��Zq� such
that z1−z��Bq.

�ii� Let z�Zq� and z�Bq, i.e., z=�c1 for some c1�Cq+1. If c1�Cq+1� , then we are done. Let us
assume otherwise, i.e., c1�Cq+1�

� . Then Bq+1� �Bq+1 is a strict inclusion.
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Let c1=
�=1
r ��b̂q+1

��� �Cq+1. Then there exists a ����0 such that b̂q+1
�����Bq�. For a given

b̂q+1
������ms0

, . . . ,msq+1
�, according to Claim 10, with probability 1−NP1, there exists a q+2-chain

� whose boundary �� is made up of fat q+1-simplices, save for b̂q+1
����.

Let c2=c1− �−1�q+2������Cq+1. Clearly, �c1=�c2. Hence, as in �i� the thin simplices in c1

may be weeded out until one obtains a c� made up of only fat basis elements.
The analysis is similar to that in �i� and hence with probability greater than 1−N�P1+2P0�

�1 for every z�Zq� and z=�c1, c1�Cq+1, there is a c��Cq+1� such that z=�c�.
Thus, N�P� is an adequate subcomplex of N�I� and therefore by Lemma 13, H�N�P��

�H�N�I�� with probability 1−N�P1+2P0��1. Moreover, by Claim 7 H�N�I���H�M� with
probability �1−N�P1+P2�. Thus, the joint probability for H�N�P���H�M� is �1−N�2P1

+P2+2P0��1. �

VI. CONCLUSIONS

What can we conclude about the Hauptvermutung? For an appropriate inextendible antichain
A�C, our result states that there exists a wide range of thickenings Tn�A�, n�1 for which
Hq�N�P�� is isomorphic to Hq�M� with high probability. Thus, it is crucial to be able to identify
such an inextendible antichain in C. Assuming that it exists, and is unique, we have proven a weak
form of the Hauptvermutung, i.e., if � :C→M and �� :C→M� are two possible faithful embed-
dings, then Hq�M��Hq�M��.

The problem therefore lies in how to identify an A�C with which to perform such a test, i.e.,
one for which ��A��M is such that the required separation of scales may be satisfied. Roughly
speaking, for causets that embed into compact space-times, the largest convexity volume ṽ might
be expected for a Cauchy hypersurface with the smallest intrinsic and extrinsic curvatures. An A
that would lie in such a hypersurface might be obtained as follows: let nm�A� be the smallest
thickening scale of A such that there exists an mi�M�Tnm

�A� with all of A� I−�mi�. For any
causal set C pick the inextendible antichain AC with the largest value of nm�A�. We can then
perform the homology test on thickenings of AC. This prescription should work reasonably for
space-times for which there exists a scale V�Vc for which the intrinsic and extrinsic curvatures
are small.

However, it is not a priori clear that the required separation of scales is universal. For
example, if A satisfies this requirement in �M ,g�, then it is possible that it does not in �M� ,g��,
despite �� being a faithful embedding. In such a case, our method does not allow us to infer a
relationship between the homologies of M and M�.

In summary, a strict homology avatar of the Hauptvermutung would require us to pick an
appropriate A without any reference to the manifold. Further numerical work should help us
understand how stable the homology calculation is as we vary over the inextendible antichains in
a given causal set.14 A better understanding of how both intrinsic and extrinsic spatial geometries
are encoded in a causal set should also help resolve this question21 and would, moreover, bring us
closer to an understanding of how dynamical information is encoded in a causal set.
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APPENDIX: NOTATION

C Causal set
A Inextendible antichain
Tn�A� Thickening by n of an antichain A
M��mi	 Set of maximal elements in Tn�A�
Pi Inclusive past set of the maximal element mi in Tn�A�
P��Pi	 Collection of past sets Pi. P covers Tn�A�
Ai� Pi�A Shadow of the Pi onto A
A��Ai	 Collection of shadows Ai. A covers A
N�P� ,N�A� Nerves associated with P and A, respectively

 Bijection from N�P� to N�A�
I±�x� Chronological future/past of x
J±�x� Causal future/past of x
v Volume function with respect to a Cauchy hypersurface �

�v A v=const hypersurface

a A future directed nowhere vanishing time like vector field

�s� An integral curve of 
a which intersects � at s

v�s�=
�s���v The intersection of 
�s� with �v

��p�� I−�p��� Shadow of I−�p� onto �

�s�v�=I−�
v�s���� Shadow from an event on �v onto �

S Collection of shadows onto �

Sv= ��s�v�	 A locally finite �shadow� cover of �

Ii� I�� ,
v�si�� Interval between � and 
v�si� for fixed v
Iv��Ii� I�� ,
v�si��	 Collection of intervals Ii

I Collection of intervals between � and events with variable v
N�I� ,N�S� Nerves associated with I and S
ṽ Convexity volume of �

�x�v� Volume of largest interval from x�� to an event in �v

v0 Smallest v for which �x�v��Vc for all x��

P0 ,P1 ,P2 Probabilities defined in Eqs. �8�–�10�
N Compactness scale
Ii1. . .ik

� Ii1
� . . . � Iik

Shorthand for intersection of k intervals in I
Pi1. . .ik

� Pi1
� . . . � Pik

Shorthand for intersection of k past sets in P
�ms0

, . . . ,msq
� A q-simplex in N�I� ,ms0

�M
�s0 , . . . ,sq���ms0

, . . . ,msq
� Shorthand for a q-simplex in N�I�

�s0 , . . . ,sq�� Is0. . .sq
The corresponding set intersection of q intervals in I
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