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Preface 

Introduction 

This thesis titled, "Study of Electronic phase transitions at  high pres- 

sures" , mainly deals with the experimental study of magnetic phase transi- 

tions in metallic systems. 

Phase transitions and critical are one of the most active areas 

of research in recent decades [I, 21.  he‘ ideas of scaling and universality 

which were first formulated in the area of critical phenomena, have found 

wide application in other areas of Physics also. 

The field of critical phenomena has seen a close interplay of theory and 

experiment , which has proved quite fruitful in understanding and unifying 

the diverse phase transitions which are encountered in nature . 

Starting with the Weiss theory of Ferromagnetism [3], new theories have 

been continuously formulated and subjected to experimental verification. 

Landau [4] generalized all the mean field theories using the very powerful 

concept of an order parameter, which is zero in the less ordered phase and 

non-zero in the more ordered phase. 

Starting from the opposite viewpoint of a microscopic Hamiltonian, the 

Ising and Heisenberg [2] models were formulated to obtain exact solutions 

which could be tested against experiment. However till date analytical so- 

lutions have not been possible for any of these models in three dimensions 

PI. 

To evaluate the relative merits of these theories, required the measure- 



ment of various thermodynamic quantities like specific heat, Susceptibility 
' and magnetization as a function of temperature. It was found that the tem- 

perature variation of these quantities could be accurately described by ex- 

pressions of the form [2]: 

Where C is the thermodynamic quantity, Tc the transition temperature 

and x is the exponent characterizing this transition. 

The values of the exponents seemed to depend only on the dimension of 

the space and number of components of the order parameter [2]. This gave 

rise to the concept of 'Univeisality' in phase transitions. 

One of the most widely studied phase transitions in the solid state are 

the magnetic phase transitions. ~ l thou~h ' th is  was one of the first transitions 

to be studied, the confirmation of universality in these systems is complicated 
by the effects of anisotropy, impurities and defects [5]. 

However after a preliminary understanding of the various phenomena, 

workers in this field have gone on to pose more interesting questions, like 

the effect of disorder on the critical behaviour near a phase transition [6, 71. 

The question was whether the presence of strong disorder like in a glass with 
no translational order would completely smear out a transition and even if 

the transition is not smeared out whether the critical exponents would be 

the same. Earlier experiments and theoretical studies have not answered this 

question [7, 81 in a complete manner. 

The work described in this thesis was mainly motivated by the above- 

mentioned questions. Another important question is the nature of mag- 

netism in ferromagnetic glasses. The nature of magnetism is not completely 

understood in ferromagnetic metals like Iron, Cobalt and Nickel even in the 
crystalline state . Hence it would be optimistic to expect a complete under- 

standing in the amorphous state. However, since there is only short range 



order in the glassy state one can study the differences introduced in the mag- 

netic state due to the absence of the long-range order which is present in the 

crystalline state. 

The variety of phase transitions is greatly enriched by the study of 

these transitions under the application of High Pressures. The appearance 

of new phases under Pressure is one of the unexpected developments in this 

field. 

The application of pressure also helps us to access new regions of 

the phase diagram and study the nature of the phase transitions near critical 

points, which are far above atmospheric pressure. 

The phase transitions studied herein were charaterized using tools like 

specific heat,resistivity and thermopower. 
'\ 

Chapter 1 -_ 

Chapter 1 of the thesis gives a general introduction to phase transitions 

and critical phenomena. The concepts which will be used later on in the 

thesis like the Landau theory of phase transitions, order parameter, critical 

exponents etc will be introduced and the notation used will be clarified. 

Chapter 2 
Chapter 2 gives a detailed description of the High Pressure arrangement, 

i.e, the piston-cylinder apparatus as well as the methods used for measuring 

the high pressures. The ac resistivity and thermopower measuring system 

are also described in this chapter. 

Chapter 3 

Specific heat has been used in our work as a tool to study and charac- 

terize the various transitions [9] as it is one of the most sensitive tools which 

can be used for this purpose. It is more sensitive than transport properties 

like resistivity which have also been used to track transition temperatures 



as a function of pressure. Properties like resistivity need not be directly re- 

lated to the order parameter whereas specific heat is, because it is the second 

derivative of the free energy. 

Chapter 3 gives a general introduction to the various methods which 

have been used till date in the measurement of specific heat. Various methods 

like adiabatic calorimetry, Pulse methods, differential scanning calorimetry 

and ac calorimetry are described and their relative merits discussed in detail. 

From such a comparative study of all the methods used till date and described 
in the literature it turns out that ac calorimetry is ideally suited for the 

study of continuous phase transitions. A brief survey of the literature on 

ac calorimetry is given in this chapter. This survey is used to introduce 
the basic concepts involved in ac calorimetry. . The modifications introduced 

by different workers from time to time and the rationale behind them are 

elucidated . This survey is used to compare the ac calorimetry technique 

developed by us with the techniques described in the literature. 

Chapter 3 also includes a description of the ac calorimetric set-up de- 

veloped by us. This includes a description of the electronic circuitry and as- 

sociated instrumentation required for the ac calorimeter. Experiments used 

to calibrate and test the ac calorimeter are described in this chapter. The 

study of the specific heat of Nickel was undertaken to test the working of the 

ac calorimeter. The specific heat of Nickel was measured near the transition 

from the ferromagnetic to the paramagnetic state. The critical exponent 

characterizing the behaviour near the Curie temperature was determined 

from an analysis of the data. The specific heat exponent a! -0.13 is in 

agreement with literature values [lo]. 

The basic principle [ll] of ac calorimetry is that an oscillatory heat 
input is supplied to the sample and the resulting temperature oscillations 

\ 

are measured. The specific heat of the sample is related to the amplitude of 



the temperature oscillations by the expression : 

This equation is derived under the assumption that the heat loss to the 

surroundings is negligible compared to the heat supplied to the sample. The 

validity of this assumption is tested by a measurement of ATac as a function 

of frequency and power. These measurements are described in chapter 3. 

Since the above expression involves the resistivity of the sample, we 

have made a provision for the simultaneous measurement of the resistivity of 

the sample. Earlier workers in this field [12] have corrected for the variation of 

the resistivity variation of the sample by carrying out a separate experiment. 

However a simultaneous measurement of the sample resistance of the sample 

is important in the case of metallic gkisses -- in which the sample resistance 

can be history-dependent [13, 141. 

We have also developed a feedback mechanism by which the power s u p  

plied to the sample can be kept constant. This is useful to keep the value 

of ATac within reasonable limits. Ideally ATac should be kept as small as 

possible as the value of specific heat obtained by this method is an average 

over the temperature range ATac. The temperature range ATac should be 

have a minimum value especially in the study of critical phenomena wherein 

the specific heat is a rapidly varying function of temperature near the critical 

point. 

We have used a "plus-minus" square wave for heating the sample. 

The voltage passes successively through +V,O,-V and 0 for each quarter-cycle 

of the waveform. A detailed description of the Electronic circuits fabricated 

for this purpose are given in this chapter. This type of waveform had been 

used by Xin et a1 [15]. The advantage is that the square wave does not have 

a second harmonic component which can interfere with the measurement of 

ATac. 
The resistance across the sample is calculated from the measured value 



of the voltage across the sample. Since a square wave was used, the peak 

value of the square wave is used in the calculation of the resistance. The peak 

value of the voltage was obtained by recording the voltage across the sample 

for more than one time period of the oscillation. The values of the voltage 

which are nearly zero are rejected and the remaining values are averaged to 

calculate the resistance of the sample. 

A detailed description of the entire process of the resistance measure- 

ment as well as the automatic power control is given in this chapter. 

To judge the suitability of the ac calorimetric technique for measurement 

of specific heat at high pressures, the specific heat of Nickel was measured as 

a function of temperature at different pressures. The Curie temperature of 

Nickel was identified up to a pressure of 20 kbar. An important result of this 

study was that the fractional change in the ... specific heat at T, decreases as 

the pressure is increased. It is shown that this result cannot be understood 

on the basis of mean field theory. Due to experimental constraints on the 

number of leads which can be taken out of the high pressure cell, the high 

pressure specific heat measurements were done without a simultaneous mea- 
surement of resistance. The sample resistance was determined in a separate 

experiment. dT,/dP for Nickel was found to be approximately 0.6 O C, which 
is slightly higher than the literature value of 0.4 O C. 

Chapter 4 

Chapter 4 gives an account of the transport properties of some metallic 

glasses. These metallic glasses are mainly composed of the transition met- 

als Iron and Cobalt. The resistivity and thermopower of metallic glasses 

were studied as a function of both temperature and pressure. The transport 

properties of simple metallic glasses have traditionally been interpreted in 
terms of Ziman 's theory of liquid metals [16], which has been modified and 

extended to the case of metallic glasses. This theory has also been used in 

the case of metallic glasses containing transition metals with mixed success 



. We try to interpret our data on the basis of Ziman's theory and point 

out the discrepancies between the theory and our results. We also point 

out how transport property measurements can be used to study structural 

rearrangements due to thermal cycling or due to increase in pressure. 

The interesting results described in this chapter are: 

1) While the temperature coefficient of resistance (a) of Iron- based 

metallic glasses are positive, a is negative in case of Cobalt-rich glasses. 

2) The Curie point transition is not seen in the resistivity data while 

there is a clear change of slope in the thermopower . 
These results are discussed and possible explanations suggested. 

Chapter 5 
\ 

The study of Curie temperature a function of temperature in the 
L 

metallic glasses Fe73.5Cul Nb3 BgSi13.5 and CoG5 Fe5 Mo2 B12Si16 is described 

in chapter 5. The variation of T, as a function of pressure is useful in de- 

ciding whether the magnetism is itinerant or localized. It is shown that the 

experimental values of dT,,.dP is consistent with the itinerant model. 

' Chapter 6 

Chapter 6 describes results on the antiferromagnetic Chromium alloys 

Cro.gg5Reo.oo5 and Cro.9gReo.ol. Resistivity and Thermoelectric power were 
used to track the Nee1 temperature as a function of pressure in these two 

alloys. 

The resistivity in Chromium is described by a two-band model due to 

Fedders and Martin [17]. According to this model, there is a condensation of 

electron-hole pairs in the antiferromagnetic state (AFM). The electrons which 

go into these pairs are unavailable for conduction and hence the resistivity 

in the AFM phase (R) is higher than the value 4, extrapolated from the 
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I 

5 paramagnetic phase. This resistivity anomaly is expressed as [17] : 
S 

: I According to the two-band model the conductivity is divided into two 
t 
3 components [18], a, and an, where a, comes from the noncondensing reservoir 

? 
and an from the nesting parts of the Fermi surface that condense to form 

electron-hole pairs. 
I 

Thus a, is unaffected by the condensation, with a, = a,, at  all tem- 

$ peratures T , whereas the conductivity an in the AFM phase is decreased 
i 
3 relative to the conductivity anp at the same temperature extrapolated from 
$ the paramagnetic phase in the 'ratio 
f 

, 
t where 2A(T) is the temperature-dependent energy gap. 
i 

The resistivity anomaly defined previously then follows: 
1 

\ 

6 Where 

is the fraction of the nesting octahedra that condenses, and 

is the fiaction of the total Fermi surface in the octahedra. 

We proceed by assuming a reasonable number [l7]for the fraction of the 

Fermi surface which is in the Octahedra and calculate the energy gap due to 
the creation of an electron-hole pair. While the fraction of the Fermi surface 

i 
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i" 
t 
i 
F 

which is in the octahedra will change slightly with pressure and composition 
2 
% [HI, we ignore it as a first approximation, in our calculation of the energy 

gap. The energy gap is a function of temperature and has its maximum value 

at  Ok. At any finite temperature it has a value less than this and decreases to 

zero at the Nee1 temperature. We have the ratio of the gap at  temperature 

T to its value at Ok, i-e, A(T)/A(O) as the order parameter describing the 

anti-ferromagnetic to paramagnetic transition. 

The energy gap is calculated by the following steps: 
& 

1) Assume some value for the energy gap. * 
i 2)Evaluate the value of g corresponding to this value of A. 

f 3)Calculate the corresponding value of the resistivity anomaly. 
1 
$ 
i 4) Calculate the difference betwep the experimental and theoretical 
i values of the resistivity anomaly. -. 
F 5) Iteratively calculate the value of A which minimizes this difference. 
g 

This gives the value of A for that temperature. 
f 

6) This procedure is repeated for all the temperatures for which the 

experimental data is available. 

7) From this a curve of A as a function of temperature is generated. 
! 
Z We are able to fit an equation of the form 1 

The value of P in most cases is around 0.5, which is characteristic of a 

mean field type of transition [4]. 

The thermopower of Chromium alloys was also used to track the tran- 

sition from the AFM phase to the paramagnetic phase. The thermopower 

anomaly, unlike the resistivity anomaly,does not reduce with increasing pres- 

sure, in fact it increases with increase in pressure. This is useful in tracking 

the transition to higher pressures. The transition from the AFM to the 

i 

i 



4 
i; 
9 phase is seen as a large decrease in the thermopower 
I t Chapter 7 
C * 
$ 
s Chapter 7 deals with the glass transition in a Chalcogenide glass SesoTe3~. 
2 
6 The glass transition temperature was determined as a function of pressure in 
b 
s this system using the technique of differential thermal analysis (DTA). The 
G 

-1 differential Thermal Analyzer was first calibrated by studying the melting + 

%- transition in Indium and a structural transition in Potassium Nitrate. 

Electrical Conductivity was also used to determine the glass transition 

temperature as a function of pressure. The glass transition temperatures 

obtained by the two given techniques were found to agree reasonably well. 

The glass transition was also studied for different heating rates to throw light 

on the kinetic nature of this transition. 

Other than studying the glass transition, the conductivity data was of 

interest in studying the nature of transport processes in these disordered 

I semi-conductors. 
," 
Z Since the Chalcogenide glasses are semiconductors. the electrical con- 
4 
"r 
I ductivity is given by [3]: 

a(T) = a, exp (-A/kBT) (9) 

Where A is the mobility gap. The magnitude of this gap is found to 

3 
decrease with pressure. Another experimental result obtained is that the 

I 
* magnitude of the gap is larger in the supercooled liquid state when compared 

to the glassy state. 

The experimental values of dT,/dP are used to see which of the models 
1 for the glass transition is more appropriate. 

The work described in this thesis is partially contained in the following 
E papers: 
I 



i) Measurement of specific heat near T, in some magnetic systems , 
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