
Chapter 4 

Electrical transport properties of metallic glasses 

l ntroduction 

The study of the electrical tran'sport properties of amorphous metallic alloys has 

unearthed many new phenomena and has necessitated a paradigm shift to explain 

the contrast between crystalline and amorphous metallic systems. 

A detailed review of the study of electrical transport properties of metallic 

glasses has been given by K.V. Rao [I]. Unlike crystalline metallic systems which 

generally show a positive temperature coefficient of resistance, amorphous metallic 

alloys can show either a positive or a negative temperature coefficient of resistance. 

An empirical correlation between the magnitude of the resistivity and the sign of the 

temperature coefficient of resistance(TCR) was first noticed by Mooij [2] in 1973. 

He found that metallic glasses with a resistivity greater than 150 pohm cm have a 

negative temperature coefficient , while those with a resistivity below, this value show 

a positive temperature coefficient. A natural explanation of the Mooij correlation 

can be given on the basis of the modified Ziman's theory [3]. 

Metallic glasses which are strongly magnetic show both positive and negative 

temperature coefficients over different temperature ranges. Some of them show a 

minimum a t  a temperature slightly below the Curie temperature. These effects 

might have a magnetic origin and require a treatment different from that of other 

metallic glasses. 

Ziman's theory of Liquid metals 

Since the disorder in a glass maybe comparable to that in a liquid, it was thought 

that the theory of J.M.Ziman [4], which was used to explain the resistivity of liquid 

metals could be extended to the case of metallic glasses with certain modifications. 
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The original Ziman theory deals with the potential scattering of conduction 

electrons by a disordered set of scattering centers. In simple single element metal- 

lic liquids, these scattering centers are represented by pseudopotentials. In the 

framework of the Ziman approach, the temperature dependence of the resistivity 

is governed by that of the interference function or the structure factor s(k). In 

such a model, the magnitude as well as the temperature coefficient of the resistivity 

of an alloy would be determined by the relative position of 2kF , where kF is the 

fermi-momentum vector, with respect to k,, the position of the first peak in the 

structure factor s(k). The dynamic effects appear through the Debye-Waller factor 

that describes the temperature dependence of s(k). 

The basic Ziman theory wa$ extended by Evans et a1 [5]  to transition metal 

liquid alloys by replacing the pseudopotential matrix element with a t-matrix in 

order to incorporate scattering phase shifts for non-overlapping potentials. The 

diffraction model expression for the resistivity of a pure liquid metal is 

Where kF and v~ are the wave-vector and velocity of the electrons a t  the Fermi 

surface. t(k) is the scattering matrix and Ro is the atomic volume. Since the k3 

term in the integral heavily weighs on the integrand close to k = kF, it follows from 

the above equation that the temperature dependence of the resistivity is primarily 

determined by s(k = 2kF). 

This is more obvious from the Fig. 4.1. The figure shows the structure factor 

a t  a temperature TI plotted as function of the k vector. Quantitatively this maybe 

obtained from the X-ray diffraction pattern using the formula k = 2.rrszn(B/X), where 

28 is the Bragg angle corresponding to the structure factor s(k) . For our present 

purposes we need to consider'only the region around kp the major peak in s(k). 

As the temperature is increased to say T2, this peak broadens and all the values 

near kp are reduced. For an alloy with 2kF in the vicinity of kp then a negative 

TCR is expected. On the other hand if 2k is far away from kp, all the values of 

the interference function increase, and so a positive TCR is predicted. Thus, for 

example, alloying a monovalent element with a multivalent element should produce 

a positive TCR for electron concentrations less than 1.5 , and a negative TCR for 1.5 

to 2 effective conduction electrons per ion. This picture is quite similar to the case of 

crystals, where monovalent elements are expected to be metals and divalent elements 

are expected to be insulators. Of course divalent elements in the crystalline form are 
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Figure 4.1: The Structure factor of a glass as a function of the scattering wave-vector 
k a t  two temperatures TI and T2 

actually metals and not insulators because of the overlap of bands. The electrons in 

the divalent elements completely fill up the first Brilluon zone and hence they are 

Bragg reflected by the zone boundary. Hence divalent elements are expected to  be 

insulators with a.negative TCR. Similarly in the case of metallic glasses made of 

divalent elements, electrons are filled up to k values corresponding to  Ic, and hence 

the Bragg reflection is more in this case. Hence such metallic glasses have a higher 

resistivity and a negative TCR. 

In the case of metallic glasses containing transition elements, the expression for 

the resistivity is slightly modified to  [5 ] :  

Here q2(EF) is the d-partial-wave phase shift describing the scattering of the 

conduction electrons by the ion cores which carry a muffin-tin potential centered on 

each ion position. Here the integral in Eq. 4.1 has been approximated by its value 

a t  Ic,. 
To calculate the TCR using this model, we require the temperature dependence 
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of the structure factor. Several calculations are available within the framework of 

the diffraction model, but the one used in the present work yields [6], 

Where S E ( k )  is the equilibrium structure factor and e-2W*(T) is the Debye 

Waller factor with Wk(T)  in the Debye approximation, given by [7] 

Wk ( T )  = W k ( 0 )  + 4Wk ( 0 )  

Where 

Wk(0) = 3 f i 2 k 2 / 8 ~ k B O D  

M is the atomic mass. 

With the aid of Eq. 4.2 and Eq. 4.3, the resistivity as a function of temperature 

can be expressed as: 

The temperature coefficient of resistivity can be calculated from the above equa- 

tion 

For T 2 OD W ( T )  is given by [6] 

Therefore under this approximation, a is given by: 

This equation demonstrates that a is negative if S T ( 2 k F )  > 1 and positive 

if S T ( 2 k F )  < 1. Alternatively, a negative a is expected only when 2kF lies in the 

vicinity of k,, the k value corresponding to the first peak of S ( k ) ,  otherwise a positive 

a is expected. 
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Recently, the applicability of Ziman's theory to metallic glasses has been called 

into question, especially in cases, where the mean-free path is of the order of the 

inter-atomic spacing. Experimental results [8] for some glasses show that the de- 

crease of resistivity with temperature is much stronger than that  of the Debye-Waller 

factor for the main peak in the structure factor, which is difficult to account for in 

the diffraction model. 

Even in certain low-resistivity Mg-Zn glasses, which have a long mean free path, 

a violation of the Mooij correlation has been detected [9]. These low resistivity sys- 

tems show a negative TCR which violates the Mooij correlation. While inclusion of 

multiple scattering effects may influence the temperature dependence of resistivity, 

there is now considerable experimental and theoretical evidence that  incipient local- 

ization is likely to  play a major role in causing the Mooij correlation [lo]. Despite 

these doubts, in the present work the experimental data have been analyzed in terms 

of the Ziman7s theory as it is simple and easy to  apply. Any shortcomings of the 

theory will be exposed in the analysis of the experimental da ta  

4.3 AC Resistivity studies on Metal l ic glasses 

The AC resistivity technique was used for the determination of the resistivity of 

metallic glasses. The first glass chosen for this study was Fe73.5C~1Nb3Si13.5B9. 
The specific heat study of this glass showed a unique step-like behaviour a t  Tc. 
Also the Curie temperature for this glass was known. This was the motivation 

for doing the AC resistivity study on this glass. The other glasses studied were 

C065Fe5M02B12Si16 and Fe70C015B15. 

The resistivity studies were carried out using the four-probe ac resistivity tech- 

nique described in chapter 2. High pressure studies were carried out in the piston- 

cylinder apparatus using the High-Temperature High-Pressure cell. For resistivity 

studies, the metallic glass is taken in the form of a thin foil of dimensions 40 pm x 

lOmm x 2mm 

4.3.1 Results and Discussion 

Resistivity studies were performed on Iron-rich and Cobalt-rich metallic glasses . 

While Iron-rich metallic glasses show a positive temperature coefficient of resis- 

tance, Cobalt-rich glasses show a negative temperature coefficient of resistance. We 

can attribute the difference in the TCR for the two glasses to  differing electron 

concentrations in them. 
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Iron has 26 electrons which are distributed among the different orbitals in the 

following manner: 

Fe26 - ls2 2s2 2p6 3s2 3p6 3d6 4s2 

Co27 - 1s2 2s2 2p6 3s2 3P6 3d7 4s2 - 

However the electronic configuration given above is valid only in the case of 

an isolated atom. In a solid there are usually non-integral number of electrons in 

the s and d orbitals due to s-d hybridization. s-d hybridization is the reason for 

the magnetic momentlper atom being a non-integral number of Bohr magnetons. 

According to data from magnetization measurements [ll], the magnetic moment/ 

Iron atom a t  0 K is 2.2 Bohr magnetons ( p B ) ,  while the magnetic moment of Cobalt 

is 1.7 p ~ .  From this it can be seen that the number of s-electrons is around 0.2/atom 

in the case of Iron and 0.7 in the case of Cobalt. The s-electrons are the ones which 

make the major contribution to the electrical conductivity. 

The effective number of charge carriers per atom is calculated by taking into 

account the number of free electrons contributed by the other elements in the 

metallic glass. Assuming that each Silicon atom contributes 4 electrons, Boron 

3, Copper 1, Niobium 2 and Molybdenum 2, the number of free electrons/atom 

per atom turns out to be 1.027 in the case of Fe73.5C~1Nb3BSSi13.5 and 1.5 in 

the case of C065Fe5M02B12Si16. Hence 2kF will be nearer to kp in the case of 

C065Fe5M02B12Si16. Therefore a negative TCR is to be expected for this glass on 

the basis of Ziman's theory. 

Resistivity of Co65Fe5M02B12Si16: 

Fig. 4.2 shows the resistance of C065Fe5M02B12Si16 as a function of tempera- 

ture. The resistivity runs were performed a t  a rate of 5 ' C/min. The sample was 

cooled once the temperature reached 200° C and then cooled back to room temper- 

ature. This glass has a Curie temperature of - 160°C. The resistivity does not seem 

to show any change near T,. The resistivity runs were repeated after the sample 

had cooled to room temperature. I t  is seen from the figure that the resistance of 

the sample increases with successive heating and cooling runs. Such a phenomenon 

has been observed by earlier workers and has been explained on the basis of Ziman's 

theory. Since a metallic glass is in a metastable condition, its configuration could 

change on repeated heating and cooling. One of the changes observed on repeated 

heating and cooling is that the first peak in the diffraction pattern becomes more 

and more sharper. Due to this, if 2kF is near the peak in the structure factor, then 

one would expect the resistance to increase, as in the present case. If 2kF lies far 
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Figure 4.2: Resistance of C065Fe5M~ZBL2S216 as a function of temperature 
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from k,, then one would expect a decrease in the resistance with successive heating 

runs. Another feature which is also noticeable from the figure is that the TCR also 

seems to  change with the heat treatment. 

To explain this, we recall the expression for the temperature coefficient of re- 

sistance: 

From this equation, we notice that there are two contributions to the TCR. 

If ST(2kF) increases with annealing, as one has mentioned above, then the TCR 

should decrease in magnitude. There is usually another effect which adds to this 

effect. It  is well known that repeated heat treatment of the glass leads to  an increase 

in its density . Since cr cr &, and OD, the Debye temperature increases with density, 
D 

this effect leads to  an additional increase in the TCR. 

Resistivity Results for F e 7 3 . 5 C ~ 1  Nb3B9Si13.5 

Effects of heat treatment: 

As in the case of Co65Fe5M02B12Si16, it is seen that  the resistance shows a 

history-dependent behaviour. The resistance decreases with each successive run. 

This is in accordance with Ziman's theory as this glass has a positive temperature 

coefficient. The first run shows a large decrease in the resistance. After a few runs 

the resistivity (at a particular temperature) seems to settle into an equilibrium value, 

which does not change much with successive runs. 

The data for 2nd,3Td and 4th runs could be fitted to  a quadratic equation of the 

form 

cx at  300" C is 8.6 x for the second run and 6.7 x for the third run. 

cx is given by 

a = r l / r (T)  (4.12) 

The coefficient r 2  is of the order of This value of r2 is close to the value 

obtained by Kaul et a1 [12]. According to Kaul et a1 the T2 contribution to the 

resistivity comes from the magnetic contribution to the electron scattering. The 

change in the magnetic contribution to the resistivity above T, is not seen in the 

present experimental data, except a t  1 bar and a t  20 kbar. The sensitivity of the 



Chapter 4 

0.635 I 1 I 1 I I 

0 50 100 150 200 250 300 350 
Temperature ( O C) 

Figure 4.3: Resistance of Fe73.5C~1Nb3B9Si13.5 as a function of temperature 
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Figure 4.4: Resistance of Fe73.5C~1Nb3B9Si13.5  as a function of temperature a t  
different pressures 

experimental arrangement used here is 1 in 1000, whereas kaul et a1 have obtained 

a resolution of 1 in lo6 and hence could detect the change in resistivity a t  T,. 

4.3.2 High pressure resistivity studies on F e 7 3 . 5 C ~ 1  Nb3B9Si13.5 

High pressure resistivity studies were conducted on Fe73.5C~1Nb3B9Si13.5  using the 

high-temperature high-pressure cell described in section. 4.3. The resistance is shown 

in Fig. 4.4 as a function of temperature a t  different pressures. The resistance of the 

metallic glasses a t  these pressures could also be fitted to  a quadratic equation similar 

t o  Eq. 4.11. The values of a, and r2 obtained from this fit are tabulated here: 

The resistivity seems to have a negative TCR when the pressure is 5 kbar. 
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However this is true only for the first run after the sample is pressurized. Subsequent 

runs show only a positive TCR. This is true of the resistivity a t  10 and 15 kbar also. 

The first run after pressurization shows a negative TCR, while subsequent runs show 

only a positive TCR. 

Table 4.1: Pressure dependence of a and the coefficient of the T2 term 

This can be explained by assumihg that  there is a change in the value of 

ST(2kF). This assumption is supported by the fact that  the value of the resis- 
tance has increased when the sample is pressurized from 2 kbar to  5 kbar. It  has to 

be noted that just a decrease in the nearest neighbour distance due to pressurization 

does not lead to a relative shift between the positions of 2kF and kp. An increase in 

density shifts the position of k, as kp o: d1I3 (where d is the density of the glass). 

However since kF is also proportional to d1I3, there is no relative shift between 2kF 

and kp and hence the resistivity remains unchanged. However increasing pressure 

might also lead to  an increase in the number of nearest neighbours for each atom. 

Since the area under the first peak of S ( k )  is proportional to the number of nearest 

neighbour atoms, the value of S(2kF) might increase, thus leading to  an increase 

in the resistance and possibly changing the sign of the TCR if S(2kF) becomes 

greater than 1. When the sample is subsequently heated and cooled, the peaks 

might sharpen, and the value of S(2kF) reverts back to  its old value. Hence the 

TCR becomes positive once again. This brings out an important difference in the 

response of crystalline and non-crystalline systems t o  the application of pressure. 

While in crystalline systems, the application of pressure only leads to  a monotonic 

decrease in the lattice constant, in the case of glassy systems and liquids, it could 

lead to a change in the number of nearest neighbours in addition to  a decrease in 

the inter-atomic distance. From the values of a tabulated, no systematic variation 

of a with pressure is apparent. 

Pressure (kbar) 
1 bar( 2nd run) 

- 1  bar (3'drun) 

a (1" C) 
8.62 x 
6.70 x 

r2 
7.10 x lo-' 
6.48 x lo-' 
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4.4 Thermopower o f  Metall ic Glasses 

4.4.1 TEP Measuring System 

For measuring the T E P  of the metallic glass, the sample is placed along the axis of 

the high temperature cell described earlier. The arrangement of the sample in the 

high temperature cell is identical to  the cell arrangement for the resistivity studies, 

except for the fact that the sample is placed vertically in order to take advantage of 

the natural temperature gradient which exists in the furnace. The T E P  is measured 

using the procedure described in section. 2.5. 

4.4.2 Thermopower of metallic glasses on the basis of Ziman's theory 

The absolute T E P  of the metallic glasses may be deduced from Mott's formula: 

byhere J  is given by: 

The TEP for metallic glasses can be deduced from the basic formula for the 

resistivity by differentiating with respect t o  the position of the Fermi level. 

This gives 

1 
J = 3 - 2 q - - r  (4.15) 

2 

Tyhere q is due to the variation of the upper limit of integration in Eq. 4.1. 

r comes from variation of the pseudopotential. 

[-sing the above equation it is seen that  for metallic glasses which have a high 

value of S(2KF) ,  2q > 3 and hence the thermopower is positive. The same condition 

leads to a negative temperature coefficient of resistance as noted in the last section. 

If 2q < 3, then the thermopower is negative, while the TCR will be positive. This 



Chapter 4 79 

correlation between the sign of the thermopower and the sign of TCR was exper- 

imentally verified by Nagel [17]. However in the case of magnetic glasses like the 

present system this correlation is not found to hold good. Also the Ziman's theory 

can give only a linear dependence on temperature for TEP. The experimental re- 

sults to be discussed in the next section show that the thermopower of most metallic 

glasses containing transition elements have a non-linear dependence on temperature. 

This forces us to  look for alternative explanations for explaining the TEP  results. 

Thermopower of  Fe73.5C~1 Nb3B9Si13.5 

The Thermopower results for Fe73.5C~1Nb3B9Si13.5 are shown in Fig. 4.5. The 

thermopower, unlike the electrical.resistivity, does not seem to be history dependent. 

This is because the thermopower is mainly dependent on the electronic structure of 

the material rather than the structural configuration. So even if the resistivity of the 

glass changes by heat treatment, its thermopower, which is related to the derivative 

of the resistivity will remain unchanged.. The thermopower was determined by the 

differential method discussed earlier using a heating rate of 5 C/min. The most 

prominent feature of the TEP  curves is a minimum around 130" C to 140 O C. This 

feature seems to  occur at  the same temperature irrespective of the pressure. Such a 

minimum has been observed by earlier workers, but it is mentioned in the literature 

that such a minimum occurs at  around Tc/2. For the present metallic glass, T, shifts 

by about 7" C for an increase of 1 kbar pressure. However the minimum does not shift 

with pressure, indicating a non-magnetic origin for the minimum. The Curie point 

transition in this glass manifests as a change of slope in the TEP  vs temperature 

curve. The shift in Tc with pressure can be clearly seen in the figure. The Curie 

point transition is seen much more clearly in the specific heat measurements, which 

are described in the next chapter. The minimum in the TEP  also occurs in the case 

of crystalline Iron. Since Iron is the predominant element in this glass one would 

expect the behaviour of Iron to dominate over the other components. 

4.4.4 Discussion of  Results 

The minimum in the thermopower does not shift with the application of pressure. 

This seems to  hint that the minimum may not be of magnetic origin. Instead it has 

to be explained from very general considerations of the band-structure of Iron. 

The TEP  results are usually interpreted in terms of the Mott's formula for 

diffusion thermopower. 
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r21C2T dlna 

E=EF 

Where a is the conductivity and e is the electronic conductivity. Therefore the 

thermopower is given by the derivative of the electrical conductivity with respect to 

energy evaluated a t  the Fermi energy. 

The electrical conductivity is given by Drude's formula: 

This equation is based on the free-electron approximation. For transition met- 

als, i t  is more appropriate to write this formula in the following form: 

Where T is the relaxation time and N, is the density of states of s-electrons. 

In the case of transition metals the predominant mechanism for scattering is the 

scattering of the s electrons responsible for conduction into the less-mobile d states. 

The relaxation time will be less, if there are more number of d-states available for 

the scattered electrons. Therefore 

Where Nd is the density of d-states. 

Thus. 

where A is a constant with respect to  energy 

In the case of transition metals like Iron it is well known density of states has 

the following form [18]: 

Nd = No(Eo - E)'I2 (4.23) 

Where Eo is the energy corresponding to the top of the d-band. Now using 

Eq. 4.18,Eq. 4.20 and Eq. 4.21, we get 

Differentiating Eq. 4.23 we get 
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If we substitute this result in Eq. 4.18, we would get a thermopower which 

has a negative sign and a linear temperature dependence . Also dS/dT would have 

a negative sign, due to the sign of the electronic charge. This is in contrast to 

experimental results which show that  dS/dT is positive beyond 150" C. To explain 

these facts we would have to take into account the fact that in a ferromagnetic 

system, the bands are split into spin-up and spin-down bands, due to  the magnetic 

interaction. Since there are more electrons in the spin-up band compared to the spin- 

down band the spin-up d band will be filled to a greater extent than the spin-down 

band (Fig. 4.6b). Since the chemical potential (Fermi energy) of the two-bands, 

should be the same, the spin-up band is pushed down with respect to  the spin-down 

band as shown in Fig. 4.6. Due to  this, the number of available d states a t  EF is 

more in the case of the spin-down band than the spin-up band. Hence the electrons 

will be predominantly scattered into the spin-down band. 

Mott, [18] has calculated the diffusion thermopower using such a model. He 

assumes that the spins are not flipped during the scattering. The final result of 

Mott's analysis is: 

Here M is the magnetization and a is the ration of s-s scattering events to s-d 

scattering events, given by 
N, 

const is given by 
r 2 k 2  

Mott has shown that the prediction of this formula is roughly obeyed for the case 

of transition metals like Nickel. The experimental results for Fe73.5C~1Nb3B9Si13.5 

are qualitatively similar to the predictions of this formula. This model predicts that 

dS/dT has a positive sign below T, and a negative sign above T,. It  predicts a 

change in the sign of ds/dT a t  T,, though the sign of S is always negative. In the 

case of Fe73.5CulNb3BgSi13,5, the change of sign in dS/dT is not very obvious. In 

contrast to  this, the thermopower of crystalline Iron, Nickel and Cobalt clearly show 

this change in slope. This can be understood qualitatively from Eq. 4.27. Above T,, 

since -\.I = 0, Eq. 4.27 simplifies to 
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Figure 4.6: Density of d-electron states in a transition metal. a)Paramagnetic state 
b) and c) Ferromagnetic state 
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In the case of metallic glasses as compared to elemental Iron, the d-band will 

be filled up more due to charge transfer from the metalloids. This means that a will 

have a higher value when compared to  Iron. This in turn means that S and dS/dT 

will have a lower magnitude in the case of the glasses. This result is reflected in the 

data for Fe73.5C~1 Nbs B9SiI3.5. 

The thermopower at a particular temperature reduces with pressure. This is 

in agreement with the present theory. When the pressure is increased, the Fermi 

energy, Es, increases due to the increase in electron concentration, however (E,  - EF)  

, remains unchanged. So the combined effect of this is to  reduce the thermopower a t  

a particular temperature. 

The insensitiveness of Tmi, to pressure is somewhat surprising. It might be 

due to the fact that while the Debye temperature increases with pressure the Curie 

temperature decreases with pressure. Therefore while one would expect the magnon 

drag at a particular temperature to reduce, the phonon drag might increase, hence 

the combined effect of the phonon and the magnon drag remains unchanged. Of 

course there is a small decrease in the diffusion thermopower with increase of pres- 

sure. 

4.5 Conclusions 

The electrical transport properties of metallic glasses containing transition elements 

were studied. While the resistivity results showed features characteristic of the 

amorphous state, the thermopower seems to be independent of the glassy nature 

and is not very different from that of the crystalline state. The resistivity shows 

some history dependent effects, which have been related to structural changes in 

the glass. The thermopower does not show any history-dependent effects. The 

thermopower does not follow the predictions of Ziman's theory below T,. 
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Chapter 5 

Pressure dependence of Curie Temperature in 
Metal l ic Glasses 

5.1 Introduction 

There are two theoretical approaches to metallic magnetism, namely the localized 

and the itinerant electron approaches, The former is concerned with localized mag- 

netic moments in direct exchange interaction. In its simplest form it applies to 

non-metallic magnets. For metals and alloys, the itinerant electron model is more 

appropriate. In applying this model to amorphous alloys many 'localized' features 

must also be considered. Unfortunately, the itinerant electron model is difficult to 

apply even to the pure metals such as Iron and Nickel. Hence the application to 

complicated alloys, which the amorphous magnets certainly are, is more difficult. 

High Pressure studies on metallic glasses can help us in building realistic models 

for the magnetism in these glasses. The itinerant and localized models give differing 

predictions for the pressure dependence of the Curie temperature. Hence measure- 

ment of the Curie temperature as a function of pressure can help in identifying the 

most appropriate model to describe amorphous magnetism. 

The magnetism in metallic glasses is complicated by the fact that in addition 

to positional disorder, one also has to contend with chemical disorder due to the 

presence of the metalloids like Boron and Silicon. The presence of the metalloids 

leads to charge transfer between these two species of atoms (e.g, B + Fe). This 

transfer is, however, not a simple movement of electrons in space but is related to 

the hybridization of the d electrons on the transition metal atoms with s-p electrons 
e 

on the metalloids. 

A paramagnetic band calculation [I] on crystalline Fe3Si shows that a 3d band 

containing tens states per transition metal atom can be regarded as being gradually 
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filled as the concentration of the metalloids increases. These states are not localized 

on the transition metal atoms but their wave functions also have a considerable 

weight on the metalloids. This concept replaces that of spatial charge transfer but 

has the same effect. 

In the itinerant electron model, the interaction between two electrons on the 

same lattice site, is of the form: 

Where rl  and r:! are the position co-ordinates of the electrons and r12 is the 

separation between them. 

This interaction is by itself too large, since it is based on an inadequate ap- 

proximation (Hartree-Fock) to this probJem. However, an improvement to include 

correlation effects, due to Kanamori [I] and Hubbard [2], leads to a smaller value I, 

given approximately by 
T 

Where y is a constant of order unity and W the energy band width. This 

formula has been used to discuss the magnetovolume anomalies of many amorphous 

ferromagnets, since the bandwidth W of the 3d electrons varies approximately as 

R , ~  [3]. 

Knowing the bandwidth and the density of states a t  the Fermi level, one can 

use Stoner's criterion for ferromagnetism [5]  

Therefore there are two competing effects which determine the Curie tempera- 

ture. I increases with pressure (since the bandwidth increases under pressure) thus 

favouring the condition for ferromagnetism, but at the same time the density of 

states. iV(EF) will decrease with increase in pressure which has the exactly opposite 

effect. The sign of dT,/dP is determined by the factor which dominates among these 

two. 

.According to  the work of Chien and Unruh [4] there are ranges of metalloid 

content where the saturation magnetization M(0) and Tc vary in the same sense and 

others where this sense is opposite. For weak ferromagnets (7 - 1 << 1) a variation 

in the same sense is expected, i.e, 
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The pressure dependence of Tc can be calculated on the basis of this relation, 

which is more explicitly of the form, 

Here TF is the so-called 'effective degeneracy temperature' given by : 

in terms of the derivatives of the density of states curve. For ferromagnetic 

alloys TF varies about a mean value about lo3 K. 

On the basis of this theory, discussed in detail by Wohlfarth [5] it follows that: 

and 

Where 

is the critical pressure required for the disappearance of ferromagnetism. 

and 

Where rc is the compressibility. 

The first term in Eq. 5.8 is usually small compared with the second and one 

manifestation of the Invar behaviour, characteristic of these metallic glasses con- 

taining Iron, is in fact a large negative pressure derivative of the Curie temperature. 

5.2 Landau theory for metallic glasses 

Wohlfart h has also discussed the ferromagnetic-paramagnetic transition in metallic 

glasses on the basis of a Landau theory. The Landau free energy is given by: 
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Where for the itinerant electron model. 

and 

x o  = P ~ N ( E F ) / ( I -  1) 

C is the magnetoelastic coupling constant given by: 

Since T: << Ti, C is usually positive. 

In the expression for the free energy, K is the compressibility of the glass, w 

the volume strain and P is the hydrostatic pressure applied on the system. While 

the terms involving M 2  and M 4 are the usual terms in a Landau free energy, as 

discussed in chapter 1, the other terms require some explanation. The term P w  is 

obviously the work done in applying a pressure P. This depends on the sign of the 

volume strain. Hence one more term w 2 / 2 ~  is added to take into account dissipative 

forces, which does not depend on the sign of w. The other term which is a product 

of w and M 2  is due to magnetostriction or the coupling between the magnetization 

and the volume strain. 

hlinimizing G with respect to w and substituting the value for w back into 

Eq. 5.11 gives: 

and 

B' = B - 2KC2 

-4s seen from the above equations the magnetoelastic coupling seems to affect 

the free energy. We can calculate the effect of the magnetoelastic coupling on the 

other thermodynamic quantities like magnetization. Since K, the compressibility is 
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always positive and C is also generally positive as mentioned above, it means that 

A' > A and B' < B. From Eq. 5.11, 

Hence the magnetization at  a particular temperature is enhanced by the mag- 

netoelastic coupling. 

The Curie temperature is obtained from A' = O,i.e, 

Substituting for C and x0 i n  the above equation and neglecting the small pos- 

itive term, we get 

In the case of heterogenous alloys, this relation gets modified to: 

A more general expression than Eq. 5.21, involves a power of T, going as 

-T;('/')+', where T = 112 if Fermi statistics are used as in Wohlfarth's theory 

and T = 314 if Bose statistics are used, as in the theory of T.Moriya [6]. The theory 

of Moriya deals with spin fluctuations. 

Hence an experimental measurement of the pressure dependence of Tc will help 

in deciding which model is suitable for a description of the magnetism in these 

metallic glasses. A distinction between the opposing models can, however, be made 

on the basis of differing values of T, if the concentration fluctuations which we are 

present in metallic glasses are small. 

Another important feature of the Landau theory formulated by Wohlfarth, is 

that since the coefficient of the M 2  term is T2 - T:, the effect of fluctuations is 

less. This is seen from Fig. 5.1. The energy cost for a small fluctuation in the order 

parameter in the case of the present model is much more than the energy cost for 

the usual T - Tc term in a Landau theory (Eq. 1.6). The curve for the T - Tc term 

(curve B) has almost the same energy for a wider energy range than for curve A 

(corresponding to the itinerant model) 
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Figure 5.1: The Free energy as a function of the order parameter 
Landau theory (curve B) and for the itinerant model (curve A) 

for a normal 

5.3 Predictions of the localized model 

There exists another model originally due to Heisenberg, which assumes that the 

electrons responsible for magnetism in metals are localized a t  the atomic sites. In 

this model the magnetic interaction is due to the overlap of the electron clouds on 

adjacent atoms. The variation of Tc with pressure, in this model is dependent on the 

variation of the interaction energy J. The spatial variation of J is shown in Fig. 5.2, 

where J is plotted against r, where r is the ratio of the interatomic distance to the 

diameter of the unfilled d shell. 

In the localized picture Tc is directly proportional to J. The values of J cor- 

responding to each of the transition elements is shown in the figure. The pressure 

variation of Tc in Nickel can be accounted for on the basis of this model also. When 

Nickel is pressurized, the interatomic distance reduces and since J increases for 

smaller values of r (for Nickel) Tc increases, which is consistent with observations 

for Sickel [ll]. 
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Figure 5.2: The interaction energy J as a function of r. r is the ratio of the inter- 
atomic distance to the diameter of the unfilled d shell 

5.4 Pressure dependence of the Curie temperature in 
F e 7 3 . 5 C u l  Nb3 B9Si12 and Co65Fe5M02B12Si16 

5.4.1 Experimental 

The Curie temperature of Fe73 .5C~1Nb3 B9SiI2 and Co65Fe5M02B12Si16 was deter- 

mined as a function of temperature a t  different pressures using the technique of ac 

calorimetry described in chapter 3. The sample was enclosed in Talc and placed 

in a Pyrophyllite cell. Talc was chosen as the pressure transmitting medium as 

its thermal conductivity ( 0.733 W/m/K ) is less than that of Pyrophyllite (6.8 

W/m/K) . This minimizes the heat lost to the surroundings. The details about the 

cell assembly are given in chapter 2. 

However the condition w2r2 >> 1 is no longer valid for pressures beyond 2 

kbars. Consequently we cannot use the simple Eq. 3.11, instead we have to deal with 

Eq. 3.7. Since we are interested in the temperature variation of the specific heat, we 

require information on the temperature variation of the thermal conductivity to use 

Equation 3.7. Unfortunately this information is not available in the literature. Hence 

the behaviour of AT,, obtained at  higher pressures may not be a true reflection of 

the specific heat variation . However at  the present moment we were only interested 
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Figure 5.3: Specific Heat of Fe73.5C~1 Nb3 B9Si12 at atmospheric pressure 
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in studying the Curie temperature as a function of pressure. We are still able to 

track the change in specific heat a t  the critical point up to  a pressure of 20 kbar. 

Previous ac calorimetric techniques have not reached such pressures as they used a 

gas as the pressure transmitting medium [7]. Fig. 5.3 shows the specific heat of the 

metallic glass a t  atmospheric pressure. The change in the specific heat a t  the Curie 

temperature is clearly seen from this graph. We use this feature to track the Curie 

point transition, as the pressure is increased. 

The high pressure specific heat measurements were done without a simultaneous 

measurement of the sample resistance. The simultaneous measurement of the sample 
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the ceramic tube. The sample resistance was measured by a separate experiment 

using the ac resistivity technique [8] 

The simultaneous measurement of the resistance is very important in the case 

of metallic glasses as the resistance of metallic glasses can be history dependent 

[9, 101. However after one or two heating and cooling runs the resistance is fairly 

reversible. Hence in this case the simultaneous measurement of the resistance is not 

very important. 

5.4.2 Discussion 

The variation of the Curie temperature of Fe73.5C~1Nb3B9Si12 is shown in Fig. 5.4. 

The Curie temperature of this metallic glass is around 320" C a t  atmospheric pres- 

sure. On application of pressure, the Curie temperature reduces from this value. 

Initially, d T c / d P  is quite small, but beyond 2 kbars it increases to about 9" C /  kbar. 

The experimental results seem to  fit Eq. 5.21. This supports Wohlfarth7s itin- 
I 

erant electron model. 

d T c / d P  for Fe73.5C~1Nb3BgSi12 is found to be much greater than that for 

the other glass which was studied, C065Fe5M02B12Si16. In the case of the latter 

d T c / d P  is only of the order of 2 " C/kbar. A high value of dT , /dP  is a characteristic 

of the Invar alloys. The 'Invar' behaviour has been observed in both crystalline and 

amorphous systems. 

'Invar' is a short form for invariant. Alloys of Nickel and Iron which have a 

very low coefficient of thermal expansion come under this category. This kind of 

behaviour was first noticed in an alloy which had 65 % Iron and 35% Nickel. The 

first model which tried to explain the 'Invar' behaviour was the 27 model of Richard 

Weiss [ll]. In this model it is assumed that Iron has two type of configurations , one 

in which the neighbouring spins are aligned parallel and one in which they are anti- 

parallel. It is conjectured that the parallel arrangement occupies a larger volume 

compared to the anti-parallel arrangement. This is due to the volume dependence 

of the magnetic interaction between the spins. The fact that the high density form 

of Iron is anti-ferromagnetic lends support to this theory. 

As the temperature is increased the areas having anti-parallel spin arrangement 

grow a t  the expense of the parallel spin arrangement. The consequent decrease 

in volume makes up for the normal thermal expansion giving rise to a negligible 

net thermal expansion coefficient. Since the magnetic interactions are sensitive to 

volume changes, the Invar alloys also have a large pressure coefficient of the Curie 
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Figure 5.4: The Curie temperature of Fe73.5CulNb3BSSi12 as a function of pressure 
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temperature. 

Recently [12], the model of R.Weiss has been refined to include non-collinear 

spin arrangements, i.e, the spins are taken not just to be anti-parallel, but are likely 

to point to any direction. This model fits the experimental results more closely than 

the earlier model which assumes only anti-parallel spins. 

It is intersting to compare the values of d T c / d P  for Fe73.5CulNb3B9Si12 and 

C065Fe5M~2B12S~16 with values of d T c / d P  obtained for cryskalline Fe and Co. In 

the case of Fe 113, 141 and Co [15], d T c / d P  is almost zero [16]. Addition of the 

metalloids seems to have made d T c / d P  negative and increased its magnitude. This 

effect is similar to the well-studied case of the crystalline Ni-Cu alloys [ll], where 

d T c / d P  which is positive for Nickel decreases with addition of Copper and finally 

changes sign. This result is supportive of the minimum polarity model [17] rather 

than the rigid band model [18]. The rigid band model which assumes that the d-band 

fills up with the addition of Copper to  Nickel, predicts an increase in d T c / d P .  Even 

though the rigid band model fails to predict the change in d T c / d P  with alloying, it 

seems to explain the transport properties quite well. In fact the rigid band model 

has been used to explain the transport properties (Chapter 4). This shows that 

no single model is able to explain all the available data in the itinerant magnetic 

systems. 

We can also discuss the variation of Tc with pressure on the basis of the localized 

picture. For Iron and Cobalt, the value of 'J' corresponds to a point close to the 

peak in the J vs r curve (Fig. 5.2. Therefore d T c / d P  is almost close to zero as d J / d r  

is almost close to zero. When Iron and Cobalt are alloyed with other elements to 

form the metallic glass, the diameter of the d-shell increases and hence 'r' shifts to 

a lower value. This leads to a reduction in 'J' (and hence Tc) and also leads to a 

negative value for d T c / d P .  Since 'J' varies very sharply with 'r' for r < rpeak, the 

magnitude of d T c / d P  is quite high for Cobalt and Iron metallic glasses when com- 

pared to crystalline Nickel. However the localized model does not give a quantitative 

expression for d T c / d P  which can be tested against experiment. 

5.4.3 Specific Heat studies on CoG5Fe5M02 BI2Sil6 

The specific heat curve for Co65Fe5M02B12Si16 at  atmospheric pressure is shown 

in Fig. 5.5. 

The parameters extracted out of fitting the specific heat data for Co65Fe5M02B12Si16 

to Eq. 3.23 are: 
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Figure 5 .5 :  Specific heat of Co65Fe5M02B12Si16 at  atmospheric pressure. '+' Ex- 
perimental points, solid line is a fit to Eq. 3.23 
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Tc = 138.5 f 1 

a = -0.2 f 0.05 

A+/A- = 1.2 

The value of the critical exponent which has been obtained, is slightly higher 

than the value -0.1 which is expected for a Heisenberg system. Also the fit is not 

very good for T > Tc. Such deviations from the ideal critical exponent values have 

been reported in the past [19, 201. However, when it is seen that the amplitude ratio 

exactly fits the Heisenberg model, it is not clear whether there are deviations from 

the ideal critical behaviour. 

5.5 Conclusions 

dT,/dP has been determined for the ketallic glasses, 6 0 6 5 F e 5 M ~ 2 B 1 2 S i 1 6  and 

Fe73.5Cu1Nb3B9Si12. dT,/dP is found to be around 2 " C/kbar and 9" C/kbar 

respectively. The pressure dependence of the Curie temperature is consistent with 

the itinerant model. The Curie point transition could be traced up to a pressure 

of 20 kbars for the Fe-rich glass. The critical exponent for the specific heat of 

Co65Fe5M02B12Si16 was around -0.2, which is slightly higher than the value for the 

Heisenberg model. However the amplitude ratio was found follow the predictions of 

the Heisenberg model. 
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