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The instantaneous contributions to the third post-Newtonian (3PN) gravitational wave luminosity from
the inspiral phase of a binary system of compact objects moving in a quasi-elliptical orbit is computed
using the multipolar post-Minkowskian wave generation formalism. The necessary inputs for this
calculation include the 3PN accurate mass quadrupole moment for general orbits and the mass octupole
and current quadrupole moments at 2PN. Using the recently obtained 3PN quasi-Keplerian representation
of elliptical orbits, the flux is averaged over the binary’s orbit. Supplementing this by the important
hereditary contributions arising from tails, tails of tails, and tails-squared terms calculated in a previous
paper, the complete 3PN energy flux is obtained. The final result presented in this paper would be needed
for the construction of ready-to-use templates for binaries moving on noncircular orbits, a plausible class
of sources not only for the space-based detectors like LISA but also for the ground-based ones.
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I. INTRODUCTION

Inspiralling compact binaries, one of the prototype
sources for laser interferometric gravitational wave (GW)
detectors, are usually modeled as moving in quasicircular
orbits. This is justified since gravitational radiation reac-
tion, under which it inspirals, circularizes the orbit towards
the late stages of inspiral [1,2]. This late phase of inspiral
and the ensuing merger phase offer promises for the GW
interferometric detectors. The recently discovered double
pulsar system [3,4] has an eccentricity as low as 0.088
consistent with the circular-orbit assumption for the late
inspiral and premerger phases, believed to be reasonable
enough for most of the binary systems made of neutron
stars or black holes (BHs).

The theoretical modeling of the binary’s phase evolution
to a very high precision is called the phasing formula. This
is the basic theoretical ingredient used in the construction
of search templates for GW using matched filtering [5].
The two key inputs required for the construction of tem-
plates for binaries moving in quasicircular orbits in the
adiabatic approximation are the orbital energy and the GW
luminosity (energy flux). These are computed using a
cocktail of approximation schemes in general relativity.
The schemes include the multipole decomposition, the
post-Minkowskian expansion of the gravitational field or
nonlinearity expansion in Newton’s constant G, the post-
Newtonian expansion in v=c, and the far-zone expansion in
powers of 1=R, whereR is the distance from the source (see
[6] for a recent review).

Though the garden variety binary sources of GWs for
terrestrial laser interferometric GW detectors are those
moving in quasicircular orbits, there is an increased recent
interest in inspiralling binaries moving in quasi-eccentric
orbits. Astrophysical scenarios currently exist which lead
to binaries with nonzero eccentricity in the GW detector
bandwidth, both terrestrial and space based. For instance,
inner binaries of hierarchical triplets undergoing Kozai
oscillations [7] could not only merge due to gravitational
radiation reaction, but a good fraction (� 30%) of them
will have eccentricity greater than about 0.1 as they enter
the sensitivity band of advanced ground-based interfer-
ometers [8]. Almost all of the above systems possess ec-
centricities below 0.2 at 40 Hz and below 0.02 at 200 Hz.
The population of stellar mass binaries in globular clusters
is expected to have a thermal distribution of eccentricities
[9]. In a study on the growth of intermediate BHs [10] in
globular clusters, it was found that the binaries have eccen-
tricities between 0.1 and 0.2 in the LISA bandwidth.
Though, supermassive black-hole binaries are powerful
GW sources for LISA, it is not yet conclusive if they would
be in quasicircular or quasi-eccentric orbits [11]. If a Kozai
mechanism is at work, these supermassive BH binaries
could be in highly eccentric orbits and merge within the
Hubble time [12]. Sources of the kind discussed above
provide the prime motivation to investigate higher post-
Newtonian order modeling for quasi-eccentric binaries.

The GW energy flux or luminosity from a system of two
point masses in elliptic motion was first computed by
Peters and Mathews at Newtonian order [1,2]. The post-
Newtonian (PN) corrections to the gravitational wave flux
at 1PN and 1.5PN orders were provided in [13–17] and
were used to study the associated evolution of orbital
elements using the 1PN ‘‘quasi-Keplerian’’ (QK) represen-
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tation of the binary’s orbit [18]. Gopakumar and Iyer
[19,20] further extended these results to 2PN order using
the generalized quasi-Keplerian representation developed
in Refs. [21–23]. The results for the energy flux and
waveform presented in [19] were in perfect agreement
with those obtained by Will and Wiseman using a different
formalism [24]. Recently, Damour, Gopakumar, and Iyer
[25] discussed an analytic method for constructing high
accuracy templates for the GW signals from the inspiral
phase of compact binaries moving on quasi-elliptical or-
bits. They used an improved ‘‘method of variation of
constants’’ to combine the three time scales involved in
the elliptical orbit case, namely, orbital period, periastron
precession, and radiation reaction time scales, without
making the usual approximation of treating the radiative
time scale as an adiabatic process.

The generation problem for gravitational waves at any
PN order requires the solution to two independent prob-
lems. The first relates to the equation of motion of the bi-
nary, and the second to the far-zone fluxes of energy,
angular momentum, and linear momentum. The latter re-
quires the computation of the relativistic mass and current
multipole moments to appropriate PN orders. The 3PN
equations of motion (EOM) required to handle gravita-
tional wave phasing turned out to be technically very
involved due to the issues related to the self-field regulari-
zation using Riesz or Hadamard regularizations [26,27].
Only by a deeper understanding of the origin of the ambi-
guities in Hadamard regularization, and the use of dimen-
sional regularization, has the problem been uniquely
resolved [28,29] and provided the value of the ambiguity
parameter !s [26] or equivalently � [27]. We thus have in
hand the requisite 3PN EOM for compact binaries moving
in general orbits. The computation of the GW luminosity at
3PN or �v=c�6 beyond the leading Einstein quadrupole
formula crucially requires the computation of the 3PN ac-
curate mass quadrupole moment. For its completion, the
same technique as in the EOM was successfully applied,
namely, to compute using Hadamard’s regularization all
the terms except a few terms parametrized by ambiguity
parameters (which turn out to be three, denoted �, �, and �)
[30,31], and then to determine the value of these parame-
ters by computing the difference between the dimensional
and Hadamard regularizations [31–34]. These works thus
provide the fully determined 3PN accurate mass quadru-
pole for general orbits—the other important ingredient to
compute the 3PN accurate energy and angular momentum
fluxes for inspiralling compact binaries moving in general
noncircular orbits. The 3.5PN phasing of inspiralling com-
pact binaries moving in quasicircular orbits is now com-
plete and available for use in GW data analysis [32,35].
Note that the 3PN contribution to the energy flux not only
comes from the ‘‘instantaneous’’ terms discussed in this
paper but also includes ‘‘hereditary’’ contributions arising
from tails, tails of tails, and tails-squared terms. A semi-
analytical scheme is proposed and discussed in detail in a

companion paper [36]1 to evaluate these history-dependent
contributions.

In this paper, for binaries moving in elliptical orbits, we
compute all the instantaneous contributions to the 3PN
accurate GW energy flux. The orbital average of this flux
will be obtained using the 3PN quasi-Keplerian parametri-
zation of the binary’s orbital motion recently constructed
by Memmesheimer, Gopakumar, and Schäfer [37]. We
shall supplement these by contributions from the heredi-
tary terms computed in Paper I. The final expression will
represent gravitational waves from a binary evolving neg-
ligibly under gravitational radiation reaction, including
precisely up to 3PN order the effects of eccentricity and
periastron precession during epochs of inspiral when the
orbital parameters are essentially constant over a few
orbital revolutions. It also represents the first step towards
the discussion of the quasi-elliptical case: the evolution of
the binary in an elliptical orbit under gravitational radiation
reaction. The present work extends the circular-orbit re-
sults at 2.5PN [38] and 3PN [30,32] to the elliptical orbit
case. Further, it extends earlier works on instantaneous
contributions for binaries moving in elliptical orbits at
1PN [14,15] and 2PN [19] to 3PN order. Similarly,
Paper I extends hereditary contributions at 1.5PN [16] to
2.5PN order and 3PN, where the 3PN hereditary contribu-
tions comprise the tails of tails and are extensions of
Refs. [39,40] for circular orbits to the elliptical orbit case.

In Sec. II we begin with the structure of the far-zone flux
of energy, use expressions relating the radiative moments
to the source moments, and decompose the energy flux
expression into its instantaneous and hereditary parts.
Section III lists all the requisite multipole moments in
standard harmonic coordinates for binaries moving in gen-
eral (noncircular) orbits. Section IV introduces the 3PN
equations of motion which are necessary to handle the time
derivatives of the moments. Section V discusses the com-
putation of the instantaneous terms in the energy flux, and
Sec. VI recasts the flux in modified harmonic (MH) coor-
dinates (without logarithms at 3PN order) and Arnowitt,
Deser, and Misner (ADM) coordinates. Section VII sum-
marizes the 3PN quasi-Keplerian representation required
to average the flux expression over an orbit. Section VIII
exhibits the orbital average of the energy flux in modified
harmonic coordinates and ADM coordinates, and finally
provides an expression of the complete energy flux in terms
of gauge-invariant variables.

II. THE FAR-ZONE FLUX OF ENERGY

In this section, we discuss the computation of the 3PN
accurate energy flux for general isolated sources. Starting
from the expression for the far-zone flux in terms of the
radiative multipole moments and using the relations con-
necting the radiative multipole moments to the source

1Hereafter, Ref. [36] will be called Paper I.
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moments, we write the resultant structure of the GW
energy flux.

Following Thorne [41], the expression for the 3PN
accurate far-zone energy flux F � �dE=dt�GW in terms
of symmetric trace-free (STF) radiative multipole mo-
ments reads as2
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In the above,UL and VL (where L � i1i2 � � � il represents a
multi-index composed of l spatial indices) are the mass-
type and current-type radiative multipole moments, respec-
tively, and U�l�L and V�l�L denote their lth time derivatives.
The moments are functions of retarded time U � T � R=c
in radiative coordinates.

In the multipolar-post-Minkowskian (MPM) formalism,
the radiative moments UL and VL can be reexpressed in
terms of the source moments to an accuracy sufficient for
the computation of the energy flux. For the flux to be
complete up to 3PN approximation, one must compute
the mass-type radiative quadrupole Uij to 3PN accuracy,
the mass octupole Uijk and current quadrupole Vij to 2PN
accuracy, the mass hexadecapole Uijkm and current octu-
pole Vijk to 1PN accuracy, and finally Uijkmn and Vijkm to
Newtonian accuracy.

The relations connecting the different radiative moments
UL and VL to the corresponding source moments IL and JL
are given below. For the 3PN mass quadrupole moment we
have [38–40,42]
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where the brackets hi surrounding indices denote the STF

projection, and "abi is the usual Levi-Civita symbol such
that "123 � �1. The IL’s and JL’s are the mass-type and
current-type source moments (and I�p�L , J�p�L denote their
pth time derivatives), and W is the monopole correspond-
ing to the set of ‘‘gauge’’ moments WL, using the same
definitions as in [30]. In the above formula, M (which is in
factor of the tail integral at 1.5PN order and the tail-of-tail
integral at 3PN) is the total ADM mass of the source. The
nonlinear memory integral at 2.5PN is a time antiderivative
and will become instantaneous in the energy flux. The
moments needed at 2PN order include only the dominant
tails and are
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For all the other moments required in the computation, we
need only the leading order accuracy in the relation be-
tween radiative and source moments, so that
 

UL�U� � I�l�L �U� �O�3�; (2.4a)

VL�U� � J�l�L �U� �O�3�: (2.4b)

The constant length r0 scaling the logarithm is the one
introduced in the general MPM formalism and has been
chosen here to match with the choice made in the compu-
tation of tails of tails in [40]. It is a freely specifiable
constant, entering the relation between the retarded time
U � T � R=c in radiative coordinates and the correspond-
ing retarded time tH � rH=c in harmonic coordinates
(where rH is the distance of the source in harmonic coor-
dinates). More precisely, we have
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c
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2GM

c3 ln
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�
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From Eqs. (2.2), (2.3), and (2.4), it is clear that the
radiative moments have two distinct contributions. One
part depends on the moments only at the retarded time,
U � T � R=c; this part is referred to as the ‘‘instantaneous
contribution’’ and forms the subject matter of the present
paper. The second part, on the other hand, depends on the
dynamics of the system in its entire past, i.e. at any U�
� < U, and is referred to as the ‘‘hereditary contribution.’’
Equally important but requiring a different treatment, the
hereditary contribution is dealt with in Paper I as men-
tioned earlier. We are thus allowed to write down explicitly
the different kinds of contributions to the far-zone energy
flux up to 3PN. We have

 F � F inst �F hered; (2.6)
2The shorthand O�n� is used throughout and indicates that the

post-Newtonian remainder is of order of O�c�n�.
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where the instantaneous contribution of interest in this paper is explicitly given by
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The hereditary contribution is given in Sec. III A of Paper I.
We recall that it is decomposed as

 F hered � F tail �F tail�tail� �F �tail�2 : (2.8)

The quadratic-order (proportional to G2) tails are given by
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and the cubic-order tails (proportional to G3) read
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All the tail contributions are thoroughly computed in
Paper I, and we shall use those results to obtain the com-
plete GW energy flux in Sec. VIII.

III. THE MULTIPOLE MOMENTS OF COMPACT
BINARY SYSTEMS

We provide, in this section, the requisite multipole mo-
ments needed for the computation of the 3PN accurate
energy flux for compact binaries in the standard harmonic
coordinate system. By standard harmonic coordinates we
refer to the specific coordinate system which has been used
consistently in previous works [27,29–32,34,35,43]. We
recall that these coordinates contain some logarithms at the
3PN level, both in the equations of motion of the binary
[27,43] and in their multipole moments [30–32]. Later, we
shall also define some modified harmonic coordinates
which do not involve such logarithms at the 3PN order.

The multipole moments are generalizations to noncircu-
lar orbits of the expressions available in Ref. [30] for
circular orbits. They are computed by implementing the
detailed method described in Ref. [31]. Though algebrai-
cally long and involved, the procedure is fairly algorithmic,
as explained in [30,31]. We thus skip all those details of
computations and list the final results we need. The 3PN
mass quadrupole Iij is already given in Ref. [31] and its
expression [valid in the frame of the center of mass (CM)]
is
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where the coefficients, up to 3PN order, are
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In the above equation r0 is the length scale appearing in the
definition of the source multipole moments [31] and is the
same as in Eq. (2.5). On the other hand, the different
constant r00 is related to two other length scales, r01 and r02
(one for each particle), bym lnr00 � m1 lnr01 �m2 lnr02, and
is specific to the application of the formalism to point
particle systems. It comes from regularizing the self-field
of point particles in the standard harmonic coordinate
system. It is very important to note that the two length
scales r01 and r02 are the same as the two scales that appear
in the final expression of the 3PN equations of motion in
standard harmonic coordinates [27]. The requirement that
these r01 and r02 should match with similar scales that appear
in the equations of motion determines, using dimensional

regularization, the values of Hadamard’s regularization
constants �, �, and � that formerly appeared in the 3PN
multipole moments [30,31]. The regularization constants
are thus determined, and we have consistently replaced �,
�, and � by their values known from [32,34]. The constants
r01, r02, and hence r00 are ‘‘unphysical’’ in the sense that they
can be arbitrarily changed by a coordinate transformation
of the ‘‘bulk’’ metric outside the particles [27], or, more
appropriately (when considering the renormalization
which follows the dimensional regularization), by some
shifts of the particles’ world lines [29,34].

The 2PN mass octupole and current quadrupole mo-
ments for general orbits are the other nontrivial moments
required. They are given by
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(3.3b)

In the above and in what follows, xijk��� � xixjxk � � � and vijk��� � vivjvk � � � , and the brackets hi denote the STF
projection. The 1PN moments read as
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(The underlined index a means that it should be excluded
from the STF projection.) Finally, we also need

 

Iijklm � ��m
���������������
1� 4�
p

�1� 2��xhijklmi �O�2�; (3.5a)

Jijkl � ��m
���������������
1� 4�
p

�1� 2��"abhixjkliavb
�O�2�; (3.5b)

as well as W, the monopole corresponding to the gauge
moments WL, which is given by

 W � 1
3�mr _r�O�2�: (3.6)

IV. THE EQUATIONS OF MOTION OF COMPACT
BINARY SYSTEMS

A. The equations of motion in standard harmonic
coordinates

The computation of the flux will involve the time de-
rivatives of the latter source moments. The 3PN accurate
flux requires the 3PN equations of motion for compact
binaries which are now complete [27–29,44,45]. For the
present work, where the multipole moments are computed
in standard harmonic coordinates and reduced to the CM
frame, we require the 3PN accurate equation of motion (or
acceleration) in the CM frame associated with the standard
harmonic gauge. This was computed in [43] and given as

 ai �
dvi

dt
� �

Gm

r2 	�1� P�n
i �Qvi
 �O�7�; (4.1)

where the coefficients P and Q are
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Recall that there was initially a regularization ambiguity constant denoted � in [27], which has been replaced here by its
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uniquely determined value � � � 1987
3080 [29]. On the other

hand, the constant r00 is the same as the one in the 3PN
quadrupole moment (3.1) and (3.2).

B. The modified harmonic coordinates (without
logarithms)

The standard harmonic (hereafter SH) coordinate sys-
tem used up to now is useful for analytical algebraic
checks, but contains gauge-dependent logarithmic terms
that are not very convenient in numerical calculations.
More importantly, in the presence of the logarithmic terms
the simple generalized quasi-Keplerian representation (re-
viewed in Sec. VII) is not possible, impeding the process of
averaging the flux over the orbital period. Consequently, it
is useful to have the expression for the energy flux in a MH
coordinate system without logarithms, like the one explic-
itly used in [46] (we shall alternatively use ADM-type
coordinates which are also free of such logarithms at
3PN). This will require us to reexpress the instantaneous
expressions for the energy flux [given by Eqs. (5.2) below]
in terms of corresponding variables in the MH or ADM
coordinate systems. We provide in this section the defini-
tion of the MH coordinate system.

Consider the coordinate transformation x0� �
x� � "��x� which removes the logarithms ln�r=r00� at the
level of the equations of motion as discussed in Ref. [27]. It
is given by

 "��
22

3

G2m1m2

c6
@�

�
Gm2

r1
ln
�
r
r02

�
�
Gm1

r2
ln
�
r
r01

��
; (4.3)

where r1 � jx� y1j and r2 � jx� y2j are the distances to
the two particles with trajectories yi1�t� and yi2�t�, and
where r � jy1 � y2j is their relative distance. Following
[29] the logarithms can be equivalently removed by the
shifts (sometimes also called the ‘‘contact’’ transforma-
tions) of the particle world lines induced by the change of
coordinates, namely,
 

y0i1 � yi1 � �
i
1; (4.4a)

y0i2 � yi2 � �
i
2: (4.4b)

The equalities here are functional relations; i.e. the two
sides of the equations are evaluated at the same coordinate
time, say, t. The spatial shifts �i1 and �i2 of the two world
lines are related to the coordinate transformation restricted
to the world lines [denoted "�1 �t� � "��t; y1�t�� and
"�2 �t� � "��t; y2�t��] by
 

�i1 � "i1 �
vi1
c
"0

1 �O�"2�; (4.5a)

�i2 � "i2 �
vi2
c
"0

2 �O�"2�; (4.5b)

where vi1 � dyi1=dt and vi2 � dyi2=dt are the coordinate
velocities. The latter relations are valid at linear order in "�1
and "�2 . Now the coordinate transformation (4.3) is at 3PN

order, so we have "0 � O�7� and "i � O�6�. Hence, we
see from (4.5) that at the 3PN order the shifts simply agree
with the spatial components of the coordinate transforma-
tion,
 

�i1 � "i1 �O�8�; (4.6a)

�i2 � "i2 �O�8�: (4.6b)

They are readily obtained from Eq. (4.3) as
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�O�8�: (4.7b)

Under the shifts of world lines, the accelerations of the
particles are changed by the amounts 	�ai1 and 	�ai2 (i.e.
such that the functional equalities a0i1;2 � ai1;2 � 	�a

i
1;2

hold) given by
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r

�
�O�8�; (4.8b)

where the second terms come from reexpressing the gravi-
tational force—gradient of the Newtonian potential—in
terms of the new trajectories (4.4). The relative accelera-
tion ai � ai1 � a

i
2 is changed by the amount

 	�a
i �

d2�i12

dt2
� �j12@ij

�
Gm
r

�
�O�8�; (4.9)

where m � m1 �m2 and �i12 � �i1 � �
i
2.3 An easy calcu-

lation shows that the change in the relative acceleration
associated with the shifts (4.7) is
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44

3
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�

�O�8�: (4.10)

Adding the above shift to the expression for the relative
acceleration in SH coordinates, as given by Eqs. (4.1) and
(4.2), yields the expression for the acceleration in MH
coordinates. Since a0i � ai � 	�ai is a functional identity,
the resulting MH acceleration is obtained as a function of
the ‘‘dummy’’ variables denoted v2, _r, and r. Evidently,
these variables are to be interpreted as the natural variables
describing the binary motion in MH coordinates.4 As ex-
pected, the logarithms in Eq. (4.10) exactly cancel the

3This means that xiMH � xiSH � �
i
12.

4To avoid making the notation too heavy we do not add a
subscript MH on the variables v2, _r, and r. In the following our
notation may not always be completely consistent but should be
clear from the context.
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logarithms in the SH acceleration (4.1) and (4.2). Some
3PN coefficients in the EOM are also modified and the final
result agrees with that displayed in Ref. [46] (see also [6]).

For completeness we note also that the above shifts will
modify the 3PN conserved energy of the binary (associated
with the conservative part of the 3PN equations of motion)
by the amount

 

	�E � �m1vi1
d�i1
dt
�m2vi2

d�i2
dt
� �i12@i

�
Gm1m2

r

�
�O�8�: (4.11)

For the case at hand with the shifts (4.7) and in the center-
of-mass frame, we find
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r00

�
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Comparing with the 3PN energy in SH coordinates as
given by Eq. (4.8) in [43], we see that the logarithms
ln�r=r00� are also canceled in the expression for the energy
by going to the MH coordinates.

V. THE INSTANTANEOUS PART OF THE 3PN
ENERGY FLUX

Using the multipole moments given in Eqs. (3.1), (3.2),
(3.3), (3.4), and (3.5), one computes the required time
derivatives with the help of the equations of motion (4.1)
and obtains the instantaneous part of the energy flux as
defined by Eq. (2.7). Here we are working in SH coordi-
nates, in which the equations of motion are given by
Eqs. (4.1) and (4.2). In the next section we consider the
case of alternative coordinate systems. The hereditary part
computed in Paper I will be added after the process of
averaging over one orbit (this contribution is the same in all
alternative coordinate systems considered in this paper).
Though lengthy, the computation of the different parts
constituting the instantaneous terms in the energy flux at
3PN order is straightforward.5 We write the result as

 F inst � F N
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inst �F 3PN
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and find that the various PN pieces are given by
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(5.2d)

5In order to perform some independent checks on the long and involved algebra, we have found it expeditious to make two
computations using the two harmonic coordinate systems: SH containing the (gauge-dependent) log terms à la [43] and MH without
log terms as in Refs. [6,46].
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(5.2e)

The new results are the instantaneous terms at 2.5PN and
3PN orders. Up to 2PN order, all the terms match with
those obtained in Refs. [1,14,19]. As one may notice, the
2.5PN terms in the above equation are all proportional to _r
and hence are zero for the circular-orbit case, in agreement
with the result of [38]. The _r dependence of the 2.5PN
terms is important when we discuss their orbital average in
Sec. VIII. The 3PN terms provide the generalization of the
circular-orbit results in Ref. [30]. As expected, the constant
r0 present in the expression of the mass quadrupole mo-
ment appears in the final expression for the 3PN flux (the
presence of r00 is of a different type and is dealt with in the
next section). The dependence of the instantaneous terms
on the scale r0 should exactly cancel a similar contribution
coming from the tail terms as determined in Paper I. This
cancellation has already been checked for circular orbits in
[30], and we shall prove this cancellation for quasi-
elliptical orbits in Sec. VIII.

VI. THE 3PN ENERGY FLUX IN ALTERNATIVE
COORDINATES

The dependence on r00 of the result (5.1) and (5.2) is due
to our use of the SH coordinate system. For circular orbits,
it was shown [30] that this r00 dependence disappears when
the total flux is expressed in terms of the gauge-invariant

parameter x � �Gm!=c3�2=3 related to the GW frequency.
In the general orbit case we shall transform away the
dependence on r00 by going to different coordinate systems
such as the MH coordinates studied in Sec. IV B.
Subsequently, we shall average the energy flux over an
orbital period and exhibit alternative representations of the
energy flux for elliptical orbits. In particular, some of these
are in terms of gauge-invariant variables related to those
suggested in Ref. [37].

A. The modified harmonic coordinates

We now provide the energy flux F in the MH system,
avoiding the appearance of the logarithms ln�r=r00� at 3PN
order and which has been introduced in Sec. IV B. First we
notice that F is a function of the ‘‘natural’’ variables r, _r,
and v2 [see Eqs. (5.2)], and is a scalar, therefore it satisfies,
under the shifts of these variables defined by (4.4),

 F 	r; _r; v2
 � F 0	r0; _r0; v02
: (6.1)

This means that we shall have the functional equality F 0 �
F � 	�F in which

 	�F ��	�r
@F
@r
�	� _r

@F
@ _r
�	�v2 @F

@v2�O��2�; (6.2)

where
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	�r � ni�i12

	� _r � ni
d�i12

dt �
vi� _rni
r �i12

	�v2 � 2vi
d�i12

dt

9>>=>>;�O��2�: (6.3)

(Recall that �i12 � �i1 � �
i
2.) Since the previous formulas

are at linear order in the shifts and we are interested in the
3PN approximation, they are valid for any shifts at 3PN
order (the case of the MH coordinates) and also at 2PN
order like the ones associated with the passage to ADM
coordinates—in the latter case, the error will be at 4PN
order.

In the case of the MH shifts, which start at 3PN order,
one can make an alternative computation of the modifica-
tion of the energy flux. Indeed the only modification vis-à-
vis the calculation in standard harmonic (SH) coordinates
is the one related to the mass quadrupole moment which
must be computed to 3PN accuracy. Under the shifts of the
particles’ trajectories yi1;2 as given by (4.4), the mass quad-

rupole moment Iij, which equals Iij � m1y
hiji
1 �m2y

hiji
2 �

O�2� in the Newtonian approximation, is shifted by the
amount (1$ 2 meaning the same term but for the other
particle)

 	�Iij � 2m1y
hi
1�

ji
1 � 1$ 2�O�8�; (6.4)

where the remainder O�8� comes from the 1PN corrections
in the quadrupole moment coupled with the 3PN shifts.
Using the explicit expressions of these shifts in (4.7), we
find, in the center-of-mass frame,

 	�Iij � �
44

3

G3m4�2

r3 ln
�
r
r00

�
xhiji �O�8�; (6.5)

where r00 is given by m lnr00 � m1 lnr01 �m2 lnr02. This
modification of the quadrupole moment is seen to exactly
cancel the ln�r=r00� dependence of the mass quadrupole
moment in SH coordinates as given by (3.1) and (3.2).
Thus in the MH gauge the r00 dependence of the mass
quadrupole moment vanishes as expected. The rest of the
expression of the moment remains exactly the same as in
SH coordinates, Eqs. (3.1) and (3.2), and will not be
repeated here.

Next we must take into account the fact that, when
computing the third time derivative of the quadrupole mo-
ment, which is needed in the expression of the flux, the
acceleration in MH coordinates is modified. We get
 

	��I
:::
ij� �

d3

dt3
�	�Iij� � 2m1

�
3vhi1	�a

ji
1 � y

hi
1

d	�a
ji
1

dt

�
� 1$ 2�O�8�; (6.6)

where the dots mean the time derivative. The first term is
the third time derivative of the direct modification of the
quadrupole moment, Eqs. (6.4) and (6.5), and the extra
terms come from the modification of the accelerations
which are given by (4.8). On the other hand, all the other

contributions coming from the higher multipole moments
and their derivatives remain unchanged. We then find

 	�F � �
2G

5c5
	I
:::
ij	��I

:::
ij� �O�8�
: (6.7)

With the explicit expression of the shifts, one finally ob-
tains the modification of the 3PN energy flux in the MH
coordinates as (thus, FMH � F SH � 	�F )
 

	�F � �
1408

15

G6m7�3

c11r7

��
v2 �

2

3
_r2

�
ln
�
r
r00

�

�
_r2

12
�O�2�

�
: (6.8)

[Of course the result agrees with the one we would obtain
from directly using Eqs. (6.2) and (6.3).]

B. The ADM coordinates

Many related numerical relativity studies are in ADM
(or ADM-type) coordinates, and hence for future applica-
tions we wish to provide the explicit expression for the 3PN
energy flux in ADM coordinates. To transform the energy
flux, we require the shift or contact transformation of the
trajectories connecting the SH coordinates (with log terms)
and the ADM coordinates. We recall that the ADM and SH
coordinate systems agree at 1PN order inclusively, so that
the contact transformation is composed of 2PN and 3PN
terms. Hence the calculation is more involved than for the
MH coordinates (for which only the modification of the
quadrupole moment Iij played a role), and we must come
back to the general formulas (6.2) and (6.3). Note that the
remainder O��2� in Eqs. (6.2) and (6.3) is of order 4PN,
which is still negligible in the transformation to ADM-type
coordinates.

The relative shift �i12 linking SH and ADM coordinates,
xiADM � xiSH � �

i
12, is given in [43] as6

 

�i12�
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��
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8
�
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8
�
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r

�
�

1

4
�3�

��
ni�
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4
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��
�

_r4�
16
�

5 _r4�2

16
�
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16
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16
�
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2

�
11�2v4

8
�
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r
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48
�
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2
�

451�v2

48
�

3�2v2

8
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�
2773�

280
�
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32
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22�
3

ln
�
r
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���
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�

�
�

5 _r3�
12
�

29 _r3�2

24
�
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8
�
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4

�
Gm
r

�
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3
�5 _r�2

��
vi
�
; (6.9)

6For simplicity we use the same notation �i12 as for the shift
between the SH and MH coordinates.
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from which we deduce, applying Eqs. (6.3), the transformation of variables necessary to compute the ADM energy flux:
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; (6.10a)
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: (6.10c)

The above equations provide the 3PN generalization of Eq. (4.6) of [19]. They also incorporate the corrected trans-
formation between ADM and harmonic coordinates at 2PN, as given in [25].

Using the latter expressions, one finds that the SH energy flux is changed by corrections at 2PN and 3PN relative orders
given by (using a notation similar to that introduced above—i.e. in which the variables r, _r2, and v2 are considered as
dummy variables7)
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The examination of the coefficient of ln�r=r00�, given by the
last two terms of (6.11), reveals that this coefficient is the
same as in the contact transformation from SH to MH,
given by (6.8). Therefore, the contact transformation from
SH to ADM exactly cancels out the logarithms of SH
coordinates, and the final flux in ADM coordinates is
free of lnr00. This is consistent with the general understand-
ing that the lnr00 is a feature of a particular harmonic

coordinate system and that ADM coordinates do not yield
complications associated with such logarithms (the cancel-
lation of the lnr00 terms usually provides a useful internal
check of the computations).

VII. THE GENERALIZED QUASI-KEPLERIAN
REPRESENTATION

Before we discuss the calculation of the orbital average
of the energy flux in Sec. VIII, we must summarize the 3PN
generalized quasi-Keplerian representation of the binary7F ADM � F SH � 	�F .
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motion recently obtained by Memmesheimer, Gopakumar,
and Schäfer [37]. Indeed, the main application of the
present computation is the evolution of the orbital elements
under GW radiation reaction to 3PN order. This requires
one to average over an orbit the instantaneous expressions
for the energy flux obtained in Sec. V. Averaging over an
orbit is most conveniently accomplished by the use of an
explicit solution of the equations of motion. The general-
ized QK representation of the motion at 3PN order [37]
constitutes an essential input for the computations to
follow.

The QK representation was introduced by Damour and
Deruelle [18] to discuss the problem of binary pulsar
timing at 1PN order, where relativistic periastron preces-
sion first appears and complicates the simpler Keplerian
picture. This elegant formulation also played an important
role in our computation of the hereditary terms in Paper I,
where we provided a summary of it. The 2PN extension of
this work in the ADM coordinates was next given in
Refs. [21–23], and we shall now use the 3PN parametri-
zation in ADM and MH coordinates [37].

The radial motion is given in parametric form as8

 

r � ar�1� er cosu�; (7.1a)

‘ � u� et sinu� ft sinV � gt�V � u� � it sin2V

� ht sin3V; (7.1b)

while the corresponding angular motion is

 


�
P

K
� V � f
 sin2V � g
 sin3V � i
 sin4V

� h
 sin5V: (7.2)

The four angles V, u, ‘, and 
 are, respectively, the true
anomaly, the eccentric anomaly, the mean anomaly, and the
orbital phase (V, u, and ‘ are measured from the periastron,
and we denote by 
P the value of 
 at periastron). The
mean anomaly is proportional to the time elapsed since the
instant tP of passage at periastron,

 ‘ � n�t� tP�; (7.3)

where n � 2�=P is the mean motion and P is the orbital
period. The true anomaly V is given by

 V � 2 arctan
��

1� e

1� e


�
1=2

tan
u
2

�
: (7.4)

In the above, ar represents the semimajor axis of the orbit,

and er, et, e
 are three kinds of eccentricities, labeled after
the coordinates t, r, and 
, and which differ from each
other starting at 1PN order. The constant K is linked with
the advance of periastron per orbital revolution, and is
given by K � �=�2�� where � is the angle of return to
the periastron. The notation k � K � 1 for the relativistic
precession is used in Paper I and will also be useful here.
The orbital elements ft; f
; gt; g
; . . . parametrize the 2PN
and 3PN relativistic corrections, as will be clear from their
expressions below. (More precisely, ft, f
, gt, g
 are
composed of 2PN and 3PN terms, but it, i
, ht, h
 start
only at 3PN order.)

Crucial to the formalism are the explicit formulas for all
the orbital elements and all the coefficients in Eqs. (7.1)
above in terms of the 3PN conserved orbital energy E and
angular momentum J (divided by the binary’s reduced
mass). Recall that the construction of a generalized
quasi-Keplerian representation exploits the fact that the
radial equation—which is given by Eq. (2.1a) in
Paper I—is a polynomial in 1=r (of seventh degree at
3PN order). Therefore the presence of logarithmic terms
in the SH coordinates at 3PN order obstructs the construc-
tion of the QK parametrization (at least by this method),
and Ref. [37] obtained it in coordinates avoiding such
logarithms, namely, the MH and ADM coordinates. In
both ADM and MH coordinates the QK representation
takes the same form given by Eqs. (7.1) and (7.2), but of
course the equations linking the orbital elements to E and J
are different. These have been obtained as post-Newtonian
series up to 3PN order in Ref. [37]. Since they form the
basis for our computation of the average energy flux, we
provide the complete relations here.

For convenience, in the present paper we introduce a PN
parameter which is directly linked to the energy E and
defined by

 " � �
2E

c2 : (7.5)

(Recall that E< 0 for gravitationally bound orbits.) The
equations to follow will then appear as PN expansions in
terms of " � O�2�. Also, we find it useful to define, in
place of the angular momentum J,

 j � �
2EJ2

�Gm�2
: (7.6)

We have j � �2Eh2 in terms of the more usual definition
h � J=�Gm�. This parameter is at Newtonian order, j �
c2"h2 � O�0�. The point is now to give all the orbital
elements as PN series in powers of " with coefficients
depending on j (and the dimensionless, reduced mass ratio
�). In ADM coordinates these are given by [37]

8For convenience, in this paper we adapt somewhat the nota-
tion with respect to the one in Ref. [37].
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The latter expressions are specific to the ADM coordi-
nates, and we now want to give the corresponding expres-
sions in MH coordinates. However, we recall first an
important point related to the use of gauge-invariant vari-
ables in the elliptical orbit case as stressed by Ref. [37].
Indeed, Damour and Schäfer [21] showed that the func-
tional forms of n and K � �=�2�� as functions of gauge-
invariant variables like " and j are identical in different
coordinate systems. Hence the expressions in MH coordi-
nates of these two parameters are the same as in ADM
coordinates,
 

n � nMH � nADM; (7.8a)

K � KMH � KADM: (7.8b)

This prompted Ref. [37] to suggest the use of n and k �
K � 1 as two gauge-invariant variables in the general orbit

case.9 In the present work we propose to use a variant of the
former variables. Namely, instead of working with the
mean motion n, we shall systematically use the orbital
frequency ! � Kn as defined in a general context in
Sec. II A of Paper I, and define as a gauge-invariant post-
Newtonian parameter

 x �
�
Gm!

c3

�
2=3
: (7.9)

This choice constitutes the obvious generalization of the
gauge-invariant variable x used in the circular-orbit case
and will thus facilitate the straightforward reading out and
check of the circular-orbit limit. The parameter x is related
to the energy and angular momentum variables " and j up
to 3PN order by
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The other orbital elements are not gauge invariant, and therefore their expressions in MH coordinates differ at 2PN and
3PN orders from those in ADM coordinates. We conclude by giving here all the needed differences [37],
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9Actually, Ref. [37] used xMGS � �Gmn=c
3�2=3 together with k0 � k=3.

ARUN, BLANCHET, IYER, AND QUSAILAH PHYSICAL REVIEW D 77, 064035 (2008)

064035-14



 

eMH
t � eADM

t �
"2������������

1� j
p

�
1

4
�

17

4
�
��

1�
1

j

�
�

"3������������
1� j
p

�
�

19

32
�

52

3
��

225

32
�2 �

1

j

�
29

16
�

�
79 039

1680
�

21

16
�2

�
��

201

16
�2

�

�
1

j2

�
�

3

2
�

�
�

14 501

420
�

21

16
�2

�
�� 5�2

��
; (7.11c)

 

eMH

 � eADM


 �
"2������������

1� j
p

�
�

1

4
�

71

16
�� j

1

32
��

1

j

�
1

4
�

141

32
�
��
�

"3������������
1� j
p

�
�

13

32
�

�
36 511

8960
�

21

128
�2

�
�

�
1723

256
�2 � j

�
17

256
��

33

256
�2

�
�

1

j

�
�

13

16
�

�
�

21 817

480
�

147

64
�2

�
��

169

8
�2

�

�
1

j2

�
3

2
�

�
621 787

13 440
�

273

128
�2

�
��

1789

128
�2

��
; (7.11d)

 

fMH
t � fADM

t � "2 19

8

���������������
�1� j�

p ���
j
p ��

"3�����������������
j�1� j�

p �
�1�

�
�

296 083

6720
�

21

32
�2

�
��

989

64
�2 � j

�
361

64
��

171

64
�2

�

�
1

j

�
1�

�
276 133

6720
�

21

32
�2

�
��

799

64
�2

��
; (7.11e)

 

gMH
t � gADM

t � 0; (7.11f)
 

hMH
t � hADM

t � �
"3

192
�1� j�3=2j��3=2����23� 73��; (7.11g)

 

iMH
t � iADM

t � �
11

32
"3�1� j�j��3=2����19� 10��; (7.11h)

 

fMH

 � fADM


 � �"2

�
1

j
�

1

j2

��
1

8
�

9

4
�
�
�
"3

j

�
1

32
�

1045

192
��

99

32
�2 �

1

j

�
�

5

4
�

�
�

139 633

3360
�

21

16
�2

�
��

117

8
�2

�

�
1

j2

�
3

2
�

�
92 307

2240
�

21

16
�2

�
��

351

32
�2

��
; (7.11i)

 

gMH

 � gADM


 � "2 1

32

�1� j�3=2

j2 �� "3
������������
1� j

p �
1

j

�
7

128
��

5

32
�2

�
�

1

j2

��
�

49 709

13 440
�

21

128
�2

�
��

445

128
�2

�

�
1

j3

��
100 783

26 880
�

21

128
�2

�
��

847

256
�2

��
; (7.11j)

 

hMH

 � hADM


 � �
"3

256
�1� j�5=2j�3���1� 5��; (7.11k)

 

iMH

 � iADM


 � �
"3

384
��1� j�2j�3���149� 198��: (7.11l)

Finally, we note that in the case of a circular-orbit the
angular momentum variable, say j�, is related to the con-
stant of energy " by the 3PN gauge-invariant expansion
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192
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which is easily deduced using either MH or ADM coor-
dinates. This expression can be used to compute all the
orbital elements for circular orbits, and we can check that
all of the eccentricities er, et, or e
 are zero.

VIII. ORBITAL AVERAGE OF THE 3PN ENERGY
FLUX

To average the energy flux over an orbit, we will require
the use of the previous 3PN quasi-Keplerian representation

of the motion. Consequently, the averaging is only possible
in MH or ADM coordinates without the logarithms as
discussed before. The average of the (instantaneous part
of the) energy flux is defined by

 hF insti �
1

P

Z P

0
dtF inst �

1

2�

Z 2�

0
du
d‘
du

F inst: (8.1)

As we have seen, the energy flux (2.6) is made of instan-
taneous terms and hereditary (tail) terms. The hereditary
terms have already been computed and averaged in Paper I.

Using the QK representation of the orbit discussed in
Sec. VII, we can reexpress the energy flux F inst [or, more
exactly, �d‘=du�F inst], which is a function of its natural
variables r, _r, and v2, as a function of the frequency-related
parameter x defined by Eqs. (7.9) and (7.10), the ‘‘time’’
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eccentricity et, and the eccentric anomaly u.10 We note that
in the expression of the energy flux at 3PN order there are
some logarithmic terms of the type ln�r=r0� even in MH
coordinates. Indeed, we recall that the MH coordinates
permit the removal of the log terms ln�r=r00�, where r00 is
the scale associated with Hadamard’s self-field regulariza-
tion, but there are still the terms ln�r=r0� which involve the
constant r0 entering the definition of the multipole mo-
ments for general sources. As a result, we find that the
general structure of F inst (in MH or ADM coordinates) is
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�
;

(8.2)

where the coefficients �N , �N, 
N so defined are straight-
forwardly computed using the QK parametrization (they
are too long to be listed here). It is worth noting that the
�N’s correspond to all the 2.5PN terms while the 
N’s
represent the logarithmic terms at order 3PN. The depen-
dence on the constant lnr0 has been included into the
coefficients �N. To compute the average, we have at our
disposal some integration formulas. First of all,
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du � 0; (8.3)

which shows that in the final result there will be no terms
(of the instantaneous type) at 2.5PN order. The 2.5PN
instantaneous contribution is proportional to _r and vanishes
after averaging since it includes only odd functions of u.
Next, we have
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which can also be formulated with the help of the standard
Legendre polynomial PN�1 as
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Finally, for the log terms we have a less trivial formula but
which takes a structure similar as in Eq. (8.4), namely
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in which
 

Y�y; e� �
1����������������

y2 � e2
p

(
ln

" ��������������
1� e2
p

� 1

2

#

� 2 ln

"
1�

��������������
1� e2
p

� 1

y�
����������������
y2 � e2

p
#)
: (8.7)

A. Orbital average in MH coordinates

The expression for the instantaneous energy flux in MH
coordinates is given by Eqs. (5.1) and (5.2) together with
the modification (6.8) for transforming to MH coordinates.
Implementing all the above integrations, the flux can be
averaged over an orbit to order 3PN, extending the results
of [19] at 2PN.11 The result is presented in the form

 hF insti �
32c5

5G
�2x5�IMH

N � xIMH
1PN � x

2IMH
2PN � x

3IMH
3PN�;

(8.8)

where the instantaneous post-Newtonian pieces IMH
nPN de-

pend on � and the time eccentricity et in MH coordinates
(note that et � eMH

t here), and read12
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11Results of [19] are given in ADM coordinates.
12The Newtonian coefficient IMH

N is nothing but the Peters & Mathews [1] ‘‘enhancement’’ function of eccentricity f�et� �
�1� 73

24 e
2
t �

37
96 e

4
t �=�1� e

2
t �

7=2, so called because it enhances the numerical value of the orbital decay of the binary pulsar by
gravitational radiation (viz. the orbital _P).

10Reference [19] uses Gm=ar and er while [25] employs Gmn=c3 and et. We propose the use of x � �Gm!=c3�2=3 for reasons
outlined in the previous section. The choice of et rather than, say, er is a matter of convenience since it appears in the Kepler equation
which is directly dealt with when averaging over an orbit.
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For ease of presentation we have not put a label on et to
indicate that it is the time eccentricity in MH coordinates.
Of course, since x is gauge invariant, no such label is
required on it. It is important to keep track of this fact
when comparing formulas in different gauges, as we will
eventually do.

The last term in the 3PN coefficient IMH
3PN given by

Eq. (8.9d) is proportional to some logarithm which directly
arises from the integration formula (8.6) and (8.7). Inside
the logarithm we posed

 x0 �
Gm

c2r0

; (8.10)

exhibiting the dependence of the instantaneous part of the
3PN energy flux upon the arbitrary constant length scale r0.
Only after computing the complete energy flux can one
discuss the structure of the logarithmic term in the energy
flux and the required cancellation of lnr0. Therefore we
now add the hereditary contribution to the 3PN flux, which
has been computed in Paper I. From Eq. (6.2) in Paper I, we
write the result as
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3PN�; (8.11)

where the hereditary post-Newtonian coefficients (starting
at 1.5PN order) read
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The function F�et� in factor of the logarithm in the 3PN
coefficient does admit a closed analytic form which was
determined in Paper I as
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On the other hand, Paper I found that the four enhancement
functions of eccentricity ’�et�,  �et�, ��et�, and ��et� very
likely do not admit any analytic closed-form expressions.
Numerical plots of the four enhancement factors ’�et�,
 �et�, ��et�, and ��et� as functions of eccentricity et have
been presented in Paper I. The coefficients in Eqs. (8.12)
have been introduced in such a way that the circular-orbit
limit of all the functions F�et� and ’�et�; � � � ; ��et� is 1.

Finally, the PN coefficients in the total averaged energy
flux F in MH coordinates are given by the sum of the
instantaneous and hereditary contributions, say

 K MH
nPN � IMH

nPN �HMH
nPN: (8.14)

We notice that up to 2.5PN order there is a clean separation
between the instantaneous terms which are at even PN
orders (recall that there is no 2.5PN term in the averaged

flux) and the hereditary terms which appear at odd PN
orders and are specifically due to tails (i.e. HMH

1:5PN and
HMH

2:5PN). On the contrary, at 3PN order—and, indeed, at
any higher PN order—there is a mixture of instantaneous
and hereditary terms. The 3PN hereditary term HMH

3PN is
due to the so-called GW tails of tails (see Paper I).

The analytical result (8.13) is crucial for checking that
the arbitrary constant x0 disappears from the final result,
namely, from the 3PN coefficient KMH

3PN. Indeed, we im-
mediately verify from comparing the last term in Eq. (8.9d)
with Eq. (8.12c) and the explicit expression (8.13) of F�et�
that x0 cancels out from the sum of the instantaneous and
hereditary contributions, extending to noncircular orbits
this fact which was already observed for the circular case
in Ref. [30]. Finally, the complete 3PN coefficient (inde-
pendent of x0) reads
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The 1.5PN and 2.5PN coefficients are only due to tails, and thus
 

KMH
1:5N � 4�’�et�; (8.16a)

KMH
2:5PN � �

8191

672
� �et� �

583

24
����et�: (8.16b)

The Newtonian, 1PN, and 2PN coefficients reduce to their instantaneous contributions IMH
N , IMH

1PN, and IMH
2PN already given

in Eqs. (8.9).
Since the enhancement functions’�et�,  �et�, ��et�, and ��et� reduce to 1 in the circular case, when et � 0, the circular-

orbit limit of the energy flux is immediately deduced from inspection of Eqs. (8.9) and (8.16) as
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775

324
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(8.17)

This limiting case is in exact agreement with Eq. (12.9) of
[30] (after taking into account the values of the ambiguity
parameters � � � 1987

3080 and � � � 11 831
9240 computed in

Refs. [32–34]). Notice that the flux in the circular-orbit
limit (8.17) depends only on the parameter x, and hence its
expression becomes gauge invariant.

B. Orbital average in ADM coordinates

We start from the expression for the instantaneous en-
ergy flux in ADM coordinates as given by (6.11), employ
the appropriate 3PN QK representation, and follow the
procedure for performing the average as outlined in the
previous section. We find that the �N’s and 
N’s in ADM

coordinates [cf. Eq. (8.2)] are exactly the same as in MH
coordinates; the �N’s, however, are different in general
(except for �11). The result for the average energy flux in
ADM coordinates is of the form

 hF insti �
32c5

5G
�2x5�IADM

N � xIADM
1PN � x

2IADM
2PN

� x3IADM
3PN �; (8.18)

where the coefficients depend on the time eccentricity in
ADM coordinates (hence et � eADM

t here) and on �, and
read
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t �

9=2

�
�

1247

336
�

35

12
�� e2

t

�
10475

672
�

1081

36
�
�
� e4

t

�
10043

384
�

311

12
�
�
� e6

t

�
2179

1792
�

851

576
�
��
; (8.19b)
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We recall that the Newtonian and 1PN orders are the same in MH and ADM coordinates (the coefficients IADM
N and IADM

1PN
agree with their MH counterparts). On the other hand, adding up the hereditary contribution (8.11) and (8.12) (which is the
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same in MH and ADM coordinates), we obtain the total 3PN coefficient KADM
3PN , analogous to Eq. (8.15) but in ADM

coordinates,
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in which again et � eADM
t . A useful internal consistency

check of the algebraic correctness of different coordinate
representations of the energy flux is the verification that the
equality of Eqs. (8.9) and (8.19) holds if and only if we
have the transformation between the time eccentricities
eMH
t and eADM

t given by
 

eMH
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(There is no ambiguity in not having a label on the et in the
2PN and 3PN terms above.) We find that the relation (8.21)
is perfectly equivalent to what is predicted from using
different QK representations of the motion, namely,
Eq. (7.11c) together with (7.10).

C. Gauge-invariant formulation

In the previous section, the averaged energy flux was
represented using x—a gauge-invariant variable defined

by (7.9)—and the eccentricity et, which, however, is co-
ordinate dependent (but is useful in extracting the circular
limit of the result). In the present section we provide a
gauge-invariant formulation of the energy flux.

Perhaps the most natural choice is to express the result in
terms of the conserved energy E and angular momentum J
(per unit of reduced mass), or, rather, in terms of the pair of
rescaled variables (", j) defined by Eqs. (7.5) and (7.6).
However, there are other possible choices for a couple of
gauge-invariant quantities. As we have seen in Eqs. (7.8)
the mean motion n and the periastron precession K are
gauge invariant, so we may define as our first choice the
pair of variables (x, �), where we recall that x is related to
the orbital frequency ! � Kn by Eq. (7.9), and where we
define

 � �
3x
k
; (8.22)

with k � K � 1. Here we have introduced a factor 3 so that
� reduces to j in the first approximation (i.e. when "! 0).
To 3PN order this parameter is related to the energy and
angular momentum variables " and j by
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We have performed two calculations of the gauge-invariant result, in terms of the variables �x; ��, starting from the
expression of the averaged flux in either MH or ADM coordinates. The instantaneous part of the flux takes the form

 hF insti �
32c5

5G
�2x5��13=2�IN � xI1PN � x

2I2PN � x
3I3PN�; (8.24)

in which the PN coefficients are polynomials of � and the mass ratio �, and are given by
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(8.25d)

Similarly, we can also obtain the equivalent expression of the flux in terms of the rescaled variables �"; j� defined by
Eqs. (7.5) and (7.6).
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The hereditary part of the flux given by (8.11) and (8.12)
is straightforwardly added. In this part we simply have to
replace et by its expression in terms of x and � at 1PN order,
namely,

 et �
�

1� �� x
�
�

35

4
�

9

2
�� �

�
17

4
�

13

6
�
���

1=2
:

(8.26)

(At this order there is no difference between MH and ADM
coordinates.) Note also that with the latter choice of gauge-
invariant variables the circular-orbit limit is not directly
readable from the expressions. However, it can be easily
obtained by using the expression for the variable j� as
reduced to circular orbits in terms of ", Eq. (7.12).

IX. THE TEST PARTICLE LIMIT OF THE 3PN
ENERGY FLUX

An important check on our result is the test particle limit
for which the energy flux in the eccentric orbit case is
available (to second order in the eccentricity) from com-
putations based on perturbation theory around a
Schwarzschild background. We compare the end result of
our computation—composed of the instantaneous terms
and the hereditary terms computed in Paper I—with the
result obtained in Ref. [47]. Thus, we take the test particle
limit of our result (i.e. � � �=m! 0), say, in the form
given by Eqs. (8.8) and (8.9) in which et � eMH

t , and
expand it in powers of et retaining only terms up to e2

t .
The instantaneous contribution to the energy flux in the
test-mass limit is then given by
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On the other hand, the hereditary contribution has been
reported in Eqs. (8.11) and (8.12) and admits the test-mass
limit
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To proceed further, all the enhancement functions should
be expanded up to power e2

t . This is easy for F�et� which is
known analytically from Eq. (8.13), and we have

 F�et� � 1�
62

3
e2
t �O�e4

t �: (9.3)

The other enhancement functions are only known numeri-
cally for general eccentricity. We have, however, suc-
ceeded in obtaining analytically their leading correction
term e2

t by implementing our calculation of the tails in
Paper I at order e2

t from the start. The results we thereby
obtained [Eqs. (6.8) of Paper I] are

 

’�et� � 1�
2335

192
e2
t �O�e4

t �; (9.4a)

 �et� � 1�
22 988

8191
e2
t �O�e4

t �; (9.4b)

��et� � 1�
�
62

3
�

4 613 840

350 283
ln2�

24 570 945

1 868 176
ln3

�
� e2

t �O�e4
t �: (9.4c)

[We do not need ��et� here, since it is in factor of a
�-dependent term.] Our final result to O��� and O�e4

t � is
therefore

 

hF i �
32c5

5G
�2x5

�
1�

1247

336
x� 4�x3=2 �

44 711

9072
x2 �

8191

672
�x5=2 �

�
6 643 739 519

69 854 400
�

16

3
�2 �

1712

105
C

�
856

105
ln�16x�

�
x3 � e2

t

�
157

24
�

187

168
x�

2335

48
�x3=2 �

84 547

756
x2 �

821

24
�x5=2 �

�
113 160 471 971

69 854 400
�

18 832

45
ln2

�
234 009

560
ln3�

992

9
�2 �

106 144

315
C�

53 072

315
ln�16x�

�
x3

�
�O�e4

t � �O���
�
: (9.5)

The above expression is in terms of our chosen eccentricity et. One should note that the ‘‘Schwarzschild’’ eccentricity e
appearing in the black-hole perturbation theory [47] is a priori different from et; therefore, the above result can only be
compared modulo a transformation of these eccentricities. We find that, indeed, Eq. (9.5) is equivalent to the black-hole
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perturbation result given by Eq. (180) of [47], if and only if
the two eccentricities are linked together by

 e2
t � e2�1� 6x� 4x2 � 8x3�: (9.6)

(Recall that et � eMH
t here.)

X. CONCLUDING REMARKS

The instantaneous contributions to the 3PN gravitational
wave luminosity from the inspiral phase of a binary system
of compact objects moving in an elliptical orbit are com-
puted using the multipolar post-Minkowskian wave gen-
eration formalism.13 The nontrivial inputs for this
calculation include the mass octupole and current quadru-
pole at 2PN order for general orbits and the 3PN accurate
mass quadrupole. Using the 3PN quasi-Keplerian repre-
sentation of elliptical orbits obtained recently, the flux is
averaged over the binary’s orbit. The instantaneous part of
the energy flux is computed in the standard harmonic
coordinate system (with logarithms). For technical reasons,
the average over an orbit of the instantaneous contributions
is presented in other coordinate systems: modified har-

monic coordinates (without logarithms) and ADM coordi-
nates. Alternative gauge-invariant expressions are also
provided. Supplementing the instantaneous contributions
of this paper by the important hereditary contributions
arising from tails, tails of tails, and tails-squared terms
calculated in Paper I [36], the complete energy flux has
been obtained.

For binaries moving on circular orbits the 3PN energy
flux agrees with that computed in [30]. However, the
circular-orbit results are known to the higher 3.5PN order
[30]. The extension of the 3.5PN term to eccentric orbits
would be interesting, but some uncomputed modules re-
main in the general formalism to compute the multipole
moments for general sources required for the 3.5PN gen-
eration in the eccentric orbit case. We leave this to a future
investigation.
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Rev. D 69, 124007 (2004).

13The instantaneous part of the 3PN gravitational wave flux of
angular momentum and linear momentum from inspiralling
compact binaries moving on elliptical orbits has been computed
[48,49].

INSPIRALLING COMPACT BINARIES IN QUASI- . . . PHYSICAL REVIEW D 77, 064035 (2008)

064035-23



[30] L. Blanchet, B. R. Iyer, and B. Joguet, Phys. Rev. D 65,
064005 (2002); 71, 129903(E) (2005).

[31] L. Blanchet and B. R. Iyer, Phys. Rev. D 71, 024004
(2005).

[32] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R.
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