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1. INTRODUCTION

ANHARMONICITY of vibration plays an important role in several branches
of physics. Its importance was first recognised in acoustics!; the presence
of overtones of the fundamental mode of a tuning fork and the alteration of
its pitch with intensity changes were successfully accounted for as the effects
of the anharmonicity of the oscillator. More recently, the subject has
acquired a fresh interest in relation to the subject of molecular spectroscopy.?
The thermal expansion® of crystals also owes its origin to the anharmonic
nature of the vibrations inside a crystal lattice.

It is the object of the present note to give an exact treatment of the
classical problem of the anharmonic oscillator and also to draw attention to
certain of its features which by an appeal to the Correspondence Principle
lead to the results of wave mechanics. In Section 2, exact expressions have
been given for the shift in the mean position of the oscillator from the origin,
its frequency and the amplitudes of the different harmonics. In section 4,
the eigenvalues of the oscillator are determined by using the W.K.B. method.
It is shown that these are the solutions of a transcendental equation involving
elliptic functions and that the first correction to any energy level of the system
from its harmonic oscillator value is identical with the one obtained from the
perturbation theory. '

2. THE CLASSICAL PROBLEM

Let m denote the mass of the oscillator and x be its displacement. The
potential energy of the system may be expressed as

V = $hux® + a3y ko o

We stop with the cubic term of the expansion since this is sufficient to explain
most of the observed features of the spectra of diatomic molecules. Further,
we take the constant k, to be negative in accordance with the conventions
of molecular spectroscopy.
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The equation of conservation of energy for the oscillator is

-

Imit - hx + ikt =h 2
where  is the energy of the system.
Or,
T — (A~ wix? + dax?t e
where
A=%; co2-—:h and 4a=—1€3.
m m 3m

Before proceeding further, we consider the roots of the expression
F(x) = (dax® — w2x% + A) @

which define the regions wherein the right-hand side of (3) is real. The dis-
criminant of the cubic, namely (G2 + 4H?), is equal to

64Aa? (4Aa.2 27

and this will be negative as long as

Aa?
“wb < 108 108 ©)

When this condition is satisfied all the three roots of f(x) = 0 are real,
and two of them will be positive and the remaining one negative. Denoting
these roots by x;, x, and x; where x; > x, > x;, we have

£ =4da (x — ) (x — xp) (x — Xp). ©

Now {f(x)}} is real in two cases, viz., (i) when x > x,, or (ii) when x
lies in the region x, = x > x,.

For x > x;,* the force acting on the molecule becomes repulsive and it
increases with increasing distance of the oscillator from the origin. The
vibrations in this case are unstable and the oscillator flies off to infinity within

* The solution in this case is given by x = x5 - (x; ~ xy) nc® (u, k). Since cn (u, k) has
zeros at points # = (2rn + 1) K, where # is an integer, the displacement is infinite at these points. -
Thus within a period ¢ = /& after crossing the point x;, the molecule dissociates.
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a short period after crossing the point x,. In other words, when the inter-
nuclear distance of a diatomic molecule exceeds its equilibrium value by an
amount x;, the molecule will dissociate.

The vibrations in the region x, > x > x; are stable and retain in a
measure the characteristics of a harmonic oscillator. - Writing
Alg

T=b—‘
ws ’

the roots of f(x) = 0 are approximately
=& (1 — 1672 — 51274)

VA

xg= Y2 (1 4 27 + 1072 + 64+ + 224+9)

Xp= — L/é (1 — 27 + 1072 — 6413 + 2244), )

The above relations were derived by using the bionomial expansion in
the expressions for the roots of the cubic, assuming that = is small. One can
however easily verify by substitution that they satisfy the equation f(x) =0
upto terms of the order of w=?. Equation (3) can now be written as

1 dx
"Tawe) G G- = ®)

The right-hand side of the above equation is an elliptic integral and its

value? is
_1(\/x——x3 xz—xs).
2’\/0 '\/xl — X3 Xg —X g X3 — Xg

Hence writing # = va (x; — x5) ¢ and

__ (xa — x3)
et = (%1 — x3)°

we get the wellknown solution

x = Xy + (x5 — X3) sn®(u, k). )

Given the energy of the oscillator, the above equation determines its
complete course in time.
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In view of their periodicity prdperties, the Jacobian elliptic functions

admit of expansions as Fourier series. For the function sn? (, k), we have
the following expansion® (see Whittaker and Watson, p. 520, example 5):

(k) = (kK) G
-2 Z aT=™ cos 2ny} (10)

7r .

K and E are the complete elliptic integrals of the first and second type
which in terms of hyper-geometric functions are defined by

where

K=3FG11; k)

and ¢ is a parameter which is related to the modulus % of the elliptic function
by means of the formula

g= e+ 28+ 15& 4 1502 - 0 (¢27) (13)
where again
e — 1— K
T+vE
and
B =1 — k»t.

Substituting (10) in (9) we get

x=x3+(~’}%‘—3)[K<K—E>

— 22 Z T = 7 cos 2ny] (14)

Equation (14) shows that the displacement of the oscillator is no longer
a simple sinusoidal function, but contains a constant term and harmonics
of the fundamental mode. The coefficient of #in 2y namely (#/K) v/a (x; — x3)
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%ives the circular frequency of the system. Denoting this by &, we have there-
ore '

w=%m (15)

The shift <x» in the mean position of the oscillator is given by the constant
term of the expansion (14) and is equal to

(x2 — x3) (K — E)

X3 -+ KEk2 : ' (16)
The amplitude of the nth harmonic is proportional to
nq™
T—=q¢ (17
In particular the intensities of the first three harmonics are in the ratio
¢ . _4¢ . 9 (17a)

I—¢9 " 0—-¢?  (d—-¢"

Equations (15) and (16) express the frequency of the oscillator and its
mean shift as functions involving elliptic integrals. We shall now obtain
approximations for these which are useful for appreciating their physical
magnitudes as well as for comparison with earlier work.

The following expansions now hold good for k2, K, (K —E) and
Ao (% — x;) when 7<L1:
k? = 87 (1 — 47 + 5072 — 33673 4- 36947%)

K =3 (1 + 27 4 7% 4 7879

Va(x, — x5 = %(1 + 27 — 1472 + 48+3)

(K —E) =271 — 7+ 417 — 80-5+39). (18)

Substituting (7) and (18) in (15) and (16), one finds after some simplifica-

tion that the change in frequency of the oscillator and its mean displacement
from the origin are approximately given by

— 15402

@ — )= ——— (19)
225 A%

o  =3he 2 AL 20)

respectively. The reader can easily se¢ these to be the same as the expressions
given in books on aconsticy,



208 , K. S. VISWANATHAN

3. SoME REMARKS

'We shall now consider how the frequency and mean shift of the oscil-
lator get modified when the energy of the system is altered. Remembering
that the quantity A occurring in equations (19, 20) is a constant multiple

(2/m) of the energy % of the system, we get on differentiation of (19) with res-
pect to & that

dv — 15a2

fAl— (2}
where

<t
I

Ve

Thus to an approximation which ignores terms of the order of 4, we see
that the frequency of the oscillator is a decreasing function of the energy,
the rate of decrease being a constant characteristic of the oscillator.

From (21) it follows that the change in the frequency of the system as
its energy is increased from ¢; to e, is

— 15q2
e (72— -

Writing €, = (v + 3/2) hv and ¢; = (v + %) Av, we see that this is equal to
— 15a2

ama® Y
or
:_5 kzzh'll
45 7 (mk,

which is the value given by the perturbation theory.® Hence in this case
even a semi-classical theory is able to give the correct results yielded by wave-
mechanics.

Differentiating now (20) with respect to %, one finds that

dwo 6 900a®
dﬁx - mZ»‘ T (mwg)2 h (22)

which shows that the mean shift of the oscillator increases with rise in the
gnergy of the system, |
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As before, the magnitude of the shift in the vth state may be obtained
by writing €, = (v + %) Avin (20). 'We have

3ah 225 h%ad
W= 0+ + 5 s 0 + D (23)

ki
From the above, it is possible to obtain the stretch (or contraction) in
the bond-length of a diatomic molecule during a transition between two differ-
ent quantum states specified by the numbers v and v’ respectively. This is
given by

3ah , , 225 h2d ' '
s @™ T g (0 =0 0 o+ ) 24)

4. THe ENERGY LEVELS

The Schrodinger equation for the oscillator is given by
d*u | 8n’m
2t g (e=Vu=0 @25)

where V has the form given in (1). A method for determining the eigenvalues
of an equation of the above type was developed by Wentzel, Kramers and
Brillouin, and this was later refined by Langer.” According to the latter,
if x, and x, are two consecutive simple zeroes of ¢ — V (x) such that e >V
for x > x3, and €<V for x > x,, the eigenvalues of (25) are determined by

(n+Pm= f%{g’,’;’" (e — V)}” dsx. (26)

o3

Writing A = 2¢/m, the gbove equation becomes

(4 Hr =271 | @)
where

I= fz (4ax3— w2x2 + A) dx.

The integral I has been evaluated in Appendix I and substituting the
value given for it there in (27), one gets

(n -+ h =% vy {— (K= B)[£(x — %]

+ 11 (1 + 12 K} (8)
w][wre N = (x§ - x§) an@ "[g = (xl - xg)a
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The quantities occurring on the right-hand side of the above equation
are all functions of e and hence by solving this transcendental equation for
different integral values of n, the eigenvalues €, €,........ ep, of the oscil-
lator may be determined.

In practice, equation (28) can be solved by expressing the right-hand side
as a power series in the parameter = which will result in a series expansion in €
and then inverting the series. For example, by making use of the expansions
(7) and (18) and further of the following relations

wt

Z(Xa— X)) =533 (29)

me (o + 1) = VAL (1 4 127 — 142 4 24059

it can be seen that (28) is equivalent to
A 15 .
(n+ B h=2m- (1+772 +0(74)). (30)
Or, writing a = — ky/12m, o =2mv and A =2e¢/m we have

(n+Dhy = E_{__S__ﬁi_ez
967y (mk o)t < -

Hence
5 ky%h?
e=@+Phy— g a1+ 37 3D
which is the eigenvalue of the oscillator as obtained from the perturbation

theory correct to the second order. By expanding (25) still further than in
(27), one can obtain higher order corrections.

The author’s grateful thanks are due to Professor Sir C. V. Raman for
his kind interest in this work.

SUMMARY

Exact expressions have been obtained for the frequency of an anhar-
monic oscillator, the shift in its equilibrium position from the origin and for
the amplitudes of its different harmonics. 1t is shown that the frequency
of the oscillator is a decreasing function of the energy and that some of the
results of wave-mechanics can be obtained from the classical theory by substi-
tuting in the classical energy of the oscillator the different energy values of
a harmonic oscillator. The eigenvalues of the oscillator are determined by
using the W.K.B. method. The classical theory of a Morse oscillator hag
similarly been worked out in Appendiy II,
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APPENDIX 1

Evaluation of the integral I = f'zx/ 4ax® — wix? + A dx.

Obviously we have

I= f 24/a fox St (1)

{x —x) (% — x) (x — )

If we substitute (x — x;) = y? in the above equation and denote by Qn
the integral

v"h
J‘ xMdx
V(x2 —1p) (x* — 19

where 7, = (x; — ;) and 5, = (x; — x;), equation (1) takes the form

I =(pQs + qQ4 + rQz + 5Qy) )

where
p=4+a:
_ 2
q=va(12% - %)

r= \/E( 12x,2 — Zw:x”) ; and

s = %(4%3 — wx,? + A).

Since x; is a root of f(x) = 0, the constant s in the above is equal to zero.

The integrals Qun can be evaluated by reduction formule. For example,

_ 3x2 Q st
*vQ + 373

where

Q= V& —n) x* —n9)-
If we integrate this equation between 0 and n,}, the left-hand side vanishes
and we get

Qu =5 (4aQ = 3Qy @
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where
a = (y; + 79 and b = 17,
Similarly
Q4 = $(20Q, — 5Qy).
Substituting (3) and (4) in (2) we get after some reduction that

I=—r \/a{zQ2 (%12 + %32 + x50 — abQy}.
Now
e (x _ X
0 J VQ V'

Next by the substitution x = z 4/x,, we find that

i
z%dz

Q= vnz =290 —kDp

where

kr =Tt
N2

Or Qg—v_jsnz(u k) du = /7, (K — E).

Substituting (6) and (7) in (5), one. gets

=2 vam {— Z£(n — %) (K —E) + . (m + 0 K}
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(4)

(5)

(6)

(7)

®)



APPENDIX II

The potential (1, Section 2) is valid, when the vibrations are small but
nevertheless depart from harmonicity. Apart from its applications in
acoustics, it is useful in studying anharmonicity in complex molecules when
one splits their vibrations into those of an assembly of anharmonic oscillators.
For diatomic molecules however Morse® suggested a potential given by

V=D( — ef%)? 1
where D is the dissociation energy of the molecule and B is a constant, which
holds good approximately upto the dissociation range. The quantum mecha-
nical energy values of an oscillator moving in a potential field of the type (1)
was given by Morse. 'We give below the classical theory of such an oscillator

which merits attention in view of its extreme simplicity and for purposes of
comparison with the quantum theory.

The equation of energy for the Morse oscillator is
Imit+ D1 —efO)2 =} )

where as before 7 denotes the energy of the system. Hence

it =c+ by +ay* ©)
where
2 = . _ 4D, __ —2D
cz;l(h_D)’ b——-—n?, a——--—~m
and y = eF%, 4)

¢ can immediately be seen to be negative.
The turning points for the oscillator in its course are — 1/8log (1 +

+/h/D) and — 1/Blog. (1 — +/hD). 'We shall measure time from the instant
the oscillator is at its extremity in the left.

From (3) and (4) we get

_ 1 dy 5
t= ny\/ayz—l—by-f-c )
or bt
_ 1 , by +2 6
Bt_\/——c cos™ Y5 — g )

#i4
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Hence we have

_1 D 1, _|r 2 =
x—-ﬂlog (—D—_—B—!—Flog {1 Jﬁcosﬁtdﬁ(D—h)}(n
The above equation determines the course of the oscillator with time.

From (7) it is immediately obvious that the frequency of the gravest
mode is given by

$=2£1T,\/%(D—l—:) @ )
|
=v(1—%) 8 b
where
, B [J?D.
=5l

v will be the (harmonic oscillator) frequency of the system when the anhar-
monic terms in the expansion of (1) as a power series in x are neglected.

The eigenvalues of a Morse oscillator are

En=Mn+Dhv—z(n+H*hv )
where
7= % - i%‘ | (10)

The frequency of emission of the oscillator during a transition from the
nth state to the one immediately below it is given by

Vn, n-1 = Vnem =V (1 - 2’12)

-
=v{z+\/l—_—%%—”—} (11 )
from (10).

Similarly the frequency of absorption from the nth state is given by

1 = vpgn = v {— 2+ \/1_%&}. (11 5)

Equation (8 ») shows that the frequency of the classical oscillator is
a decreasing function of its energy. The dependence of the frequencies of
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emission or absorption on the transitional energy levels is likewise described
by (11 a) and (11 &). Apart from the first term which is a consequence of
the quantum phenonmenon that has no classical analogue, namely, that the
molecule possesses a zero-point energy and on the non-linear dependence of
the energy levels on the quantum numbers, the formula (11) possess a striking
resemblance to the classical formula (85). In fact (v,%° + »,8™)/2
depends on the energy of the nth level in the same way as the classical fre-
quency does with the energy of the system. When the energy equals its dis-
sociation value the discrete spectrum stops for the oscillator.® Classically
its frequency then vanishes.

In order to find out the shift in the mean position of the oscillator and
the amplitudes of the different harmonics, we express x as a Fourier cosine
series in the form

X =ay,+ E;'o ay, COS Hu (12)

n=1

where u = 2% ¥t. Then

3

-—Blog _——5+2ﬁflog(l ,\/-cosu

I

1 D __1 A
h
1+,/1-2
= 3log 3 —54,——’3 . (13)
1—2
D

From the above it follows that the shift in the mean position of the
oscillator increases with the energy of the system and tends logarithmically
to infinity when the energy approaches its dissociation value.

Next we have

=L,8f log (1 — «/gcosu) cos nu du. (149)

The integral may, be evaluated by expanding the logarithmic function as
a power series, and integrating term by term the resulting series which can be
seen to be uniformly convergent for all values of  in (—=, n). Thus one gets
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2s
M= B s=n/2 (D) 2S22s_ (25—’1) (15 a)
2

for even values of » and
25+1/2 1 2S + 1
w= " c-n-—1l2 (D) m (?ig_i’l_t_lz) (15 b)
2

for odd values of n.

The above formule give the law of dependence of the amplitudes of the
various harmonics on the energy of the oscillator. One notices that the

amplitude of the nth harmonic is of the order of (#/D)™2.



