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CHAPTER 1

| NTRODUCT! ON

1.1 LI QUI D CRYSTALS

Liquid crystals are states of matter whose symmetry
andmechanical properties are intermediate between those
of crystalline solids and isotropic liquids [1-3]. Hence
they are also known as mesophases. They can be broadly
classified into two classes: thermotropic liquid crystals
and lyotropic liquid crystals. In thermotropic liquid
crystals the transitions to the mesophases take place
due to purely thermal effects. Lyotropic liquid crystals,
on the other hand, occur in solutions for certain range of
concentration of the solute molecules. Geometrical shape
anisotropy of the constituent molecules is an essential
criterion for any material to exhibit mesomorphism. For
example, in the case of thermotropic liquid crystals they

are either rod-like or disc-like {4].

1.2 CLASSIFICATION OF THERMOTROPI C LIQUID CRYSTALS
Based on their symmetry, thermotropic mesophases of
rod-like molecules are classified into two classes:

nematic and smectic.

The nematic mesophase i's characterized by

orientational ordering of the molecules and liquid-like



arrangenent of their centres of mass (Fig.ta). The |ong
axes of the nolecules are oriented,on an average, parallel
to a well-defined direction in space. This nean alignment
direction /is denoted by a unit vector n, cal led the
director! The direction of n in space is arbitrary, and
is 1mpq§ed by mnor forces such as the guiding effect of
the /walls of the container. The system is general ly
uniaxial, wth infinite rotational synmretry about f.
There is also reflection symmetry in planes parallel and
normal to n, and two fold rotational symretry about any
axis normal to n. This implies that and -n are
physically equivalent. Consequently, nematics are not
ferroelectric, even if the individual nolecules carry a
permanent electric dipole moment parallel to their |ong

axi s.

If the nolecules are optically active, one obtains a
nodi fication of the nematic phase known as cholesteric or

chiral nematic. This phase can also be obtained by doping

a nematic wth small amounts of an optically active
conpound. The lack of reflection symetry at t he
nol ecul ar | evel results in a nmacroscopic chira

structure, viz, a helicoidal ar rangenent of t he

nol ecul es (Fig.1b). This structure can be described by the

director field, n = cos(q,z), n, = sin(q, z) and n_, = 0.
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Fig.1. Schematic di agram show ng t he nol ecul ar arrangenent
in different types of nesophases exhibited by rod-1ike
mol ecul es. (a) nematic, (b) cholesteric, (c) snectic A
and (d4) snmectic C.



The torsion of the helix, is in practice small, so that

q

(]
the pitch of the helix P=21t/q° is generally of the order

of a few microns. The system is optically uniaxial with

the optic axis along the axis of the helix.

The smectic phases are characterized by one degree of
translational order with the molecules arranged in layers.
As shown by Landau and Peierls [5], the thermal
fluctuations in such a system can destroy the long range
order. However, as pointed out by de Gennes [6], the
smectic structure is readily stabilized by an external
magnetic field or by the boundaries. Depending on the
arrangement of the molecules within the layers, they are

further classified as smectic A,B,C etc.

In the smectic A phase the molecules are arranged in
layers with A normal to the layers. Within each layer
the centres of mass of the molecules have a two-
dimensional liquid-Ilike arrangement (Fig.1c). The system
is uniaxial with infinite rotational symmetry about n.
Further, n and -n are physically equivalent. Mesogenic
compounds with chiral molecules can also exhibit the
smectic A phase. In such cases the infinite rotational

symmetry about N does not imply a plane of symmetry

A
parallel to n.



The smectic C phase is similar to smectic A except
that the molecules are tilted with respect to the Ilayer
normal (Fig.1d). The tilt is described in terms of a unit
vector ¢ which is the projection of N on the plane of
the layer. 1t 1is wusually called the <c-director. The
c-directors of adjacent layers are parallel on an average,
ie, the c-director has long range order. An aligned sample
of smectic C is optically biaxial. The symmetry elements
of a smectic C are a twofold axis (normal to the ne
plane) and a plane of symmetry normal to it. As in a
nematic, molecular chirality induces torsion in a
smectic C. The c-director traces out a helix in space,
with the axis of the helix normal to the layers. This is

known as the chiral smectic C phase [7].

Thermotropic mesophases made up of disc-like molecules
are of three types: nematic, columnar and lamellar [8,9]
(Fig.2). A discotic nematic is also characterized by
orientational ordering of the symmetry axes of the
molecules, with the discs aligned more or less parallel to
each other. |If the molecules are chiral we get the chiral
nematic phase with a helical arrangement of the director,
as in the case of rod-Ilike molecules. |In the columnar
mesophases the molecules are arranged in columns and

depending on the symmetry of the packing of the columns
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Fig.2. Schematic diagram show ng the nolecul ar arrangement
in some discotic nmesophases. (a) columar phase, (b)
hexagonal and (c) rectangular nodifications of the

columar structure, (d) tilted columar phase, (e)
nematic and (£) chiral nemati c.



they are classified as hexagonal or rectangular columnar
phases. I n addition,there is also a tilted columnar phase,
where the axis of the columns is tilted with respect to
the normal to plane containing the molecules. In the
lamellar phase the molecules are arranged in layers, but

the detailed structure has not yet been resolved.

1.3 THE NEMATIC PHASE

The nematic mesophase is characterized by
orientational ordering of the molecules. As mentioned
earlier this ordering can be described in terms of a unit
vector ﬁ, called the director, which gives the average
alignment direction. In the case of nematics of rod-like
molecules, ﬁgives the average orientation of the long
axis of the molecule and in the case of discotic nematics
it gives the average orientation of the short axis normal
to the disc. The direction of n can vary gradually from
point to point in the medium. The system is uniaxial with
the optic axis along n. All the studies reported in the
main body of this thesis are on the nematic phase.
Further, the electrohydrodynamic instabilities in nematics
are strongly influenced by many of its physical
properties. Hence we briefly discuss the physical

properties of nematics below.



The Orientational Order Parameter

The ordering in a nematic phase, assumed to be made up
of cylindrically symmetric molecules can be described by
the distribution function f(8) for the angle between the
director and the unique axis of the molecule [10,11]. f(8)

can be expanded in Legendre polynomials as:

£(8) = 3 + 3T % (4n +1) <P2n> P2n(cosd)

MNstL

1
where <Pz2n> = szn(cose) f(0) d(cos8).

-1
Since h and -n are equivalent, only the even powers of
cos8 appear in the above expansion. For an isotropic
liquid all <P2n> = 0 , and for perfect alignment of the
molecules <Pzn> = 1 . Experimentally, the leading order
parameter <Pz2n>= <%(3 cos26-1)> 1is easily measured and
is normally referred to as the order parameter S of the
nematic. The experimentally observed variation of S with
temperature is shown in Fig.3 [12]. The value of S at the

nematic-isotropic transition is usually about 0.3 to 0.5,

indicating that the transition is first order [517.

Curvature Elasticity

In a nematic, the director orientation can vary

gradually in space, with the magnitude of the order
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parameter remaining constant throughout the sample. The
structure can be described by specifying the director at
each point in the medium. Since it is a fluid, the
fundamental elasticity in a nematic is associated with
curvature in the director field, rather than with
molecular displacements. A continuum theory of the
curvature elasticity has been developed by Oseen [13],

Frank [14] and Nehring and Saupe [15].

To describe the state of curvature at any point, we
perform a Taylor series expansion of the director field
around that point, in a local cartesian coordinate system

in which n is along the 2z axis at the origin:

A=k+[(an/3X)X+ (an /3Y)Y + (an /32)2] 3

+ [(an,/3X)X + (3n,/3Y)Y + (3n,/22)2] J.

where ?, 3and k are dimensionless unit vectors
along the X, Y and Z axes respectively. Since the distorti-
on of the director field is assumed to be small, only the
first derivatives need be retained in the expansion.
Keeping the apolar nature of the director in mind the six
first derivatives can be grouped into three sets of

curvatures (Fig.4):

Splay: k [(@n,/3X) + (@n,/3Y)] =n div i



Twist: (3n,/3X) - (3 n /3Y) ©hn.curlhn

Bend: - [(9n,/3 Z)fl} + (9n,/0 2)3] =N x curl n .

The first and third expressions are polar vectors while
the second is a pseudo scalar.Therefore only their squares
appear in the expression for the elastic free energy
density fd, which is a scalar quantity. fdcan be expanded
in powers of A and its gradients. Retaining only those
terms that are invariant under the point group symmetry of
the nematic and neglecting the surface terms, fd can be
written as:

£ = 3 K, (divh)z  + ¥ K (n.curln)z +

+ % Ks(ﬁ x curlin)?2 (1)

The K, are called the Frank elastic constants or the
curvature elastic constants. They correspond to the above
mentioned three types of deformations possible in a
nematic. Since any one of these deformations can be
produced independently, the K, are positive. Usually they

are of the order of 10-8 dynes.

The condition for equilibrium in the absence of
external fields can be obtained by minimizing the total
distortion energy with respect to all variations of the

director ?\(’F) which keep n2=1. Taking into account
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Fig.4. The three principal types of deformations in a
nematic. (from Ref.1).



this constraint by wusing the method of Lagrangian
undetermined multipliers, the condition for equilibrium is
obtained as [2]:

d d d -_
h.1=—(Bf/ani)+aj(3f/agj.1)=—c(r) n, (2)

where ajz 0 /9 Xj’ gjil:l 85 n, , and c(?) is an arbitrary

—
function of 7. h is called the molecular field. The
above equation states that, in equilibrium, the director,

must be parallel to the molecular field at each point.
-—
d

- - -
h® =h® +h* +h° , where the three parts refer to splay,

twist and bend respectively and are given by

—

hs = Ki grad(divﬁ)

he = -K, [A curlh + curl(An)] (3)
Ab - A A —

h = K3 [B x curln + curl(n x B)] ,

—
where A = 0 . curln and B = N x curl;.
e -4
Out of equilibrium, when nand h° are not parallel,
the director field experiences a torque which tries to
make them. collinear. The torque density is given by

-— A ._;d
F=nx h .

The influence of external fields acting on a nematic

can also be described in terms of appropriate molecular
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-

fields. Thus in addition to hd », there will be
contributions to the molecular field from each of these
external fields. Under such circumstances the equilibrium

condition is that n must be parallel to the total

molecular field ﬁ.

The elastic constants of a nematic vary considerably
with temperature, the variation being approximately
proportional to the square of the order parameter S [16].
Twist and bend distortions of the director field are
forbidden 1in the smectic A phase as these alter the
layer thickness. As a result K2 and K3 are found to

diverge strongly close to nematic-smectic A transition

points [17,18].

Magnetic Susceptibility
Nematic 1liquid crystals are usually diamagnetic,

being made up of organic molecules. The magnetization 'ﬁ
induced in the medium by an external fie]d'ﬁ is given by
(21,

- - A=A

M = le + (x“-x$) (n.H) n (4)
where x“and)clare the principal diamagnetic susceptibilit-
ies parallel and normal to the director, respectively.

They are of the order of 10-7 cgs electromagnetic
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units. The nmmajor contribution to the di amagneti c
susceptibility comes fromthe rigid core of the nolecul es
whi ch normal 1y  contai ns aromatic rings. It is
energetically favourable for these aromatic rings to
orient parallel to an applied magnetic field H. As a
result nematics nmade up of rod-like rmolecules wth
aromatic cores have a positive diamagnetic anisotropy

X=X =% and align with the optic axis parallel to H.
Due to the sanme reason, discotic nematics consisting of
nol ecules wth aromatic cores have a negative x, and

orient with their optic axis normal to H

The free energy density of a nematic in a nmagnetic

field is

Substituting for M,we get

m

£7 = ¥ X, H2 - 3 X, (A.H)?2

The first term is independent of the nolecular
orientation and hence can be omtted in nost problens. The
nol ecul ar field corresponding to the orientational part of

the magnetic free energy can be obtained by mnimzing the
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free energy as before. It is given by [2]

- A > >

h = xa(n.H) H (5)
-—

If nis not parallel to h*, the nagnetic torque

is given by

PN " —-‘m
rm =n x

Di el ectric Anisotropy
The el ectric displacenent D induced in a nematic by

an electric field E is given by (2]
) (n.E) n (6)

where €, and e, are the principal dielectric constants
parallel and normal to the director respectively. A low
frequencies of the applied field the dielectric anisotropy
€, = €, - € my be positive or negative depending on the
detail ed chem cal structure of the constituent nolecules.
|f the nmolecule is nonpolar or carries a permanent dipole
nmonent parallel to its long axis, €, will be larger than

e, . In practice large positive values of €, can be
obtai ned by attaching a strongly polar group at one end of
the nolecule. If there is a pernmanent dipole nmoment which

is nore or Iess normal to its long axis we can have e <e .
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The anisotropy €, is strongly dependent on temperature.

The free energy density of a nematic in an electric

field is given by
£ = -¢ E2/(8M) - €, (A.E)2 /(8M)

The electric contribution to the molecular field can be

obtained by minimizing £ .t is given by [2]

- A = =k
h™ = e, (n.E)E /(4m) (7)
The dielectric constants are of course frequency
dependent. Both €, and €, usually show a Debye type of
relaxation at microwave frequencies [19]. Similar
relaxation frequencies are also found in the isotropic
phase. |If the molecule has a nonzero component of
electric dipole moment along the long axis, there is an
additional relaxation of € at much lower
frequencies, usually in the radio frequency range [20].
This arises because of the strong hindering of the
rotation of the molecule about a short axis. For long
molecules it is clear that such a rotation is difficult in
the nematic phase, and the resulting relaxation frequency

is correspondingly small [21].
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Electrical Conductivity

The current carriers in a nematic are the impurity
ions that are present in the medium. The conductivity can
be varied in the range 10-1' to 10-8 ohm-'cm 1! by
doping the nematic material with suitable ions. The
conductivity is anisotropic, with the principal component
o, wvparallel to n being larger than the component o,
normal to n. The positive sign of a (=a- a can be
understood as arising from the greater degree of freedom
for the motion of the ions along A than for that normal
to n. For an electric field applied in an arbitrary
direction, the current density is given by

, j:oLE+ O, (ﬁ.E)?\ (8)
In smectic A and C phases the mobility of the ions in the
plane of the layer 1is larger than that across it.
Therefore a is negative in these phases. In some
nematics short range smectic-like ordering develops close

to smectic (A or C)- nematic transition and g becomes

negative [22].

1.4 ALIGNMENT OF NEMATICS
As mentioned earlier, the director n can vary

gradually from point to point in a nematic. For
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experimental purposes it is often necessary to obtain
samples with uniform alignment of n. Two types of
alignments are frequently used: one with the optic axis
parallel to the bounding surfaces called planar or
homogeneous alignment, and the other with the optic axis
normal to them called homeotropic alignment (Fig. 5 ).
Homogeneous alignment can be produced by coating the
surfaces with certain polymers followed by unidirectional
rubbing [23]. This creates grooves on the surface along
the direction of rubbing and, as a result, the nematic
is oriented with the director along this direction. Such
an alignment can also be produced by vacuum deposition
of silicon monoxide at an angle of about 30 to the
surface . In this case the shadowing effect produces
grooves on the surface [23]. Homeotropic alignment is
usually produced by coating the surface with certain
polymers which have chemical groups that can attach
themselves to the surface and long chains that stick out
of the surface. |In many cases very clean glass plates

give a homeotropic alignment even without any further

treatment.

Due to the diamagnetic and dielectric anisotropy of
nematics, an external magnetic or electric field can also

be used to align the director in the medium. Depending
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(b) homeotropic alignnents.
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on the sign of the corresponding anisotropy, h is align-
ed either parallel or normal to the field direction. In
many experiments external magnetic and electric fields are
used to induce distortions in a surface-aligned nonodonai n
sanple ( see Chapter 7). These bulk distortions can
influence the orientation of n at the surface if the
surface anchoring is weak. Under such conditions,the surfa-
ce terns in the free energy should be taken into account
to determne the equilibriumstate. On the other hand,if
the surface anchoring is strong, these bulk distortions
cannot influence the orientation of A at the surface and

the surface terns in the free energy can be negl ect ed.

1.5 HYDRODYNAM CS OF NEMATI CS

Due to the absence of any positional ordering' of the
mol ecul es in the nedium a nematic can flow with ease. The
flow properties are, however, very conplex due to the
orientational ordering of the nol ecul es. The transl ational
notion of the nolecules is coupled to their orientationa
notion. As a result, a flow in the nmediumcan disturb the
al ignnent of the nolecul es under many circunstances. A
conti nuumtheory of the flow properties of nenmatics was
devel oped by FEricksen [24] and Leslie [25]1, a  brief
account of which is given below W find it convenient to

use the notation of de Gennes[2] as it is the one wdely
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used in the literature on electrohydrodynamic problems.

The dynamical state of a flowing isotropic Iliquid is
described by the velocity field V( T ). Assuming the
fluid to be incompressible, its equation of motion is

given by the Navier - Stokes equation [26],
P de /dt = a. Q:-

where € is the density, 3,2 3/3 Xy 0= " P B+ iy
is the stress tensor, p the pressure and c:i’j the viscous
stress tensor. oj’_.] describes the irreversible transfer of
momentum in the fluid and an expression for it can be
found by considering the entropy source due to all the
frictional processes in the medium [27]. Since in an
isotropic fluid only a relative motion of its different

parts can give rise to internal friction, oij depends only

on the velocity gradients and is given by

where Aij = % (ajv.l+a.lvj) and 7 is the viscosity

coefficient.
As mentioned earlier,the translational and rotational

degrees of freedom in a nematic are coupled in most but
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not all situations. This necessitates the choice of an

additional variable describing the local alignment of the

molecules to describe its dynamical state. This is done in

terms of the director ﬁ(?). The equations of motion of
. . - A

these two variables, viz, wv(r) and n(r) can be

obtained by determining the entropy source due to all

frictional processes 1in the medium. Assuming these
processes to be isothermal, it is given by
- ( a o d F
TS=-(d/dt)J['}(’v+f+f+f]dV (9)

where T is the temperature, s the entropy, f°  an internal
free energy density, fOI the distortion free energy density
and fF the free energy density due to an external electric
or magnetic field. The acceleration equation for the fluid
can be written as

(’dvi /dt = 3.0.. (10)

1 1]

where 933 is the stress tensor. Substituting Eg.(10) in

Eq.(9) and integrating by parts, we get the contribution

of the kinetic energy to the entropy source to be
b3
-(d/dt) | (¥PVv ) dv = Joij 31"3 av (11)

. F . . A
A change in f can arise from small changes In n at
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each point in the medium. This is given by

" efoas af = - h,
5 =|(3f /an,) ~3,(3f /ag, )]en; = - hy &n,

-—
where h" is the corresponding molecular field. Therefore

the contribution of fF to the entropy source is given by
F - =
—(d/dt)ff dv = [h . ndv (12)

. d . .
A change in f can be split up into two parts. The
first part results from small changes in n at each point

in the medium and as in the case of the external field it

is

-

4 . ) . .
where h is the molecular field due to the distortion

free energy.

A

The second part arises from small displacements of n

which conserve its orientation. Considering a displacement
- - =N M )

of the form r’=r+u(r), the change in the free energy

is given by

d d ’ ’
5f, = (of /3931 )[(ani/axj) - (3n;/23xy)]

It can be easily shown that



(ang/ axy) - (ony/ ax,) = - (akni) (aj uk)

Therefore the change in the free energy can be written as

d d
6F, T O5 ¥ Y
where c:fI =-(3fd/89 ) 3, n and - n.
Jk 331 k| gji- aj 1,
ofj is called the distortion or elastic stress tensor.
It is not symmetric in general. This asymmetry arises

from the fact that a displacement corresponding to a pure
rotation of the centres of mass of the molecules which
conserves the orientation of n usually alters the
distortion energy. However if the elastic constants are
d . . . . .

equal, f becomes invariant with respect to rotations in
- . A d

U space and in N space separately and o¢.. becomes

|
symmetric.

If the medium is incompressible, then a displacement

of f results in a change in £° given by

i3 %17

Hence the variation in the total free energy due to small

. A . . . . .
displacements of n which conserve its orientation is



21

d ] e
&(f, +f ) =0, 7Ju,
e = d . . - .
Wherea,lj 5y -p 6‘13 is the Ericksen or equilibrium

. . ° d F
stress tensor.Therefore the contribution of f , f and f

to the entropy source is given by

r_Ao d F e —_ - )
-(d/dt)J[f +f +f ] dv = [-oij aivj+ h . n ] dv (13)‘
- d —>F . .
where h = h® + h is the total molecular field.

The total entropy source can now be written as

. - - e — -:L
Ts = f[(oij 9, )3y + h .a ]l av (14)
where F; is the material derivative of n. The
difference a - -E-e = ?’ is the viscous stress tensor.
a' is not symmetric in general. The antisymmetric part

-—
can be expressed in terms of a vector ' defined as

etc. (15)

z yx 4

From angular momentum conservation equation it can be

shown that

T=Axh (16)



22

P N
' is therefore the torque density ‘'exerted by the
internal degree of freedom non the flow. Since n and
-—
h are collinear in equilibrium, this torque is nonzero

only when the system is not in equilibrium. Thus the

asymmetry of & reflects the presence of these bulk

torques.

Using Eq.(14) the expression for the entropy source can

be further simplified as
Td= |[A:G°+hN1]dv (17)

where 3% is the symmetric part of 3 ,

=l

x N and W:icurl v.

-

N represents the rate of change of the director
orientation with respect to the background fluid. Eq.(17)
clearly shows that there are two contributions to the
entropy source. The first term represents the losses due
to conventional viscosity effects and the second term
gives the losses associated with a rotation of n  with
respect to the background fluid. Each contribution to the
entropy source can be written as the product of a ‘'flux’
and the conjugate ’'force’[27]. Assuming that the fluxes

are weak, the forces can be expressed as linear functions
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of the fluxes. Taking Aj and Ni as the fluxes,w have

S = L.. + .
i3 i Pt Mie Moo
- b}
hL MijL Aij + a* Nk

B/ the Onsager reciprocity relations M and M' nust be
identical. The structure of the matrices L,M and P nust be
conpatible with the local symmetry of the nematic.
Assuming -the nematic to be inconpressible, the nost

general forns of the stress tensor and the nolecular field

are
cij =a, n;nyn . n A, +a AlJ +a. n,n Ay
+a . n ony A+ a, n; Ny + a, ng N (18)
and
hi = Y; N, + 1; ny A, (19)
where Y, =a,-a, ad Y, =za_ *t a .

The coefficients a, are called the Leslie viscosity
coefficients and are wusually of the order of 10-' to 1l
poi se. Using the Onsager reciprocity relations Parodi [28]

showed that the a; are related by the relation



Hence the dynamics of an incompressible nematic involves
five independent viscosity coefficients. The meaning of
the different terms in o’ is illustrated in Fig.6 [29].
The @ term corresponds to the wusual viscosity of an
isotropic fluid. The 3 term is symmetric and expresses
the stretching effect of an irrotational flow. The a

and a, terms are asymmetric and express the torques
exerted on n by an irrotational flow. The a and a

3

terms are also asymmetric and express the torques due to a

3

rotational flow.

Thus in the Ericksen-Leslie theory the equations

describing a flowing nematic are:
1) the acceleration equation-

®dv;/dt = 9,045 ,

where a =a®+ o', When the dependence on the
director and its gradients is neglected, this equation

reduces to the Navier-Stokes equation for an isotropic

fluid.

2) the equation hy = T N; + ﬂniAij , which gives the rate

of change of the director in terms of the velocity
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gradients and the molecular field.

The coupling between orientation and flow in nematics
leads to many interesting flow properties. One such is the
so-called nematic Hall-effect [30]. Consider the
Poiseuille flow of a nematic between two horizontal planes
as shown in Fig.7 . If the director is oriented at an
angle to the flow direction wusing an external magnetic
field applied at an angle ¢ to the flow . direction,
then a transverse pressure gradient is found to develop
in the medium. This can be understood in terms of the
Ericksen-Leslie theory. Using the Leslie stress tensor
a, the viscous forces acting in the fluid are found to
be

F, 8 (1) costg + J, Sin2@)(ds/dz) = [ (2) ds/dz
and

Fp = 0, - M, ) sing cosg ds/dz.
where Ua: $a , T]b= ¥ (a, +a+ +a_ ) and s= (dv, /dz) is
the local shear rate. The presence of F, leads to

a transverse flow in the medium. In the steady state F, and

F, must be balanced by pressure gradients. Therefore,

(ap/2x) / (B3p/ 3y) = [(?b-T)a)/ 17(¢)] sin @ cos g.



—~ Manometric tubes

Fig.7.Poiseuille flow under a strong obligue magnetic

field. In the absence of H the flow is along vy.
(from Ref.2 ).



26

It is clear from the above equation that when the
initial flow is either along the director or normal to
it, there is no transverse flow. Otherwise the director
tends to deflect the initial flow giving rise toa

transverse flow in the medium.
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