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CHAPTER 5

INFLUENCE OF FLEXOELECTRICITY ON THE BD INSTABILITIES |IN

NEMATICS: A ONE-DIMENSIONAL LINEAR ANALYSIS FOR AC

EXCITATION

5.1 INTRODUCTION

In this chapter we extend our calculations to the case
of AC excitation. In order to simplify the analysis the
boundary conditions are neglected. This model offers a
satisfactory explanation of many experimental observations
which cannot be accounted for by using the Helfrich [1]
and Orsay models [2,3]. These include the oblique-roll
instability observed at low frequencies in the conduction
regime, the chevron pattern found in the dielectric regime
and the Ilow frequency EHD instability exhibited by
nematics with a negative conductivity anisotropy [(4,5,6]

(see chapter 2, section 6).

5.2 THE ELECTROHYDRODYNAMIC EQUATIONS

VW consider the same geometry as in the previous two
chapters (Fig.1). Since the boundary conditions are
neglected all the variables in the problem are functions
of t and £ only. The system is described by the following
linearized equations.
1) The Poisson equation, div —5 = 4nQ.

Substituting for D (see Eq. (8), chapter 1), we get
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Fig.l. Illustration of the coordinate system and

definitions of the angles used in the text.
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4 TQ=¢€ (aEE/BE) + e Ecc (28/0%)

+ 4w (e +e,) s c (3°6/28) (1)
where, e, = €, tec ,C =COSa,s : sinaand £, is the
applied field.

2) The charge continuity equation, ( 23Q@/3t) + div J =o0.
Substituting for J (see Eq.(8),chapter 1), this equation

| eads to

(°Q/9t) + o, (BEE/BE)+OaEaC(39/BE)=O (2)

where, o, = a + o, ¢

3) The equation of notion (2],
e(av/at) +div (6 W) - div (3+3") = Q E

Since we are considering a one-dinensional nodel only the
Z-conponent of the velocity appears in the above equati on.
The inertial termin the above equation is negligible as
long as the excitation frequency is not too |arge.
Further, the elastic stress tensor & does not lead to
any linear terns. Neglecting these two terns and substitut-

ing for the viscous stress tensor 3’, we get

. 2
a, c ( BG/BE)+71(BZVZ/BE)+QE3=O (3)
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where, 6 =206/3t and '171=-}[a++(c15—c12)02 ].

4) The torque balance along Y yields

To+a c(av, /38) - M (3 8/38") - (e E. /an) @

—(eac Ea /4rt)EE - (el— ea)Eas (92¢/3E) = O (4)

2
where, M = Kzs + K. c' .
3

5) The torque balance along Z gives

. 2 2
*Qa + (e, - e, )s Ea(BG/BE) - L (2 o/08)

+(e1+ex)SC(BE§/aE)=O (5)

where, ® = ¢/t and L = K152 + K:’c2 .

Eliminating EE and v, from Egs. (1-5), and assuming the
solutions:
Y = w(t) exp(iqg), & = ¢o(t) exp(iag) and Q@ =Q(t) exp(iqEg),
where Y = ( 38/3% ), we get the following equations which

describe the response of the system to the applied AC

electric field.
YWY /T, + (BE/TY) ¢ +(AE, /M) Q@ = 0O (6)

® + O/T, + (e E/T) Y+ (e,/¥) Q@ = 0 (7)
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Q+ Q/t +o0,E Y+ (€/T)e = 0 (8)
where, 1/Tw = (M q2 - eLerEZ /4wn) /'r)2 , A = —(e, +°z/17,_)°’
(’1= [(31'83) - (e1+es )czer]s q? , T)2= (a3 -a, ) - a:cz/‘l?i,
/7, = [ L+ 4n (e + es)as’cz/ec] a/( a, - a, ),

e, = 4m (e, + es) sc/ e , e, = (e,- e,)s - €,C e /4an,
1/t =4no /e ,0,= (0, -0 €)c, €2= (e, +e,)s ¢ a*and
€. = ea/e‘.

Following Smith et al.[3] we solve the problem for the
case of square wave excitation. The coefficient in Eqgs.(6-
8) now become constants within each half cycle of the
applied field and this simplifies the problem

considerably. For square wave excitation

+E for 0 < t < t1/2f

-E for 1/2f < t < 1/f.

where f is the frequency. The solutions are assumed to be

Y(t)
e(t)

C, exp( At/ T)

C, exp( At/ T) and

Q(t) o C, exp(At/T).
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Substituting these in Egs. (6-8) the following

characteristic equation of the system is obtained.

3 3 2 3 2 2
AQ/T) AT 1/T +1/(T T) +1/(T T,

FAL/(TT,) = 0g€ /(GT) + 1/(TT,) + 1/(TT,Ty)

2 2
e, QE /(NT,T) ~ Ao, E/(TH] + 1/(TT,Ty)

2
€ & /(1, T T,) _elesz/(T]z'fl'C) +@, 0, E /(M)

2 2 _
Ao, E/()T) +Ae E/()7T) = 0 (9)

The general solutions are:

3

Y(t) =j}=:133 exp(?x-J t/T) ,

o(t) = £ b, exp(A; t/T) , (10)
J=1

Q(t) = )Jf c; exp(Ajt/'t).

where } , A. and /\3 are the roots of Eq.(9),

2

2
by = (T, /dy T, )ITT, A evE 2-1}2 e (AjZTw +T )] ay
¢y LM TUMT+HTI AT +T) -T T, TR e, E }/(d, TT] a,
2
dy = [TT, e QE =T, AE (A,T, +7)]

It is clear from Egs.(€6-8) that when Ea changes sign
after every half cycle, either ¢ and @ should reverse

their signs with y retaining its sign or Y should reverse



Its sign with ¢ and @ retaining their signs. Thus there
are two sets of solutions possible corresponding to two
regimes of instability, as in the Orsay nodel (2,3]. In

the conduction regine ¢ and Qoscillatewith the field

and \y does not., ie,
Yt + 1/2f) = Y (v)
o(t + 1/2f) = - o(t) (11)
Q(t + 1/2f) = - Q(t).

In the dielectric regine, on the other hand, y oscillates

with the field and ¢ and Q do not.,ie,

Yt + 1/2f) = - Y(t)
o(t + 1/2f) = (L) (12)
Q(t + 1/2f) = Q(t)

In order to obtain the threshold of the instability we

have to find a set of eigenval ues A, , X, and A, of Eq.(9)
that satisfy one of the two conditions corresponding to
the two regines of instability. As it is difficult to get
anal ytical solutions of a cubic equation, we solve the
problemnunerically. For a given set of values of the
nmaterial paranmeters and for a given frequency, we choose

sone values of a and the applied voltage v, and find the



eigenvalues of Eqg.(9). The voltage V, is then varied till
the }\’s satisfy either Eg.(11) or Eq.(12). This value of
Va is the threshold voltage V,, for the particular value
of a chosen. The calculaions are repeated for different,
values of a and Vi, is obtained as a function of a. The
minimum value of Vi gives the critical voltage V., at
which the instability sets in and the corresponding value
of a gives the tilt of the rolls at the threshold, for the
particular value of the frequency chosen. The above
process is repeated for different values of the frequency

of the applied field.

5.3 RESULTS AND DI SCQUSSI ON

The variations of the critical voltage V., and the
corresponding value of a with frequency, calculated for
the standard values of the MBBA parameters (see table 1,
chapter 3 )are shown in Fig. 2. The curves labled (a), (b)
and (c) correspond to the onset of the conduction regime,
the restabilization branch and the dielectric regime,
respectively (see chapter 2, section 4). The dashed lines
in the upper section of the figure denote regions in the
stability diagram characterized by non-zero values of a.
The conduction regime sets in at a critical voltage, which

in the one-dimensional model is minimized for g = 0.

However, using the Helfrich <criterion [1] we can take
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Fi g.2. Upper section: Threshold voltage (curve a) and the

restabilization voltage(curve b) as a function of the
frequency in the conduction regime for MBBAwth o,= 3
X 10-10 ohm-1 em-i. The low frequency portions
i ndi cated by dashed |ines are characterized by nonzero
val ues of a. The frequency dependence of the voltage
at the threshold for a 20 um thick sanple in the
dielectric regine is shown in curve c. Lower section:
variation of the tilt anglea of the oblique rolls
with frequency. a,b and c¢ correspond to the sane
branches as in the upper section.
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q = n/d at the threshold. I n the conduction regime oblique
rolls are obtained at the threshold upto a critical
frequency f, . Beyond f, normal rolls occur at the
threshold. The conduction regime is obtained only upto a
cut-off frequecy f, = 1/T = 4T[0“/E“. The restabilization
branch is characterized by a field threshold and as at the
onset of the conduction regime, q is taken to be equal to
n/d. Along this branch oblique rolls occur upto a requency
f. > f, . Therefore in the frequency range f, < f < f_,
though normal rolls occur at the threshold of the
conduction regime, oblique rolls can be expected to occur

at higher fields.

The dielectric regime is also characterized by a field
threshold with q >> n/d. For the standard values of the
material parameters of MBBA, used in the calcalations,
oblique rolls are found at all frequencies. However, if
the flexoelectric coefficients are decreased by a factor
S, keeping the ratio (ei— e3) / (e1+ e3) constant at the
MBBA value, oblique rolls are obtained only if S > 0.74

(Fig.3).

Fig.4a shows the evolution of y, ¢ and Q for one cycle
of the applied field just above the threshold of the

conduction regime. Let the three variables be positive and
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Fig.3. Variation of a (in radians) with the factor S by
which the flexoelectric coefficients are decreased,
keeping the ratio (e, - e,)/(e, *+ &) fixed at the
standard MBBA val ue.
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Fig.4. Variation of yp ,2 and Qwith tine for one period of
t he aﬁplied square wave field: (a) just above the
threshold in the conduction regine at 40 Hz, (b)
slightly below the restabilization curve at 100 Hz and
(c) inthe dielectric reginme at 170 Hz. The val ues of
the material paraneters used in these cal culations are
the same as in Fig. 2.
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increasing at t=0, when the field is reversed. Both source
terms in Eq.(6) now change sign and Y starts to decrease.
In Eq.(7) only the Wy term changes sign immediately and
since the Q term is stonger than the = term, 4 continues
to increase. I n Eg.(8) the ¢ term is negligible and Q also
starts to decrease as the 1y term has changed sign. In the
conduction regime Q has the shortest relaxation time and
hence Q crosses zero before yw. Once Q is negative the
source term containing Q in Eq.(6) regains its initial
sign and y starts to increase. The influence of the 4
term on the evolution of yp is found to be negligible. When
Q becomes negative the second source term in Eqg.(7) also
changes sign and ¢ decreases and changes sign. Thus Q
and ¢ oscillate with the applied field. The evolution of
these variables near the restabilization branch (Fig.4b)
is similar to that at the threshold of the conduction
regime. However, since the W relaxation time Twis now not
very much greater than the charge relaxation time T, the
initial decrease in W is much sharper. Along the
dielectric regime (Fig.4c), T < T and Y oscillates with
the applied field. Since ¢ does not oscillate in the
dielectric regime, the value of a at the threshold is not

very sensitive to the frequency.

It should be noted that the relaxation frequency of
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the ¢ distortion, 1/T4> , Is independent of the applied
electric field and typically of the order of a few Hz (see
Eq.(7)). Therefore it is clear from the above discussion
that & is driven and made to oscillate in the conduction
regime mainly by the Q term in Eq. (7). Hence if the
conductivity of the sample is increased the charge
relaxation time would decrease and ¢ will be forced to
oscillate at higher frequencies. Fig.5 shows the variation
of f, /f, (curve a) and f /f_ (curve b) with a,, for fixed
a /oL . For small values of a,,, f./f. decreases much more
stongly than f, /f , whereas at higher values of o, their

rates of decrease are comparable.

This model also offers a possible explanation of the
low frequency EHD instability observed in nematics close
to the nematic - smectic (A or C) transition point, having
negative conductivity anisotropy (see chapter 2). W have
taken a positive value of a, since, it is known to be
positive in such materials [4]. Taking a = 0.5 poise,
o,= - 0.3x10-10 ohm™* am™* and €,=- 0.2, we find solutions
corresponding to the dielectric regime, but not those
corresponding to the conduction regime. The instability is
found to be characterized by a threshold field, which is

minimized for q =0. Therefore using the Helfrich criterion

q = w/d, we get the width of the rolls at threshold to be
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Fig.5. Variation of the ratios of frequencies f,/f. (curve
a) and f£./f, (curve b) witha,, (in ohmlcm-1).
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equal to the sample thickness. The value of a at the
threshold is found to be =&~ 90' and does not vary much
with the frequency of the applied field. The dependence of
the threshold field on the frequency is similar to that in
the dielectric regime of nematics with o4 > 0 (see Fig.2).
It is clear that in this case the space charge formation

is entirely due to the flexoelectric effect, which also

accounts for the large value of a.

VW do not find solutions corresponding to the high
frequency regime where q >> wn/d. Here it should be noted
that at high frequencies the experimental value of g will
have a positive contribution from the dielectric losses
associated with the relaxation of E,,. As shown by Goossens
[7), this contribution can cause EHD instabilities at
relatively high frequencies. The EHD instabilities found
in nematics where €, changes sign at some value of the
frequency of the applied field due to the relaxation of E,
[8,9], are understood in terms of the model of Goossens.
It is possible that in materials with negative conductivi-
ty anisotropy at low frequencies, the effective o, is
actally positive at high frequencies due to the contribut-
ion from the dielectric loss of e,,. Then these materials

can be expected to show an instability similar to the

dielectric regime of nematics with positive a . The



experimental observation ( see chapter 2) that the high
frequency regime smoothly goes over to the dielectric

regime as the temperature is increased,supports this view.

5.4 COMPARISON WITH EXPERIMENTAL RESULTS

Though oblique rolls at the threshold in the
conduction regime have been reported by some authors [10],
the only detailed experimental study on these is that of
Ribotta et al.[{11] (see chapter 2). The stability diagram
found experimentally by them is reproduced in Fig.6 . The
material used by them is a commercially available nematic
mixture (Merck phase V). A detailed comparison of the
experimental results with the theory is not possible as
many of the material parameters of this mixture are not
known. From the figure we see that oblique rolls are found
upto a critical frequency f, with f /f, ~ 0.3. Beyond
f, though normal rolls are obtained at the threshold,
oblique rolls are found at higher fields. All these
features are in agreement with the theoretical results
discussed above. However, a non-linear analysis i s needed
to predict the transition of normal rolls to oblique
ones at frequencies beyond f, . Ribotta et al. [11] also
find f, to increase with the conductivity of the sample,

as found from our calculations.
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Fig.6. The stability di agram obtai ned fromthe experinments
of Rbottaet al. {(12), Below the triple point M
oblique rolls are obtained at the threshol d. Beyond M,
normal rolls are obtained at the threshold and as the
field strength is further increased, they first becone
un?rlatory and then change continuosly into oblique
rolls.



Studies on EHD instabilities in MBBA [12] show that in
the dielectric regime normal rolls occur at the threshold.
If the field is slightly increased the chevron pattern
consisting of oblique rolls is obtained. As mentioned in*
the previous section if the flexoelectric coefficients are
decreased slightly our calculations give normal rolls at
the threshold of the dielectric regime (Fig.3). Therefore
it is likely that the values of the flexoelectric

coefficients that we have used are slightly overestimated.

In the experimental studies on EHD instabilities in
nematics with o, < 0, discussed in chapter 2 [4,5,61],
almost longitudinal domains are found with q ~ n/d at the
threshold of the low frequency regime. Further, the 1light
scattering experiments of Goscianski [4] show that the
curvature of the director oscillates with the applied
field in these rolls. These features are in agreement with
the results of the calculations, presented in the previous
section. Blinov et al. [6] find that at very low
frequencies ( <20 Hz) The threshold field varies as cm, o
being the average conductivity of the sample. This feature
is not predicted by our model. The isotropic mechanism
{61, which gives such a dependence may, therefore, make an

important contribution at these low frequencies.



Thus the inclusion of the flexoelectric terms in the
EHD equations describing the response of a homogeneously
aligned nematic to an external electric field offers a
satisfactory explanation of many experimental observations

which cannot be accounted for by the earlier models.
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