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CHAPTER 3

INFLUENCE OF FLEXOELECTRICITY ON THE EHD INSTABILITIES

IN NEMATICS: A ONE-DIMENSIONAL LINEAR ANALYSIS FOR

DC EXCITATION

3.1 INTRODUCTION

It was shown by Myer (1] that splay and bend
distortions of the director field in a nenatic can induce
a macroscopi c pol arization in the nedium This property of
a nematic is called flexoelectricity and is analogous to
pi ezoel ectricity in crystals. On the basis of the Meyer
nodel only nematics made up of polar nolecules having
certain shapes can Dbe expected to be strongly
flexoelectric. It was later pointed out by Prost and
Marcerou (2] that the electric quadrupole noments of the
nol ecul es al so contribute to the flexoelectric effect,
this contribution being independent of the nolecular
shape. Since nemat ogeni ¢ nol ecul es general |y have non-zero
quadrupol e nonents, it follows that flexoelectricity is a

uni versal property of all nenatics.

The onset of an el ectrohydrodynanmic (EHD) instability
ina nematic, as discussed in the previous chapter,
results in a periodic distortion of the director field.
Such a distortion wll give rise to a flexoelectric

——

polarization P in the medium gi ven by (1]



69

P =e n (divA) +e  (curlh x A) (1)
- -

The action of the external electric field E on P will

give rise to an additional torque on the director.

Further, P will also contribute to the space charge

density in the medium,

Q = divE/ 4

where B is the displacement vector. These two flexoelec-
tric contributions are not taken into account in the
theories of EHD instabilities described earlier. In this
chapter we first discuss the flexoelectric effect and then
present an extension of the one-dimensional Helfrich model
[3] for DC excitation incorporating flexoelectricity.
These calculations show the importance of flexoelectricity
in the formation of oblique rolls. Some experimental

evidence is also presented in support of the theory.

3.2 FLEXCELECTRICITY

All the physical properties of nematics, discussed in
chapter 1, indicate that the orientational ordering in the
medium i s apolar. However, as was shown by Meyer (1] in
his original paper on flexoelectricity, a macroscopic
polarization can be induced in a nematic by suitable

deformations of the director field. According to the Meyer
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model only nematics consisting of polar molecules having
certain shapes can be strongly flexoelectric. For example,
consider a nematic made up of pear shaped molecules with a
non-zero longitudinal component of the electric dipole
moment. I n the undistorted state (Fig. 1a) because of the
equal probability of both orientations, the dipole moments
of the individual molecules cancel one another and the net
dipole moment is zero. If the system is now splayed as in
Fig. 1b, due to the pear shape, efficient packing of the
molecules gives rise to a net dipole moment, resulting in
a macroscopic polarization. A similar effect should be
observed in a nematic made up of banana shaped molecules
with a transverse electric dipole moment subjected to a
bend distortion (Figs. 1c and Id). For weak distortions
the flexoelectric polarization is given by Eq.(1). W note
here that this expression is the most general polar
vector that can be constructed from the apolar director
field n, proportional to its first order derivatives.
The flexoelectric coefficients e, and e have the

3
dimensions of charge / length. In the Meyer model e

1
arises in nematics made up of pear shaped molecules having
a longitudinal dipole moment and e, in materials made up
of banana shaped molecules having a transverse dipole

moment. As mentioned earlier, Prost and Marcerou {2]

pointed out that as the divergence of a quadrupole
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Fig.1. Origin of the flexoelectric effect according to the
Meyer nmodel [1]. A nemmtic consisting of pear shaped
mol ecul es with |ongitudinal dipole nonent (a) becones
pol ari zed under splay (b) and a nematic made wup of
banana shaped nolecules wth transverse dipole nonent
(c) becomes polarized wunder bend (d).
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density is equivalent to a dipole density, there should
be an additional contribution to the flexocelectric effect
from the quadrupole moments of the molecules. This
quadrupolar contribution i's comparable in magnitude to
the dipolar contribution discussed in the Meyer model, but
unlike the latter contribution it is independent of the
molecular shape. All nematogenic molecules generally have
non-zero quadrupole moments. Therefore the theory of Prost
and Marcerou leads to the important conclusion that
flexoelectricity is a universal property of all nematics.
In order to wunderstand the origin of the quadrupolar
contribution, let us consider a stacking of quadrupoles as
shown in Fig.2. In Fig.2a, due to the symmetry of the
arrangement, there is no net dipole moment in region 2. If
the structure is splayed, as can be seen from Fig.2b, the
net dipole moment is non-zero in region 2, and the

structure becomes polarized.

The symmetry of a wuniaxial phase allows non-zero
electric quadrupole densities in the ground state, given
by [2]

- 1 n
where the summation is performed over a suitable volume u

n .
and eij is the quadrupole moment of the n™ molecule. It



Fig.2. A regul ar stacking of quadrupoles (a). Because of
the symmetry of the arrangenent there is no bulk
pol arization. The structure becones polarized when
spl ayed (b).
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is to be noted that though 8, is small (~10-25 esu )
the density Qij is not negligible since all the molecules

in the volume. considered act cooperatively. Therefore,

where N is the number of molecules per unit volume, ea
the anisotropic part of the molecular quadrupole moment, S
the orientational order parameter and Sij=(n.1 n; - 515 /3).
It was shown by Prost and Marcerou [2] that to a good

approximation the quadrupolar contribution to the

flexoelectric effect is given by
(e, +e,) =~ -(2/3) Q, .

In an electric field E the flexoelectric effect

leads to a free energy density

The corresponding molecular field obtained by minimizing

fﬂ is given by [4]

h = e, {E (divh) - grad(E.R)) (2)

+ e, { E X ‘(curﬁ\\) - cur](E x n)}



The linear dependence of the flexoelectric energy on
the curvature of the director field has some very
interesting consequences. For example, if the distortion
is planar described by a polar angle 6(z), say, then the
flexoelectric energy identically satisfies the Euler-

Lagrange equation
5f = (3f/ 38) - B ( 3f/ 38,,) ,

where 322 (2/32) and 6’22 ( 28/ 92), and therefore
does not give rise to any volume torques in the medium.
On the other hand, if the distortion is non-planar,
described by two polar angles 6(z) and #(z), say, then £
does lead to volume torques. Hence we can expect an
external electric field to induce a non-planar distortion
in a nematic when the flexoelectric terms are dominant.
Such flexoelectric distortions is the subject matter of
chapter 6. In the case of the EHD instabilities we find
that flexoelectricity can lead to a non-planar director

distortion giving rise to obliqgue convective rolls.

3.3 THE ELECTROHYDRODYNAMIC EQUATIONS
Consider a homogeneously aligned nematic layer with
the director ?\o along the X-axis. Under the action of a

DC electric field Ea' applied along Z, we assume that
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the EHD instability gives rise to oblique rolls whose
wavevector 'cT lies along ¥ , making an angle a with
/ﬁo (Fig. 3). In the deformed state A makes polar
angles 8 and ® in the XYZ system,so that the components of
nin the E7 Z system are { cos® cos(a-¢),-cos8 sin(a-¢),
sine }. Since we are considering a one-dimensional model
only the Z-component of the velocity appears in the
equations describing the system. Further 6,¢ and v, are
functions of ¢ alone. The transverse electric field
created in the medium due to the space charge formation

has by symmetry only the g -component Eg.

As mentioned earlier, the introduction of
flexoelectricity can influence the problem in two ways.
Firstly, the flexoelectric polarization contributes to the
space charge density in the medium. Secondly, due to the
flexoelectric coupling between the curvature of the
director and the external electric field there is now an
additional torque acting on the director. In order to
clearly understand the influence of these two terms on the
EHD instability we shall first consider a nematic with

equal elastic constants and with e, = 0.

Case 1 - Ea:O’KinKz:ngK

The system is described by the following equations



)

Fig.3. Illustration of the coordinate system and
definitions of the angles used in t he t ext.
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1) The Poisson equation, div D = 4tQ, where Q is the

-—

space charge density and the displacement vector D is

given by

—
where P is the flexoelectric polarization. Substituting

these in the above equation, we get
2
€ (dE_ /dE) + 4% (e, + e ) s c (d ®/dE° ) = 4m Q (3)

where s = sin a and ¢ = cos a.

2) The charge conservation equation,

(3Q/ 3t) + divd =0
Since we are considering only stationary solutions under
DC excitation the time dependence of all variables can be
neglected. Substituting the expression for the current
density J (see Eq.(8), Chapter 1), the above equation

reduces to

o, (dEg /dE ) + o,E c (de/dg ) = 0 (4)

- 2
where o, o, + o, ¢

3) The equation of motion [5]

€( aV/ at) + div (€VV) = div (3 + 3’) + QE
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where @ is the density, a the elastic stress tensor and

a' the viscous stress tensor. In the one-dimensional
model only the Z-component of the above equation exists.
The time dependence can be neglected as we are looking
for stationary solutions. Further, a does not lead to

any linear terms. The equation of motion then reduces to

2 2
~N (dv,/d8 ) = QE (5)
1 a
2
= + - .
where 'Y)1 3[a +(a ;- a )c]
4) The torque balance equation,
d L
r + T, =r” , i=Y,2
1 1 1
-\d — —
Here T , rf and r™ are the elastic,

flexoelectric and the viscous torques, respectively. They
can be obtained from the corresponding molecular fields
. N

using the relation T = n x A. The torque balance

equation along Y yields
2 2
K(d 8/dg ) + (ei— es)Eas(dtb/dE ) - azc(dvz/dg ) =0 (6)

Similarly the torque balance equation along Z

yields
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K(d*o/de ) - (e,- e,)E_s(do/dg ) +

(e + e )E 0 sc®(d8/dE ) = 0 (7)
1 3 ar

where g, = °a/°c

Using Egs.(3-5) v, can be eliminated from Eq.(6) and we get

K(d*8/dE") + [(e,~ e ) + (a,/7,)(e,+ e )c*1E s (do/dE )

—(aze/4n171)orE: e =0 (8)

The system is described by the two coupled equations

(7) and (8), which clearly admit the following solutions:
8 = 8§ sin gqg and ® = & cCOs dg
Substituting these solutions in the above equations the

condition for the existence of non-trivial solutions gives

the following relation between Ea and q.

2 2 2 _ 2 2
Ea = 4nqg K /( a,e Kao.c /171+ 4T F s ) (9)
where

_ 2 2 4 /
F = (el— es) - (e1+ e3) g.a, ¢ 7,

+ (e, + e )e-e)(a, /7 -0 )c

As in the Helfrich model we assume that q = w/d at the

threshold. Then we get a voltage threshold given by
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Vt: = an’ K° /(--c12 € K g, c? / 771+ At F s* ) (10)
For a given set of values of the material parameters
the threshold voltage can be calculated for different
values of the angle a. The lowest value of V., gives the
critical voltage V. for the onset of the instability and
the corresponding value of a gives the tilt of the
convective rolls at the threshold. The variation of V

th

calculated for €, - € = 5.2, K1= K2= K3= 6.3 x10-7 dynes

L
and the standard MBBA values of the other material
parameters, listed in table 1, is shown in Fig.4. 1t is
clear from the figure that the instability sets in at a
critical voltage of about 1.7 Volts with a = 0.85 radians.
Thus the flexoelectric effect clearly leads to the

formation of oblique rolls even in the context of a

one-dimensional model.

Case 11I: ea;tO, KI#KZ;EKS.
The above analysis can be generalized to the case with
non-zero dielectric and elastic anisotropies. Egs.(7) and

(8) now read

M(d“e/dg™) + [(e - e ) + (a,/m )(e + o) c 1E s (do/d% )
+[ea°J./(4K o) * (e - or) azeccz/(4n'r)1)]E;6 =0 (11)

and,



TABLE 1

Material parameters of NMBBA

K,= 6.1 x 10-7 dyne (a) a,— 6.5 cP (c)
K,= 4.0 x 10-7 dyne (b) a,= -77.5 cP (c)
K3= 7.3 x 10-7 dyne (a) a,= -1.2 cP (c)
€,= 4.7 (a) a+=83.2 cP (c)
€, = 52 (a) a.= 46.3 cP (c)
a,= 1.0 x 10-10 ohrﬁlcm'i o,/9, = 0.5 (a)
(e,- e5) = 1.2 x 104 cgs units (d)

—~
o®
[N
+
o©
ol
~—
11

-7.0 X 10-4 cgs units (e)

(a)
(b)

(c)

(d)

(e)

P.A. Penz and GW. Ford, Phys. Rev, A6, 414 (1972).

L.M. Blinov, Electro-optical and Magneto-optical
properties of Liquid Crystals, Wiley, 1983.

P.G. de Gennes, The Physics of Liquid Crystals,
Oxford, Clarendon, 1975.

|. Dozov, Ph. Martinot-Lagarde and G. Durand, J. de
Phys., 43, L365 (1982).

N.V. Madhusudana and G. Durand, J. de Phys., 46,
L195 (1985).
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L(d"6/dE") - (e- e,)E,s (d6/dE)

+ (ei+ es)anrS c*(de/de ) = 0 (12)

2 2 4 2
= + = + :
where M K,s K3c , L= Ks Ksc and e €, /€, .

The threshol d voltage is now gi ven by
V, = ML n*/[{e 0 /o + (e - o )ae c’/niL/an + F s*1 (13)

The variation of v, wth a calculated from Eq. (13)
using the standard MBBA val ues of the paraneters is shown
in Fig.5. It is clear fromthe figure that the instability
sets in at acritical voltage of about 1.75 Volts and with
a ~0.83 radians. Wen a =0, the flexoelectric terns vanish
fromEqg.(13) and it reduces to that given by Helfrich (3].
O the other hand, when a =w/2, all the hydrodynamc terns
are absent and the flexoelectric effect can cause a static
periodic distortion of the director field if e s

sufficiently small. These flexoelectric distortions are

di scussed in chapter 6.

3.4 RESULTS AND D SCUSSI ON

Egs.(10) and (13) show that the fl exoel ectric terns are
entirely responsible for the occurrence of oblique rolls
in the context of a one-dinensional nodel. The dependence

of a on the flexoelectric coefficients can be understood
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using the torque balance equations which are reproduced
below. For the sake of simplicity we shall first consider
the case with €, -0 and equal elastic constants.

2 2
K(d ¢/dg ) - (ei— es)Eas(de/dE_, )

+ (e,+ e )E o s c’(de/de ) = o (1)

K(d'8/de’) + [(e,~ e,) + (e,+ e,) c®a,/y 1E;s (do/dg )

- [aze O’r_/(4Tt771)] E:cze = 0 (8)

W note here that only the combinations (ei— es) and
(e1+ es) of the flexoelectric coefficients appear in these
equations. The (el— ea) terms in the two equations give
the torque arising from the action of. the external field
on the curvature of the director field. The (el+ es) term
in Eq.(7) is the torque due to the gradient of the
transverse electric field in the medium and the (e1+ es)
in Eq.(8) the hydrodynamic torque due to the action of the
external field on the space charge density arising from
the flexoelectric polarization. [If (e - es) and (e1+ es)
have opposite signs then the two flexoelectric terms in
Eq.(7) assist each other and favour a @-distortionof the
director. Let us choose (el— es) and (ei+ es) to be
positive and negative, respectively, as is found experimen-

tally in MBBA. Taking 6, , Ea and a to be positive we find



from Eq.(7) that &, is negative. Since a, is generally
negative, both the flexoelectric terms in Eq.(8) have the
same sign. Further, the flexoelectric torques will be
destabilizing 1 ¥ ¢, is negative: at the threshold of the
instability a @-distortion of the director and hence a
non-zero value of a are favoured. Similar arguments apply

when the signs of both 6, and ¢, are reversed.

The dependence of a on (ei— es) is shown in Fig.6. As
(e1— es) is decreased from its initial positive value, the
flexoelectric torques decrease and a decreases. As a becom-
es smaller the hydrodynamic torque becomes more dominant
and the decrease in a becomes very rapid. When (el— 33)
is negative and approximately equal to (el + es)ca/o“, the
sum of the flexoelectric terms in Eq.(7) becomes negligib-
le and a goes to zero. As (ei— es) is decreased further
the threshold for the static flexoelectric domains becomes
smaller than that for the BD instability when

le,- e.| > [-2a_ e K o, /{(a, +a_ -a_ Yo, }17*
1 3 2 a 4 5 2 0
and a = w/2. Thus for a very small range of negative

values of (ei— es), a = 0 and the flexoelectric terms do

not influence the problem.
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The variation of a with (ei+ es) is shown in Fig.7.
As (e1+ e3) is increased from its initial negative value,
the flexoelectric torques decrease and hence a decreases.

When (e1+ e3) is positive and in the range

—(ei— es)(a4_ +a5 -a, )/(2(12 ) < (ei+ es) < (ei— e3)c"/ca,
Egs. (7) and (8) cannot be simultaneously satisfied by
nonzero values of ¢. As seen from Fig.7, a =0 over a wider
range because of the dominance of the hydrodynamic torque

at small values of a.

If we now introduce the elastic anisotropy, Eqgs. (11)
and (12) show that as K1 and K2 are less than K3 in MBBA,
the elastic anisotropy favours a non-zero value of a. This
is reflected in Figs. 8 and 9 , which show the variation

of a with (e, - e3) and (e1+ es), respectively, for €, =0

and K, #KZ#Kz.

The variations of Vv, and a with €, are shown in

Figs.10 and 11. As €, is increased the stabilizing torque

on the director decreases and Vc decreases. It should be

noted that beyond a certain positive value of €, the

Freedericksz transition has a lower threshold than the

EHD instability. When €, is negative the space charge
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density due to the dielectric polarization has the same
sign as that due to the conductivity anisotropy.
Therefore, on increasing €, from its initial negative
value, the total space charge density and hence the
hydrodynamic torque decrease (see Eq. 11). The latter

equation can however be satisfied by an increase in the

value of a due to the presence of the flexoelectric terms.

It is interesting to note that if both the
flexoelectric coefficients are decreased by a factor S,
fixing the ratio (el— es)/(e1+ es) at the MBBA value, a

non-zero value of a is obtained only if S >0.13 (Fig. 12).

Figs.13 and 14 show V., and a as functions of o,/o, .
When the latter has a small value, the Carr-Helfrich
mechanism is not very efficient and the flexoelectric
terms dominate resulting in large values of a and V.. As
T, /oJ_ is increased, the Carr-Helfrich mechanism becomes
more efficient and both a and V, decrease initially. With
further increase in o, /o ,while V. continues to decrease,
a gradually increases. The increase in a, /cﬂncreases the
transverse electric field gradient (see Eg.4)and hence

the flexoelectric torque on the director as well as the

value of a.
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whi ch the flexoelectric coefficients are decreased,
keeping the ratio (e, - e,)/(e,+ e,) fixed at the MBBA
value. Note that a = 0 for S < 0.13.
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3.5 EXPERIMENTAL RESULTS

Most of the DC studies on EHD instabilities in nematics
have been made on MBBA  This naterial 1is chemcally
unstable and the DC instability exhibited by it 1is known
to be influenced by charge injection at the electrodes
[6]1. Consequently, the optical pattern observed at the
onset of the instability is not the set of linear rolls
expected from the Carr-Helfrich mechanism but a
conplicated two dinmensional pattern [6,7]. W have studied
a room tenperature nematic mxture containing t wo
chem cally stable compounds, viz, CE-1700 and PCH 302 of
Roche chem cals. The low frequency principal dielectric
constants and the principal conductivities were neasured
at 1592 Hz using a Wayne Kerr bridge (B642). The values
obtained at roomtenperature are: €, = 3.3, €, = 4.3 and
o, /o, = LL As our main objective was to study the
i nfluence of flexoelectricity onthe DC EHD instability,
we al so measured the flexoelectric coefficients of this
m xture. The experimental details are described in chapter
7. (e,- e;)/K and (e,+ e )/K were found to be about 100
and -200 cgs units, respectively. Note that these val ues

are conparable to the MBBA values (table 1) and have the

same signs.

The sanpl e thickness was typically about 20 pm in nost
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of the studies. Under DC excitation the EHD instability
gives rise to a set of convective rolls at the threshold
(Fig. 15). Further, the instability was not observed when
the thickness of the sample was less than about 5 wum. As
discussed in chapter 2, the existence of a critical
thickness below which the EHD instability cannot be
observed is characteristic of the Carr-Helfrich mechanism.
As the thickness of the sample is decreased the director
relaxation time decreases becoming smaller than the charge
relaxation time when the thickness is less than a critical
value. Then the fluctuations in the director field do not
last long enough for the formation of space charges either
due to the Carr - Helfrich mechanism or the flexoelectric
polarization. From the existence of a critical thickness
we conclude that these mechanisms are responsible for the
DC instability in the material under study and that the
influence of charge injection is negligible. At the onset
of the instability the wavevector of the convective rolls
was found to make an angle of about 20' with the direction
of the initial alignment of the director. Though the
occurrence of these oblique rolls is clearly predicted by
the theory presented above, a detailed comparison of the
theoretical predictions with the experimental results is
not possible since many of the material parameters of the

mixture under study are unknown.



Fig.15. Photograph of the EHD pattern obtained slightly
above the threshol d of the instability in a room
tenperature nematic. The orientation of t he
undi storted director n is indicated in the figure.
Note that the edge dislocation in the pattern
corresponds to the addition of one optical domain,
whi ch has two convective rolls of oPposi te vorticity
as explained in the text. The sanple thickness was
about 15 pm. (Magnification: x 250).



W also found that the width of the optical domains is
approximately twice the sample thickness. Trace'r particle
motion within the domains clearly shows that each optical
domain consists of two convective rolls of opposite
vorticity. This is also indicated by the edge dislocation
in the optical pattern, which corresponds to the
termination of just one optical domain (Fig. 15). Fig.16a
shows the dark fringes obtained when the sample taken
between crossed polarizers was viewed through a tilting
compensator, at a voltage close to the critical value.
These dark bands correspond to regions in the sample where
the phase difference introduced by the sample in the
incident linearly polarized Ilight is offset by the
compensator. These fringes show very clearly that the
effective birefringence of the sample varies more sharply
at the bright lines of Fig.15 than in the region between
two bright lines. When the field is increased beyond the
threshold this asymmetry in the variation of the effective
birefringence in the two regions becomes more pronounced
(Fig.186b). These observations indicate that the director
profile within the rolls 1is non-sinusoidal with the
curvature in the region of the bright lines being much
stronger than that in the region mid-way between two
bright lines. The increase in the asymmetry with the field

strength above the threshold shows that nonlinear terms



Fig.16. (a) The dark fringes obtained when the sanple was
viewed in sodium light through a tilting conpensator.
The applied voltage was close to the threshold val ue.
(b) As in(a), but at a slightly higher voltage.
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are responsible for the observed optical pattern. Further,
when the field direction is reversed, the bright lines
were found to shift by about half the optical domain
width. The polarity dependence of the optical pattern
suggests that flexoelectricity must be responsible for the
non-sinusoidal director profile, as it is the only bulk
property of a nematic that couples linearly to an external
electric field. Including the second order terms and
taking a = 0 for simplicity, the torque balance equation

along Y is given by

K,(d 8/dx?) - (e + e,) (a,/7) E@ (de/ax)
+ [eacL/(4n o”) +(ea/e”— ca/o“)aze"/(‘mr))]Ezae =0 (14)

where 7 = i(a4 +as -a, ).

The lone quadratic term in the above equation arises from
the action of ann the fleroelectric contribution to the
space charge density. This equation was solved graphically
by the phase plane technique using the standard MBBA
values of the material parameters. The resulting
non-sinusoidal 8 profile and the effective
birefringence are shown in Fig. 17. The variation of the
effective birefringence is sharper in regions like B than

in regions like A. The incident light is therefore brought

to focus at two different planes by the two sets of
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Fig.17. The non-sinusoidal director profile obtained from
Eq.(14)(top). The resulting variation of the effective
birefringence An with X ( for ne= 1.769, n, = 1.549)
(mddle). The disposition of the convective rolls
(bottom agrees wth the observed tracer particle

noti on, regions B corresponding to the bright lines of
Fig. 15.



regions. When the microscope is focussed on the set of
bright lines due to regions like B,the lines corresponding
to regions like A become very diffused and faint. The
disposition of the convective rolls with respect to the
bright lines shown in Fig.17 agrees with the observed dust
particle motion. When the field is reversed, the director
field in regions like A becomes more distorted than in
regions |like B and the bright lines shift to A, in

agreement with the experimental observations.

VW must note here that as discussed by Hirata and Tako
[8], an asymmetry in the optical pattern will also arise
from a sinusoidal director profile in the convective
rolls. This is caused by the tilting of the rays due to
the periodic variation of the effective extraordinary
refractive index in the sample (Fig. 18 ). However, this
weaker asymmetry does not depend on the polarity of the
applied field as the director profile in the conduction
regime does not oscillate with the field, and is present

under an applied AC field also.
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