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We analyze Hawking evaporation of the Callan-Giddings-Harvey-Strominger black holes from a
quantum geometry perspective and show that information is not lost, primarily because the quantum
space-time is sufficiently larger than the classical. Using suitable approximations to extract physics from
quantum space-times we establish that (i) the future null infinity of the quantum space-time is sufficiently
long for the past vacuum to evolve to a pure state in the future, (ii) this state has a finite norm in the future
Fock space, and (iii) all the information comes out at future infinity; there are no remnants.
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In his celebrated paper [1], Hawking showed that in
quantum field theory on a fixed black hole space-time the
vacuum state at past null infinity I� evolves to a thermal
state on I�. Thus, in this external field approximation,
pure states evolve into mixed; information is lost. Hawking
also drew a candidate Penrose diagram including back
reaction and suggested that information loss would persist.
There has since been a large body of literature on the issue
using diverse methods, models and approximations. More
recently, the anti–de Sitter/conformal field theory conjec-
ture has been used to argue that information cannot be lost.
However, this reasoning requires a negative cosmological
constant and even in that case a space-time description of
the evaporation process is still lacking.

In this Letter we analyze the issue of information loss
using the 1� 1 dimensional Callan-Giddings-Harvey-
Strominger (CGHS) model [2]. The model is well suited
because it shares most of the conceptual complications of
realistic four-dimensional black holes but is technically
simpler to analyze. Therefore it drew a great deal of
attention in the early nineties (see, e.g., [3] for excellent
reviews). Although a firm conclusion could not be reached
due to limitations of semiclassical methods that were used,
partial results suggested to many authors that information
is probably lost.

Our analysis is motivated by the fact that quantum
geometry leads to resolution of spacelike singularities in
a number of simple models (see, e.g., [4]). This resolution
provides an entirely new perspective on the problem [5].
Much of the older discussion assumed, as Hawking did,
that the future boundary of the relevant space-time consists
not just of I� but also a piece of the initial classical
singularity (see Fig. 1). Since part of the ‘‘in’’ state falls
into the singularity, it is not surprising that the ‘‘out’’ state
at I� fails to capture the full information contained in the
in state at I�. By contrast, if the singularity is resolved,
this potential sink of information is removed. We will argue
that in the quantum extension of the classical CGHS space-
time, I� is long enough to register all the information
contained in the in state. Although our considerations are

motivated by loop quantum gravity, in this Letter we will
use the more familiar Fock quantization since the main
argument is rather general.

Classical theory.—Fundamental fields of the CGHS
model are the space-time metric g, a dilaton � and a
massless scalar field f. The action is given by
 

S�g;�; f� �
1

G

Z
d2Ve�2��R� 4gabra�rb�� 4�2�

�
1

2

Z
d2Vgabrafrbf; (1)

where R is the scalar curvature of g and � is a constant
(with dimensions of inverse length). Let M0 � R2 and fix
on it a Minkowski metric �. Denote by I0� its null infinity.
We will be interested in physical metrics g which approach
� at I0�. Denote by z� the advanced and retarded null
coordinates of � so that �ab � �@�az�@b�z� and set @� �
@=@z�. Finally, set

FIG. 1 (color online). A Penrose diagram of an evaporating
CGHS black hole, motivated by [1]. Information can be lost in
the singularity represented by the wiggly line.
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 � � e�2� and gab � ��1��ab � ��ab: (2)

Our fundamental fields will be �, �, f. They satisfy:
 

��g�f � 0, ����f � 0 @�@��� �2� � GT��

�@�@� ln� � �GT�� (3)

and
 

�@2
��� @��@� ln� � GT��

�@2
��� @��@� ln� � GT��

(4)

where T��, T��, T�� are the z� components of the stress
energy tensor of f. If (4) are imposed at I0�, they are
propagated by (3). Therefore we will refer to (3) as dy-
namical equations and ensure that (4) are satisfied by
choosing appropriate boundary conditions at I0�. In the
classical theory T�� vanishes identically but in quantum
theory it is nonzero because of the trace anomaly.

Because f satisfies the wave equation on (M0, �), it can
be naturally decomposed into left and right moving modes
f��z��. In the sector of the theory of interest to us, f� � 0
and a black hole forms because of the gravitational col-
lapse of f� (Fig. 1). To express the solution explicitly, it is
simplest to use coordinates x�:

 �x� � e�z
�
; and �x� � �e��z

�
: (5)

Then, for any given f�, the solution satisfying the appro-
priate boundary conditions at I0� is given by [6]:
 

� � ��2x�x�

� � ��
G
2

Z x�

0
d �x�

Z �x�

0
d��x��@f�=@��x��2

�
G
2

Z x�

0
d �x�

Z �x�

0
d��x��@f�=@��x��2: (6)

This brings out the fact that the true degree of freedom lies
just in the matter field f; the geometry and the dilaton is
determined algebraically from f. (The term containing f�
vanishes classically but is important for quantum consid-
erations that follow.)

The solution is regular on all of M0. How can there be a
singularity and a black hole then? To answer this question
let us examine the physical metric gab � ��ab �
��1��ab. Now, although � (and hence gab) is a well-
defined tensor field on all ofM0, � vanishes on a spacelike
line. Along this line gab also vanishes and its curvature
becomes infinite. Thus � � 0 is the singularity of the
physical metric g. Is this a black hole singularity? Right
null infinity I�R of g is a proper subset of I0�

R (of �) [3].
However detailed analysis shows that it is complete with
respect to g and its past does not contain the singularity.
Thus the singularity is hidden behind a horizon with re-
spect to I�R . However, left null infinity I�L is incomplete to
the future. So, strictly, we cannot conclude that we have a
black hole with respect to I�L [7]. Fortunately, I�L does not
play a direct role in the analysis of the Hawking effect and
information loss.

Quantum theory.—Consider the space of all classical
solutions. If f � 0, the manifold M�g� on which the physi-

cal metric g is well defined is a proper subset ofM0, which,
however, varies from solution to solution. Therefore, the
appropriate arena is the manifold M0 defined by the fidu-
cial �. This suggests that we represent f̂� as an operator
valued distribution on the Fock space F� �F� associ-
ated with (M0, �) and define �̂ and �̂ also on this Hilbert
space. Since f� � 0 classically, the quantum sector of
interest is spanned by states � of the type jCf0i� � j0i�
on I0�, where f0 is any suitably regular profile of f� and
Cf0 the coherent state in F� peaked at f0. The span of
these states is F� � j0i�.

We will use the Heisenberg picture. The operator ĝab �
�̂�ab will define the quantum geometry on M0. The basic
operators f̂ � f̂� � f̂�, �̂, �̂ must satisfy the operator
version of dynamical Eqs. (3) and appropriate boundary
conditions at I0�. More precisely, detailed considerations
imply that a mathematical quantum theory of the model
would result if we can (i) solve (3) for operators f̂, �̂, �̂,
where T�� is replaced by the trace anomaly T���ĝ� de-
fined by the conformal factor �̂; and, (ii) ensure that at
I0�, �̂ and �̂ are given by the operator versions of (6),
with �@f�=@��x��2 replaced by :�@f̂�=@��x��2:, where the
normal ordering is defined by �. [Operator versions of
(4) are then automatically satisfied at I0�.] It is likely
that this framework can be made fully rigorous along the
lines of the Dütsch and Fredenhagen [8] approach to
interacting fields in Minkowski space-time.

The key physical questions are (i) in the solution, are �̂
and �̂ well defined everywhere on M0? (ii) Does the
operator valued distribution �̂ vanish anywhere? If it did,
the quantum metric ĝab � �̂�ab could be singular there;
and, (iii) what is the physical interpretation of the
Heisenberg state in the quantum geometry of ĝab? The
third question is crucial for extracting physics from the
mathematical framework. While proposals of formulating
the quantum theory in terms of operators have appeared in
the literature (see, e.g., [9]), to our knowledge our specific
formulation is new and the third question, in particular, had
not received due attention. In the rest of the Letter we will
introduce two approximation schemes to answer these
questions. These schemes will also shed light on the exact
framework.

Bootstrapping.—Although the quantum versions of the
dynamical Eqs. (3) form a closed hyperbolic system for �̂
and �̂, they are difficult to solve exactly. To develop
intuition for the quantum geometry that would result, it is
instructive to simplify this task by a bootstrapping proce-
dure. Begin with a seed metric ĝ0 and use it to calculate the
trace anomaly T̂��, feed the result in the right side of the
quantum dynamical equations, solve them, and denote the
solution by �̂1, �̂1, and ĝab1 . In the second step, use ĝab1 as
the seed metric and continue the cycle in the hope of
obtaining better and better approximations to the closed
system of interest.
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Let us begin by choosing ĝ0 � �. Then, the first cycle
can be completed. The solution on all of M0 is �̂1 �

��2x�x� and �̂1 � �̂1 �
G
2

R
x�
0 d �x�

R
�x�
0 d��x�:

�@f̂�=@��x��2:� G
2

R
x�
0 d �x�

R
�x�
0 d��x�:�@f̂�=@��x��2:, where

normal ordering is defined by �. How does this truncated
solution fare with respect to the key physical questions? �̂1

happens to be a c number and �̂1 can be shown to be an
operator valued distribution in a well-defined sense. They
are regular everywhere on M0 whence the quantum ge-
ometry determined by ĝab1 is also regular on all of M0

already at the first approximation. The expectation values
�1 :� h�̂1i and gab1

:� hĝab1 i turn out to reproduce just the
classical solution �class and gabclass given by (6). In particu-
lar, gab1 vanishes along a spacelike line and its Ricci scalar
diverges there. However, one can also calculate the fluctu-
ations of ĝab1 (after suitable smearings since it is an opera-
tor valued distribution) and they are very large near that
line. Therefore, the expectation value is a poor representa-
tion of quantum physics which is perfectly regular there.

The answer to the third physical question is even more
interesting. We know that the quantum state of f̂� is
simply the vacuum state j0i� on (M0, �). The question
is, what is its physical interpretation on the space-time (M1,
g1) that results at the end of the first cycle? Following [1],
one can carry out detailed analysis at late times. There are
again two conceptual elements: (i) Since y�1 defined by the
asymptotic time translation on g1 is nontrivially related to
z�, there is positive and negative frequency mixing be-
tween modes of f̂� defined using z� and those defined
using y�1 ; and, (ii) since gab1 � gabclass, its right future null
infinity I1�

R is a proper subset of I0�
R of �ab. Hence, one

has to trace over modes in I0�
R � I1�

R . The result is that for
the algebra of observables in (M1, g1), j0i� reduces to the
density matrix �̂1 :� �const� exp��Ĥ, where � �
2�=@�, and Ĥ is the Hamiltonian of f̂� at I1�

R . Thus, at
this order one recovers the Hawking effect.

To summarize, the regular quantum geometry of ĝ1 does
not define some exotic sector of the theory, but has the right
physical content. Since �̂1, �̂1, ĝ1 is an exact solution to
the truncated version of full quantum equations, it provides
useful intuition for the nature of quantum geometry in the
full theory. The next step in the bootstrapping is to start the
second cycle using ĝ1 as the seed metric. Unfortunately,
the resulting quantum equations are now almost as difficult
to solve as the exact ones. There is, however, another
approximation that is well suited for analyzing the issue
of information loss, which we now introduce.

Mean field approximation (MFA).—Rather than using a
seed metric, let us return to the closed system of exact
quantum dynamical equations, take their expectation val-
ues, and solve the resulting equations in the mean field
approximation, i.e., by replacing expectation values of the
type hF��̂; �̂�i by F�h�̂i; h�i�. Viability of this approxi-
mation requires a large number N of matter fields so that
quantum fluctuations �̂ and �̂ can be neglected relative to

those in the matter fields. This large N approximation has
been examined in some detail in the literature [3,10] and
initial data near I0� have been evolved numerically.
Examination of marginally trapped surfaces in the result-
ing solutions shows that the Bondi mass at right null
infinity of the mean field metric steadily decreases (essen-
tially) to zero due to quantum radiation. This was often
taken to mean that one can attach to the numerically
evolved space-time a ‘‘corner’’ of flat space as in
Hawking’s original guess (see Fig. 1). However, a defini-
tive statement could not be made because, even when N is
large, fluctuations of geometry become dominant in the
space-time interior making MFA invalid there.

Our new observation is that the key to the information
loss issue lies in the geometry near future infinity and MFA
should be valid there. Thus, we will assume that (i) the
exact quantum equations can be solved and the expectation
value �gab of ĝab admits a smooth right null infinity I�R
which coincides with I0�

R in the distant past (i.e., near i0R);
(ii) MFA holds in a neighborhood of I�R ; and, (iii) the flux
of quantum radiation vanishes at some finite value of the
affine parameter y� of I�R defined by the asymptotic time
translation of �g. All three assumptions were standard in
previous analyses. Indeed, one cannot even meaningfully
ask if information is lost unless the first two hold.

A priori, I�R may be only a proper subset of I0�
R and no

assumption is made about i� of �g. However, existence of
I�R implies that as we go to large z� values along constant
z� lines, �� :� h�̂i and �� :� h�̂i admit asymptotic ex-
pansions of the form
 

�� � A�z��e�z
�
� B�z�� �O�e��z

�
�;

�� � A�z��e�z
�
� B�z�� �O�e��z

�
�:

(7)

The MFA equations determine A and B in terms of A and B.
Furthermore, y� adapted to the asymptotic time translation
of �g is given by � exp��y� � A. Finally, the MFA equa-
tions imply that there is a balance law at I�R :

 

d
dy�

�
dB
dy�
� �B�

N@G
24

�
d2y�

dz�2

�
dy�

dz�

�
�2
��

� �
N@G

48

�
d2y�

dz�2

�
dy�

dz�

�
�2
�

2
: (8)

It is natural to identify the quantity in square brackets on
the left side as GmB, where mB the Bondi mass, and the
right side as the energy flux at I�R . These definitions have
the desired properties that the energy flux is positive defi-
nite and mB vanishes in flat space (which is an MFA
solution). The first two terms in the expression of mB yield
Hayward’s formula [11] of Bondi mass in the classical
theory; the third term is a quantum correction.

A key question now is how large is I�R compared to
I0�
R ? By assumption they coincide in the distant past near
i0R. One can show that y� � Cz� �D (with C, D con-
stants) on the entire future region of I�R where the quantum
flux vanishes. Hence I�R � I0�

R (see Fig. 2). This implies
that to interpret j0i� at I�R we no longer have to trace over
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any modes; in contrast to the situation encountered in our
bootstrapping discussion, all modes of f̂� are now acces-
sible to the asymptotically stationary observers of �g. The
vacuum state j0i� of � is pure also with respect to �g.

But is it in the asymptotic Fock space of �g? Calculation
of Bogoluibov coefficients shows that the answer is in the
affirmative because y� � Cz� �D in the future and
boundary conditions imply that y� approaches z� expo-
nentially quickly in the distant past. Thus, the interpreta-
tion of j0i� with respect to �g is that it is a pure state
populated by pairs of particles at I�R . There is neither
information loss nor remnants whose quantum state is
correlated with the state at I�R .

Summary.—A key simplification in the CGHS model is
that the matter field satisfies just the wave equation on (M0,
�ab). Therefore, given initial data on I0�, we already
know the state everywhere both in the classical and the
quantum theory. However, the state derives its physical
interpretation from geometry which is a complicated func-
tional of the matter field. We do not yet know the quantum
geometry everywhere. But already at the end of the first
cycle of bootstrapping we found that ĝab1 is well defined
(and nowhere vanishing) everywhere on M0. So it seems
reasonable to assume that the full ĝab would also be
singularity-free. To pose questions about information
loss, one has to assume that its expectation value �g admits
future right null infinity I�R which, a priori, may be only a
portion of I0�

R of �. But then the MFA equations imply
that I�R in fact coincides with I0�

R and the exact quantum
state j0i� is a pure state in the asymptotic Fock space of
�gab. The S matrix is unitary and there is no information
loss. The Penrose diagram (Fig. 2) we are led to is signifi-
cantly different from that based on Hawking’s original
proposal (Fig. 1). In particular, the quantum space-time

does not end at a future singularity and is larger than that in
Fig. 1. The singularity is replaced by a genuinely quantum
region and, in contrast to an assumption that was often
made, space-time need not be flat to its ‘‘future.’’ Finally,
although ĝab � �̂�ab, �̂ is an operator and is not required
to be positive definite. Around the wiggly line of Fig. 2,
quantum fluctuations of �̂ are large and of either sign
(where the negative sign corresponds to interchanging
timelike and spacelike directions). Thus, the global causal
structure is not that of Minkowski space-time.

We emphasize, however, that a full solution to the
quantum equations is still lacking. This is needed to prove
the validity of our assumptions and to calculate, every-
where on I�R the function y��z�� that determines the de-
tailed physical content of j0i� at I�R . Nonetheless, using
what we already know, we can answer the oft raised ques-
tion—when does the ‘‘information’’ come out? Following
the standard strategy, let us use a basis at I�R analogous to
that of [1], trace over modes to the future of the point where
the Bondi mass vanishes, and ask if the resulting state is
approximately pure. In our framework the answer is in the
affirmative. Thus, most of the information comes out with
the quantum radiation. This issue, as well as several others
that have been raised in the literature, will be discussed in a
detailed paper.
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FIG. 2 (color online). Proposed Penrose diagram. The mean
field approximation is used in the shaded region near I�R .
Quantum fluctuations of geometry are large in the interior region
around the wiggly line representing the putative classical singu-
larity.
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