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Electronydrodynamic instabilities

In nematics



CHAPTER 2

ELECTROHYDRODYNAMIC INSTABILITIES I N NEMATICS

2.1 INTRODUCTION

Hydrodynamic instabilities in isotropic liquids are
well known [1]. The classic example is the Rayleigh-Benard
instability in thin liquid layers subjected to an adverse
temperature gradient. Above a critical value of the
temperature gradient the system becomes unstable and
breaks up into a set of convective rolls whose size and
shape depend on the details of the boundary conditions.
Similar instabilities are also found in nematics {2]. In
addition they also exhibit convective instabilities under
the action of an external electric field [2-4]. These
electroconvective 0Or electrohydrodynamic (EHD) instabiliti-
es were first observed in the 1930's [5]. However, a
detailed study of these were taken up only in the 60's
after the technological importance of the electro-optic
properties of nematics was recognized. Most of the studies
have been on materials with negative or weakly positive
dielectric anisotropy and positive conductivity anisotropy
The mechanism for the EHD instabilities in these materials
is now well understood. A major part of the work reported
in this thesis 1is on this <class of nematics. Hence the
relevant experimental and theoretical studies oOn EHD

instabilities in these materials is summarized below.



2.2 WILLIAMS DOMAIN INSTABILITY

The Williams domain instability is observed in
homogeneously aligned thin layers of a nematic with
negative or weakly positive dielectric anisotropy (ea) and
positive conductivity anisotropy (o, ), under the action
of an external DC or low-frequency AC electric field. It
was independently discovered by Williams [6] and Zvereva
and Kapustin [7]. A typical experimental set up to study
this instability is shown in Fig.1 . A thin layer of a
nematic is sandwiched between two transparent conducting
glass plates with the director parallel to them. The
thickness of the layer is usually of the order of tens of
micrometres. When a sufficiently large electric field is
applied between the two glass plates the medium gives rise
to an optical pattern consisting of a set of bright
striations called Wailliams domains (Fig.2). It the field
is increased further, the system becomes turbulent and

scatters light strongly. This is called the dynamic

scattering mode [8].

There have been a large number of experimental
investigations on the Williams domain instability
[3,9,10]. The important facts established by these
studies are summarized below.

-The instability is observed under DC and low-frequency AC
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electric fields.

-It is characterized by a threshold voltage, ie,
the voltage at which the system becomes unstable
is independent of the thickness of the sample.

-The width of the domains is approximately equal to the
thickness of the sample.

-When viewed in linearly polarized Ilight, the optical
pattern disappears if the plane of polarization is normal
to ﬁ,, the initial orientation of the director,
indicating that the distortion of the director field is
confined to the plane containing ﬁo and E.

-The appearance of the domain pattern is accompanied by
the onset of cellular flow in the medium. Observations on
the motion of tracer particles clearly show that adjacent
cells have opposite vorticity.

-Two sets of optical patterns are seen, one above and the
other below the plane of the sample.

The situation can be schematically illustrated as
shown in Fig.3. At the onset of the instability the medium
breaks up into a set of hydrodynamic rolls. Because of the
coupling between flow and the orientation of the director,
this steady flow leads to a static periodic distortion
of the director field. Since the material is birefringent
the sample now behaves like an array of alternating convex

and concave cylindrical lenses, <creating a set of real
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Fig.3. (a) Flow and (b) director orientation patterns in
W liams domains. The periodic orientation pattern and
t he consequent refractive index variation gives rise
to the bright domain lines (indicated by the stars)
above and below the sanple. (from Ref.10).
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images of the light source above and a set of virtual

images below the plane of the sample.

I n appearance the Williams domain instability is very
similar to the Rayleigh-Benard instability with
two-dimensional rolls. However, while the direction of the
rolls in the latter case is determined by the boundary
conditions, in the former case, it is determined by the
initial orientation of the director which acts as an

internal constraint.

2.3 THE CARR - HELFRICH MECHANISM

A mechanism for the Williams domain instability was
proposed by Helfrich [11] based on the suggestion by Carr
[t2] that the conductivity anisotropy could lead to the
formation of space charges in a nematic with a suitable

type of deformation of the director field.

Consider an infinitesimal bend fluctuation of the
director field in a homogeneously aligned nematic Ilayer
with a negative dielectric anisotropy subjected to a ©DC
electric field E (Fig.4). The current carriers in a
nematic are the impurity ions and since o > a , it is
easier for the ions to move along the director than normal

to it. As a result space charges are formed in the medium,
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Fig.4. Space charge formation in an applied electric field
Ez caused by a bend fluctuation of the director in a
nematic with positive conductivity anisotropy. The
resulting transverse field is EX. (from Ref.11).
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which in turn give rise to an internal electric field
normal to the applied field E. The force on the space
charges due to E tends to set them in motion creating a
macroscopic flow when the field is sufficiently large.
While the dielectric torque on the director due to i's
stabilizing, the hydrodynamic torque due to the flow and
the dielectric torque due to the internal electric field
are both destabilizing. Hence if E is sufficiently
large, an infinitesimal bend distortion of the director
field gets amplified and the system becomes unstable and
breaks up into hydrodynamic cells. The cellular flow leads
to a static periodic distortion of the director field and
gives rise to the optical domain pattern. A linear
stability analysis of the DC EHD instability in nematics
based on the above mechanism was worked out by Helfrich

{11] and it is discussed below.

The Helfrich Model

Consider a nematic layer of thickness d, lying in the
XY plane and subjected to a DC electric field Ea along Z
(Fig.4). Let the director ?\o in the unperturbed state
be along the X-axis. The medium is assumed to be infinite
in extent in the XY plane so that the lateral boundary
conditions are neglected. Consider a bend fluctuation of

the director field with n in the XZ plane,making a small
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angle 8 with the X-axis. This creates a space charge
density Q in the medium. The action of Ea on Q in turn
gives rise to a flow in the medium, described by the
velocity field '\7, above the threshold of the
instability. In this model the boundary conditions at the
two surfaces of the nematic layer are neglected and hence
the variables in the problem depend only on X. Further,
because of this simplification, only the Z-component of
the velocity appears in the equations describing the
system. Retaining only the linear terms, the director in
the distorted state is given by 6:(1,0,9). The system is
described by the following equations.
1) The Poisson equation

divD = 4n Q,
where D is the displacement vector. Substituting for D

(see Eg.6, chapter 1) we get

€, (dE /dX) + €, Ea(de/dX) =4 mQ (1)
where E, is the transverse field in the medium due to
the space charge formation.
2) The charge conservation equation

(3Q/3t) + divd =0,
where J is the current density. The time dependence can

be neglected as we are.considering stationary convection
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under DC excitation. Using Eq.8, Chapter 1, W get

a, (dE,/dX) + o, E, (de/dx) o 0 (2)

a

3) the equation of motion [13]
e(dv/dt) + div (e V¥) = div (3+3) +t+aE ,

where 3 and G’ are the elastic and viscous torques
respectively. Confining our attention to stationary
solutions and retaining only the linear terms the

following equation is obtained
2 2
M Ay, /dX) = QE (3)

where 7 = 'lr(a4 +a, -a, ).

4) The torque balance equation

TN =T o+ T,
where the three terms represent the torque exerted by the
director on the flow, the elastic torque and the

dielectric torqgue due to the total electric field on the

director, respectively. This leads to

Ky (d°8/dX*) + € 0 E. @ /(4m 0,) - a,(dv,/dX) = 0 (4)



Eliminating Ex Y, and Q in terms of 6 from Egs.1-4, we
get
2 2 2
K, (d 8/dx ) -[a e, /(4nn ) o,/0, - €, /€, )E, ©

+ [e,0,/(4m 0 )1 E, 8 =0 (5)

In this model the rolls are assumed to be formed with
their wavevector along ?\o. Taking 8 = §,cos(g X), we get

2 _ 2
E, =4ma K, /[eo /o - ace/ oa/o" - ea/e“)/v ] . (6)

This expression gives the threshold field of the instabili-
ty as a function of the wave vector of the distortion. As
the above analysis does not take into account the boundary
conditions it cannot predict the value of g that the
system exhibits at the threshold. Since the distortion
energy is larger for larger g while the dissipation due to
the transverse flow is larger for smaller g, we can assume
that the width of the domains must be comparable to the
thickness of the nematic layer. Putting q = w/d, d being

the thickness, we get a voltage threshold given by

2 _ 3
Vth =4 WK, /[eaoL /o, - aze“( c./o, - ea/eN )/m ] (7)

This expresion is found to be in qualitative agreement

with the experiments [3].
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Calculations Including The Boundary Conditions

An extension of the Helfrich model including the
boundary conditions was developed by Penz and Ford [14]
and Pikin [15])]. The treatment of Ref.14 is discussed
below. The analysis now becomes two dimensional with all
the variables depending both on X and Z. I n addition to
the Z-component there is also an X-component of the
velocity. Assumming the medium to be incompressible these

-—

two are related by the continuity equation div v = O.
Taking solutions of the form

x

e = o, exp(ig.r) , E o E  exp(ig.7) ,

v, =V, exp(iq.r) , vV, = =Sy, exp(iq.r) ,

and p = P exp(iq.7¥) , where S = qz/qx,
for the variables, the system is described by the
following equations.
1) The charge conservation equation,
2
[o,s +o0,]E +0, E 6 =0 A (8)

2) The X-component of the equation of motion

o2 _
P+ i[s q2772+ qzr)3] v, =0 (9)
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where 772= i-(as +a4 +a, ) and 73: %(03 +a4 +2a5 +a, ).

3) The Z-component of the equation of motion

. 2 2 .
-1quo + [74_ ;_Viqx] vo + (TEa/4Tt)(E_LS qz + ell qx)Eo
. z -
+ lie,q /4n] E 8, = 0 (10)
where, 171= -k(a‘} + a, - az) and 374’: -lr(cxz - a4 + as).

4) The Y-component of the torque balance equation

, 2 2 2
1(aqu - aas qz ) v° + [ qux + K’_qz (ea/41t) Ea] 8,

- (e,/4n) EE =0 (11)

Equations 8-11 are a set of linear homogeneous

v LE

T e

equations in the amplitudes P and 8, . For the

]
existence of non-trivial solutions the determinant of the

coefficients should vanish. This condition Ileads to the

following relation between S and Ea/qx .

(1 +8")[(a, -s"a,)( o€, -o€)E, /(4Ta’)

2 2 2
- (3L+ S 7;){( K3 + K1 S )( o, +S o )

2 2 2 _
- € o (1 +87)E, /(4mq )}] =0 (12)
2
Eq.(12) is a fourth order algebraic equation in S .
Therefore the 8 roots S; come in * pairs. There are also 8

boundary conditions to be satisfied at the electrodes.
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0 (z=:d/2) = 0, E_ (Z=td/2) = O,

\ (Z=td/2) = 0, v_ (Z=td/2) = 0.
The boundary condition on 8 leads to the equation

;T. 8; exp(iSjG) exp(iqxx) = 0,

where ej are arbitrary coefficients to be determined by
the boundary condition and & = qxd/z. The other boundary
conditions also lead to similar equations. Thus we obtain
a set of linear homogeneous equations and the boundary
value determinant (BVD) associated with these equations
must be zero for a solution to exist. The symmetry of the
boundary conditions at Z=*d/2 and the symmetry of the S
values coming in * pairs allows a reduction of the set of
8 equations to two independent sets of 4 equations. The
BVD will vanish if either of the two 4x4 determinants is

zero. One of the two determinants is reproduced below.

Dij =0, i, = 1,4 (13)

The elements of the determinant are:

Dljz cos(SjéS) , Dzj = Sjs1n(856) , Dsj= MjDI.Jand D4j = NjD:sj'

2
where N, = (o, 8 +0, )/o, and

[ ™)

My = (1= S;a,/a,)/[6; + K, /K )(S; + o,/0, )

[ &1

- E:ea(1+ s§ )/ (4 & Kiqi )],
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The other determinant is obtained by interchanging sines

and cosines in the one given above.

Egs.(12) and (13) together form a characteristic value
problem. The calculations are made numerically for a given
set of values of the material parameters. Choosing the
applied voltage Vg and 6, the roots Sy of Eqg. (12) are
first found. These are then substituted in the BVD and its
value is determined. In general the BVD will not be zero
for an arbitrary choice of vV, and &. Keeping V, fixed a
new value of 6 is chosen and the process is repeated till
the BVD becomes zero. The calculations are then repeated
for a different value of v, . The lowest value of Vv,
satisfying Egs.(12) and (13) is the threshold voltage
and the corresponding value of 6 gives the wavevector of
the rolls at the onset of the instability. V, as a
function of 6 obtained using the material parameters of
MBBA is shown Fig.5. The threshold voltage is found to be
about 6 volts in good agreement with experiments. Further,

the width of the domains at the threshold, obtained

from the calculations is comparable to the sample

thickness.
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Fig.5. The wavevectors of various normal nodes for MBBA as
a function of the applied DC voltage, obtained from
conputer calculations. Note that no solutions exist
bel ow about 6.9 Volts. (from Ref.14).
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2.4 EXTENSION TO AC EXCI TATI ON

Two different types of EHD instabilities are observed
in a nematic with negative €, under AC electric fields,
respectively below and above a certain cut-off frequency
f. . For f<f we get the Williams domain instability. It

is also known as the conduction regime.

For f>f , the dielectric regime is observed which is
characterized by a field threshold. The optical pattern
observed at the threshold consists of a set of parallel
striations normal to the initial orientation of the
director. The separation between the lines is much smaller
than the thickness of the sample. When the field is
slightly increased above the threshold value, these
striations bend and move to give rise to the ‘'chevron’
pattern (Fig.6). The dielectric regime was first detected
by Heilmeir and Helfrich [17], and studied in detail by

the Orsay group [9,18].

The variation of the threshold voltage with frequency
is shown in Fig.7. The cut-off frequency f, is typically
of the order of 10 - 100 Hz and is found to increase with

the conductivity of the sample.

These two regimes of EHD instability in nematics can
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be interpreted in terms of the Carr-Helfrich mechanism,

suitably extended to cover time dependent phenomena. A one-
dimensional linear analysis for AC excitation was first
worked out by Dubois-Violette et al [13] for sinusoidal

excitation. A simplified treatment for square-wave
excitation was later developed by Smith et al ([19]. W
shall briefly discuss the Ilatter model, confining our
attention to the states of marginal stability of the

system.

Including the temporal dependence of all the variables
and neglecting the inertial term, a nematic subjected to
an AC electric field is described by the following two
linearized equations in the curvature +y=3g/3x and the

space charge density Q [13].
Q+Q/T +o0, E;y =0 (14)
Y+ /T +(E, /M) a=0 , (15)

where 1/T = 4o, /e“ is the relaxation rate of the space

2

charges, 1/T = '?1 [ Kaqi - Ea'iEa /(4w e“)] /('fi'gz) is the

relaxation rate of the director field,
1/ = _Vi[ea/eu + a4, /Vil ), o, =0,(e /e -0, /0, ),

M, = ¥la, +a5 -az ) and 172= 3(a, ta, +a )

- a:/.(l.
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For a square wave,

+E for 0 < t < 1/(2f)

E,(Y)

-E for 1/(2f) < £ < I/f

and the coefficients in the above equations are constants

within each half-cycle. Assuming solutions of the form
y=C, exp(At/z) and Q = c, exp(At/T),

the general solutions are:

Yy(t) = a exp(A,t/Z) + b exp(A,t/T) , (16)

Q(t) =-(o, ET)[{a/(1+a,)} exp(A,t/z) +{b/(1+2,)} exp(A,t/T)]

where,
2 2 3/2
Aa= mE (1 HTE) 2 [ (1 -FEy +85(FT-T)], (17)
=1, N, =T7Kal /() , §=0,T/(MA) and
A =

- €€ 1)1/(4 s enrlrzz.
It is clear from Egs.(14) and (15) that when Ea
changes sign after every half-cycle, either-\y or Q should

reverse its sign. Depending on which one of these two
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variables oscillates with the field, we have two distinct
physical situations.

1) Q oscillates with the field but Wy does not, ie,

Q(t+1/2f) = -Q(t) and W(t+1/2f) = Y (1) (18)

This can be realized if we have a static distortion
accompanied by the flow of space charges. Hence this
regime is called the conduction regime.

2) y oscillates with the field but Q does not, ie,

W (t+1/2f) = -w(t) and Q(t+1/2f) = Q(t) (19)

In other words, the curvature in the director field
oscillates with the field and the space charges maintain
their sign. This is called the dielectric regime.
Substituting the general solution in Eq.(18) we get the

following threshold condition for the conduction regime.

(1t ) tanh(A,/4f7) = (1+2) tanh(3,/4f7) (20)

Similarly for the dielectric regime, we get

(1+}\1) tanh()sz/4f‘21) = (1+7\2) tanh()\i/4f'z:) (21)
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Substituting for A, and )\zin Egs.(20) and (21), we find

that in the conduction regime

A sinh[1/(4fT) + 1/(4fT)] = (1- T/T) sinh( A /4fT) (22)

and in the dielectric regime

Asinh[1/(4fT) + 1/(4f7)] = (T/T -1) sinh( A/4f7) (23)

where a = [ (1—l‘2:)2 + 4 E? Sa'C/\]%'. It is clear from
Egs.(22) and (23) that the condition T =7 splits the
problem naturally into two parts. For T >T there is no
solution to Eq. (23) and consequently no dielectric
regime. For T<T there is no solution to Eg.(21) and hence

no conduction regime.

In order to solve the problem it is necessary to find
a pair of eigenvalues A, and A, which satisfy Eq.(17) and
either Eq.(20) or Eq.(21). For each frequency those
values of E are to be found which give such pairs of
eigenvalues. These E values define the states of marginal
stability of the system. The stability diagram giving the
threshold voltage as a function of frequency is shown in
Fig.8 . Along branch (a) the system becomes unstable with

respect to the conduction regime and along the branch (c)
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with respect to the dielectric regime. Along branch (b)
the system again becomes stable with respect to the
conduction regime. Thus the conduction regime is confined
to a closed region in the (E, f) plane. The cut-off
frequency of the conduction regime is given by f .~ t/2n7.
As mentioned earlier, the conduction regime can exist only
if the director relaxation time T is larger than the
charge relaxation time T, so that space charges can
develop in the medium. T decreases with increase in E
(see Eq.15) and along the restabilization branch (b) T
becomes comparable to T . Above this branch T<T and the
conduction regime does not exist. On the other hand, the
condition for the existence of the dielectric regime is
that T<T . This can always be achieved by increasing
E as € i's negative. Hence solutions corresponding to

a

the dielectric regime exist for all frequencies.

The dielectric and restabilization branches are
characterized by field thresholds whereas the conduction
regime sets in at a threshold voltage. Consequently, as
the thickness d of the nematic layer is decreased, the
restabilization branch approaches the conduction branch
and at some value of d they become equal. The conduction
regime cannot be observed if d is below this minimum value

given by
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min ] il

- 2 2 _ />
d. =nle K3’5171/{41taf171(3’ 1)}]

The above analysis being one-dimensional, cannot
predict a nonzero value of the wavevector of the rolls in
the conduction regime. As in the Helfrich model we have to
assume that g = n/d at the threshold. On the other hand,
the theory predicts the wavevector of the rolls in the

dielectric regime. For Ilow-frequencies it is given by
2
atoc (1/5) [3° -1+ 4 fz {S-1 +In 2 £T }]

All the above mentioned predictions of the theory have
been found to be in good qualitative agreement with the

experiments [3].

A simple numerical procedure which allows a convenient
and exact calculation of the threshold curves and
instability regions in the context of a one-dimensional
model was developed by Sengupta and Saupe [20]. Taking

—-—

E, © i—z: cos(w t), Eas.(14) and (15) form a system of
linear differential equations with periodic coefficients.
It follows from the Floquet theory [21] that their

solutions can be expressed in the form
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e(t) exp(ut) a exp(inwt)

Q(t)

T
n
exp(ut) § bn exp(inwt) (24)

with n = %1, *2, etc. Here u is a characteristic exponent
and is assumed to be real. The condition Re pu =0 defines
the states of marginal stability of the system. 1t can be
directly verified that if 8(t) and Q(t) are solutions,
then ©(t+1/2f) and -Q(t+1/2f) or -6(t+1/2f) and Q(t+1/2f)
are also solutions, f being the frequency of the applied
field. This ensures that the coefficients a, and b in

Eq.(24) satisfy the following relations:

Qones © bzn » 8 T bznu =0 (25)

In the first case, therefore, 6(t) does not change
sign with the field but Q(t) does. These even modes
correspond to the conduction regime. In the second case,
8(t) changes sign with E but Q(t) does not. These odd

modes correspond to the dielectric regime.

Using the solutions (24) in Egs. (14) and (15), the

following recurrency relations can be obtained.

+ M a + M a =0 (26)

a
Nyn-1 n-2 n,n .n Nynet n+2
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with M= T/T+ (uw+ inw)T+ M“.m_1 M ,

. n,n+1

Mpne, = (8/2)[1 = 1 (w.e)*}/{1 + uz+ i (n 2 1)wg],
e2=-q:eae_‘_Ef /‘B“Eu?b) and
(wcfz:)2 = (e, /e, )[1- € 0o /(e o )I(e /e + az/'r)i) -1

]

2
and 77b -{1_ a-z-/.?i

Eq.(26) can be solved using the method of continued
fractions. Convergent solutions exist only for suitable
sets of parameter values. Taking = 0, the threshold

field is obtained in terms of w, w_, and T/T.

2.5 OBLIQUE-ROLL INSTABILITY

Al11 the theoretical investigations described above
assume that the convection rolls are normal to the
undistorted director ?\o . Recently, however, there have
been a few experimental observations of oblique rolls
whose wave vector makes an angle a with /ﬁo , both under
DC and very low frequency AC excitation [22-24] (Fig.9).
Detailed experiments on the oblique-roll instability were
carried out by Ribotta et al. [24]. They obtained similar
results both with MBBA and a commercially available
nematic mixture, viz, Merck phase V. Their quantitative
measurements which have been reported only on Merck phase

V are summarized below.

- Atlow frequencies of excitation oblique rolls are formed



-rolls observed in a 6 um thick sanple of
50 Hz. (from Ref.22)
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Fig.9.
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right at the threshold of the instability. For example,
at f=10 Hz they find a = 30'.

-The oblique rolls are obtained at the threshold only upto
acritical frequency f, (Fig.10). For the sample they
studied the cut-off frequency f, was 120 Hz and f =40 Hz.
-f, increases with the conductivity of the sample.

-f, decreases when a stabilizing magnetic field is applied
along ?\o .

-Tracer particles flow along open helical trajectories
within the rolls. The axial component of the particle
velocity in adjacent rolls has opposite directions.
-Beyond f, normal rolls are obtained at the threshold in
the conduction regime. But as the field is further increa-

sed they first become undulatory and then oblique

(Fig.10)

The Helfrich-Orsay one-dimensional analysis of the
problem cannot account for these oblique rolls. This can
be clearly seen by extending the Helfrich model for DC
excitation to the case of oblique rolls. Let ’ﬁo be along
the X-axis. On applying an electric field along Z, let the
rolls be formed along E ,making an angle a with the X-axis.
In the distorted state the director orientation is defined

by the polar angles 8 and ¢ (see Fig.11). The equations

describing the system are
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Fig.10. The stability diagramgiving the variation of the

threshold field wth the frequency of the applied
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rai sed, they becone undulat or?/ and then change
continuously into oblique-rolls. (from Ref.24).
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Fig.11. Illustration of the coordinate system and
definitions of the angles used in the text.
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M (d'6/d5 ) +le,0, /(4n0,) +a e (€ -0, )c" /(4w 7)1 E;6 = O

(27)
2 2
L (d &/dE ) =0 (28)
_ 2 2 _ 2 2 - [N
Where,M—Kzs+K3c ,L-Kis+Ksc , O, o, +to ¢ ,
- 2 _
€ ~— &t eac » 0. = O, /oc » €. = €, /Ec,
2 .
= + - s =sin a and ¢ = cos a.
7')1 % [04 (ag, -a, Jc 1,

Assuming solutions of the form
8 = § cos(3.r) and ¢ = ¢, sin(q9.7),

consistent with the symmetry of the problem, we find from

Eq.(28) that ¢ = 0 and hence a = 0.

A possible explanation for the existence of oblique
rolls at very low frequencies in the conduction regime was
first proposed by Zimmermann and Kramer [25], who showed
that the oblique rolls can be obtained if the boundary
conditions are taken into account. In order to simplify
the problem and to get an analytical expression for the
threshold voltage the boundary conditions were assumed to
be stress-free in their analysis. The geometry considered
is shown in Fig.12a. n is along the X-axis, the

-]

- —n
external electric field E = E, cos(wt) along Z and a
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Fig.12. (a) The geonetry considered. (b) The itchfork
bifurcation in the p. /q, - wx, plane for MBA (c),
(d) The dependence of the critical frequency w. On €

and a,,/o, . (from Ref.25). ¢
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- - _; - - -
magnetic field H= (H ., ) is applied in an
arbitrary direction. The EHD equations describing the

system allow the following solutions [25] :

X,y = As,e sinz cos(gqX + pY)

\ = A3 cosz sin(gX + pY)

€
"

2 A:,,s cosz sin(gXx + pY) (29)

@
1

A6 cosz cos{gX *+ pY)

©
1

= A, sinz sin(gX + pY)

where V is the velocity, 6 and O are the polar angles
describing the director orientation and y = 'q)lcos(uot) +
v, sin(wt) is the electric potential. Further a?lil
lengths are measured in units of n/d. 1t is clear that

V., L,V

. y and ¢ are not zero at the boundaries and as

mentioned earlier,the boundary conditions correspond to an
unrealistic stress-free surface. Using the above solutions
an analytical expression for the threshold voltage can be

obtained.

V, = (14 L, -p" (K -K,) /L, 1/ [e, €, (a*F M + (q*+P)G}]

- 2
where, L, = K, p

2 2 2 2 2
+K2+K3q +dxau°(Hl-H,)/n,
- a ' 2 s _ 2 z
Lz_K1+sz +K3a +dx_au°(Hx H, )/ n",
- b3 2 - 2 -
S = q o"/o_L+ P,Doag” g/e +pP,P=1+p°, T=z=T D/S
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~
i

.= €€/ 0, M, =p'[(ap -a,q")s,-a,B, (K -K) /L

2 2

P ),

X
L]
Lol LI

- 2 - l = -
aaﬁip +(a, a,q )B2 » M = (M2 +M, )/(52133 B

@
1"

2 - 2
¢ “RB-%aq ,B=)P+ (7 +mM+a )a ,

@
1]

, =%a a +8p +171q" , B, =B+ %a qu‘H)iqA' ,
'71=i’(04+(15—02), T]z=i(a3+a++a6 )

F = [o,€D /(e08)] -1 and@G=(D/s +w ) /D.
This model leads to the following results :
Though oblique rolls are not obtained for the standard
values of the material parameters of MBBA, they can be
obtained by varying suitably any one of the parameters,
keeping the others fixed. For example, a non-zero value of
a can be obtained at w=0 and 'Ij| =0 by taking €, 2 -0.226
instead of the standard MBBA value of -0.5.

As the frequency f of the applied field is increased, a
decreases and goes to zero at a critical frequency f .
Fig.12b shows the variation of pc/ a, (= tan a) with the
frequency. Here, a non-zero value of a 1is obtained by
taking €, = -0.2. Figs.12c and 12d show w_ = ( where w, =
2nf, and T o € /(4mna, ) ) as functions of a,/0, and €, ,
respectively. As mentioned earlier, quantitative measurem-
ents on the oblique roll instability in MBBA are not
available. Also, not all material parameters of Merck

phase V are known. Hence in order to compare their theory
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with experiments Zimmermann and Kramer calculate f, by
first estimating a from fitting the theoretical cut-off
frequency f, to the experimental value of Ribotta et al.

[24], taking €, 0 - 02 and standard MBBA values for the
other parameters. They get f, = 5.25 Hz whereas Ribotta et
al. find f, = 40 Hz. Though the above analysis gives a
plausible explaination for many experimental observations
on the oblique-roll instability in nematics, it is not
entirely satisfactory, as reflected hy the relatively
small value of f predicted by it. The results of the
above analysis are in agreement with those of a full

three-dimensional model for DC excitation developed by us
which takes into account the rigid boundary conditions
[26]. This model is discussed in chapter 4. Very recently
Bodenschatz et al.[27] have also made detailed calculat-
ions taking into account the rigid boundary conditions,

for both DC and AC excitation.

Oblique rolls are also found in the dielectric regime,
though they are not expected on the basis of the Orsay
model. The chevron pattern [3,9] obtained just above the
threshold consists of oblique rolls whose wavevector makes
a large angle (~ 30°) with the direction of initial

orientation of the director (Fig.6).
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2.6 HBD INSTABILITIES I N NEMATICS WITH NEGATIVE CONDUCT-
IVITY ANISOTROPY

Another experimental observation that cannot be accoun-
ted for by the theoretical models described above is the
occurrence of EHD instabilities in nematics with negative
conductivity anisotropy. | n some nematics, at temperatures
close to the nematic - smectic transition point the
conductivity anisotropy changes sign due to the smectic -
like short range order in the medium [28] (Fig.13). 1t was
shown by Dubois-Violette et al.[13] that the Carr-Helfrich
mechanism can operate only if the parameter

S 01 - 0,€,/(0,&)1 [1 + a,e/Me )]

where 771= -}(a4 ta, -a_ , is greater than 1. In materials
with o > o, and small enough negative €. ‘Sz< 1 and
this mechanism can not operate. Nevertheless, homogeneous-
ly aligned samples of materials with 7 1 exhibit two
types of EHD instabilities [29-31], below and above a
critical frequency fL . The materials used by Gosciansky
[29] are n-(p-butoxybenzylidene)-p-n-octylaniline (40.8)
and 4-4' octyloxyazoxybenzene (C8) . The former compound
exhibits a SA -N transition while the latter shows a Sc -N

transition. Blinov et al. [31] used three homologues of

40.8 in their studies. In all these five materials g is
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Fig.13. Variation of the ratio R= o /o, in the nemtic
phase of 40.8. (from Ref. 30).
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negative in a temperature range TNS < T < T in the
nematic phase and similar observations are reported in
all of them, which are summarized below.

A. The low frequency regime:

-The instability is characterized by a field threshold
(Fig. 14).

- At the threshold convection rolls appear with their axes
making a small angle with 30 (Fig.15). Hence they are
generally referred to as longitudinal domains.

-The width of the rolls is comparable to the sample

thickness.

-Tracer particles move along helical trajectories within
the rolls.

-Analysis of the time dependence of the light diffracted
by the domains indicate oscillations of the curvature of
the director field.

-The threshold field is not very sensitive to the
frequency at low frequencies, but increases sharply as
the frequency approaches fL

-If the sample thickness is sufficiently small this
instability has a lower threshold than the Williams
domains even in the temperature range where o, > 0, at
low frequencies.

- Atvery low frequencies (—10 Hz) the threshold field is

proportional to 01/2, a being the mean conductivity of



200

T | T
40.8
S
Q
S 150 |
3
>
RS/
o]
<
[
b
K 100 -
T 50um
50|~ _
w
0 | ! !
Ten 64 66 68

Fig.14. Variation of

—— Temperature (°C)

the threshold voltage for

| ongi t udi nal

threshold voltage increases al nost
sanpl e thi ckness.

domains with tenperature.

(from Ref.30).

Not e

t hat

linearly with

t he
t he
t he



58

the sample.

-The threshold field is insensitive to small variations in
o, and €_ .

B. The high frequency regime:

-As in the Ilow frequency regime the instability is
characterized by a field threshold.

-Unlike in the low frequency regime the periodicity of the
convective structure is much less than the sample
thickness.

-While Blinov et al. {31] find linear domains directed
arbitrarily in the medium, Goscianski [29,30] reports a
square grid pattern at the onset of the instability
(Fig.16).

-The threshold field varies linearly with f1/7- (Fig.17).
-Analysis of the diffracted light indicates that the
curvature of the director oscillates with the field.

-As the temperature is raised the threshold field
gradually decreases and does not show any discontinuity
at T*, where o, changes sign (Fig.18). However, at
T>7*, the pattern corresponding to the dielectric
regime in materials with o, > 0 is obtained.

-The threshold field is independent of the average
conductivity o. It is also not sensitive to small

variations in o, and €, -
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(T* = 51°C) . d=30 um. Electrical conductivity:
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Blinov et al. [31] invoke the isotropic mechanism to
account for these instabilities. This mechanism is

discussed in the following section.

2.7 ALTERNATIVE MECHANISMS FOR EHD INSTABILITIES IN
NEMATICS

EHD instabilities are also observed in weakly
conducting isotropic liquids both under DC and AC
excitation [3]. A mechanism for the DC instability was
proposed by Felici [32],based on unipolar charge injection
from one of the electrodes. Such charge injection leads to
a non-uniform distribution of space charges along the
field direction (Fig.19). The force due to the external
field on this space charge distribution is destabilizing
and gives rise to a cellular flow in the medium when the
field is sufficiently large. The Felici instability is
analogous to the Benard instability [1], where convection
sets in due to the action of the gravitational field on a
vertical density gradient. The Felici mechanism gives a
threshold voltage [3]

V,, — T 4ny u/e

where 7 is the viscosity, € the dielectric cdnstant and u
the mobility of the charge carriers. The coefficient T was

computed by Atten and Moreau [33] to be 161.
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Fig.18. Schematic diagram illustrating t he Felici

mechani sm The instability is caused by the action of
E on the non-uniform distribution of space charges
inthe fluid, arising from unipolar charge injection
from one of the el ectrodes.
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This model has been extended to the case of DC
instability in nematics by de Gennes [34]. Assuming strong
injection of charges he finds that the Felici threshold is
lowered by the additional space charge formation due to

the conductivity anisotropy.

The threshold voltage calculated on the basis of the
Felici mechanism is much higher than the experimentally
observed values. Turnbull ([35] has reanalyzed the DC
instability in isotropic liquids by taking into account
charge injection from both electrodes. This model leads to
a threshold field [3]

Et;.:T161t"17c:7/osz .
where a is the conductivity. The coefficient T depends on

the ratio of mobilities of the two types of charge

carriers.

As pointed out by the Orsay group [9], charge
injection will be negligible at frequencies greater than
1 , £, O d° /uV  being the transit time of the charge

carriers across the nematic layer of thickness d. For a
20 um thick sample of MBBA, this cut-off frequency for
charge injection is about 10 Hz. However, Barnik et al.

[36] have extended the model of Turnbull to much higher
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frequencies. Here the non-uniform charge distribution is
assumed to be caused by the electrolytic separation of the
charges in the volume of the sample. In the absence of
instability and for the case of a weak electric current

the space charge distribution is given by

da/dz = -r E, ,

r being the corresponding kinetic coefficient. The
action of E, on the space charges produces a destabilizing
force leading to a convective flow in the medium when E_is
sufficiently large. Barnik et al. [36] obtain qualitative
expressions for the threshold field based on dimensional
arguments. This model indicates two regimes of
instability: a low frequency regime where (3,36]

2

Ey, o€ To/(r e?y | f < f

and a high frequency regime where

e? o nf/re) £ f

th

where fL = 1/21t't:L and '?:Lz €/4ntc is the relaxation time
of the space charges. Note that the anisotropies of the
physical properties do not play any role in this mechanism

Hence it is known as the isotropic mechanism.
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Thus, according to these models,the EHD instability is
caused by wunipolar or . bipolar charge injection at low
frequencies and by the electrolytic separation of the
charges at high frequencies. At frequencies much greater
than the charge relaxation frequency f.» it is clear
that the instability should be confined to regions close
to the electrodes. The instability patterns reported by

Kai et al. in MBBA [37] may be of this origin.

Barnik et al. [36] have proposed the isotropic
mechanism as an alternative explanation for the dielectric
regime in nematics with a > 0. However, the experiments
of Ribotta and Durand [38] clearly indicate that this
mechanism is not responsible for the dielectric regime. In
thick samples they were able to differentiate between the
onset of an irregular convective flow and a regular flow
accompanied by the appearance of an optical domain
pattern. The threshold field corresponding to the
irregular flow is lower and does not show any discontinui-
ty at the NI transition point. On the other hand, the
threshold field for the domain formation diverges as
the NI transition point is approached (Fig.20). Ribotta
and Durand attribute the irregular flow to the isotropic

mechaniam and the domain formation accompanied
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Fig.20. Variation of the threshold volta?e for the pattern
formation acconpanied by regular cellular flow (o) and
the threshold voltage for the onset of irregular flow
(+) with tenperature. Tc 1is the nematic-isotropic
transition tenperature. (from Ref.38).
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by the regular convective flow to the Carr-Helfrich

mechanism.

As mentioned earlier Blinov et al. [31] interpret the
EHD instabilities in nematics with o, ¢ 0 in terms of the
isotropic mechanism. The observed dependence of E,, on o
and f are in agreement with the theory both at very low
frequencies (f <« T, ) and at very high frequencies
(f >> f:. ). Nevertheless, the theory does not predict the
direction and magnitude of the wavevector of the
convective rolls. Further, the qualitative nature of the

theory makes a direct comparison with the experimental

results impossible.

I n conclusion, we emphasize that the Carr-Helfrich and
the isotropic mechanisms do not offer a satisfactory
explanation for the following observations:
1) Occurrence of oblique rolls upto a frequency
f, < f, in the conduction regime.

2) The large tilt angle of the wavevector of the
convective rolls with respect to the undistorted director
in the chevron pattern observed in the dielectric regime.

3) The magnitude and direction of the wavevector of the
convective rolls in the EHD instability in nematics with

o, < 0 at low frequencies (f << f ).
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In this thesis our main aim is to demonstrate the
influence of flexoelectricity [39] on the EHD
instabilities in nematics. The flexoelectric polarization
arises from splay and bend distortions of the director
field in a nematic and hence is characteristic of the
orientational ordering in the medium. W shall therefore
confine our attention to the Carr-Helfrich mechanism which
is the only instability mechanism arising from the nematic
ordering. The isotropic mechanism which,. as described by
the Russian group, could be important in some special

situations is not discussed further.
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