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CHAPTER 6

INFLUENCE OF FLEXOELECTRICITY ON STATIC DISTORTIONS I[N

NEMATICS INDUCED BY AN EXTERNAL ELECTRIC FIELD

6.1 INTRODUCTION

As discussed in the introductory chapter, nematic
liquid crystals, in general, have non-zero dielectric and
diamagnetic anisotropies. Therefore an external electric
or magnetic field can be used to induce static distortions
of the director field in a uniformly aligned sample. When
the destabilizing field is applied normal to the initial
orientation of the director, the deformation sets,in at a
critical value of the field strength if the anchoring at
the walls is strong. This is known as the Freedericksz
transition [1]. In nematics with positive dielectric or
diamagnetic anisotropy, the Freedericksz transition can
be conveniently studied in three geometries [2,3]. In
geometry 1 the sample is aligned homogeneously and the
destabilizing field is applied normal to the bounding
glass plates (Fig.la). At the threshold of the transition
a splay distortion of the director develops in the medium
(Fig. 1b). If the field is increased beyond the critical
value, the distortion of the director field increases and
is a combination of bend and splay. |In geometry 2 the
sample is again aligned homogeneously and the field is

applied normal to the undistorted director, parallel to
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Fig.1. The three princi pal types of Freedericksz
def or mat i on.



the glass plates (Fig. 1¢). A twist distortion develops in
the medium as the field strength is increased beyond the
critical value (Fig. Id). In geometry 3 the sample is
aligned homeotropically and the field is applied parallel
to the plates (Fig. 1e). A bend distortion 1is created in
the medium at the threshold (Fig. If). Beyond the
threshold there is a combination of bend and splay. An
expression for the critical value of the field can be
obtained by equating the elastic and the dielectric or
diamagnetic torques. For an external magnetic field the
threshold or critical values in the three geometries

are given by [2,3]

i 1/2 .
He = (n/d) (K, /Xx,) . i=1,2,3 (1)
1 2 3 o _
where He, He, He are the critical values in

geometries 1,2 and 3, respectively, d is the sample
thickness, )(,a the volume diamagnetic anisotropy and K,, K,
and K3 are the splay, twist and bend elastic constants,
respectively. The corresponding relations for an applied

electric field are [2.3]

EE = (n/d) (4mK, /€, )72 , i=1,2,3 (2)

where €, is the dielectric anisotropy. 1t is clear from



the above relations that if the critical values of the
applied field can be measured in the three geometries the
elastic constants of a nematic can be determined. Thus
Freedericksz transition offers a convenient method to
measure the elastic constants of a nematic and is widely

used for this purpose.

Recently Lonberg and Meyer [4] reported a new type of
transition in geometry 1, induced by a magnetic field in a
polymeric nematic. Unlike the classical Freedericksz
transition, the deformed state in this case is
characterized by a periodic splay -twistdistortion of the
director field and leads to the appearance of domains with
their axes parallel to the undistorted director n,. They
also showed that such a distortion is preferred to a
uniform splay distortion if the ratio of the twist and

splay elastic constants R = K,y /K1 is less than a critical

value RC ~ 0.303.

It was later pointed out by Kini [5] and Oldano [6]
that static periodic distortions should also be observed
in geometry 2 under a magnetic field. The equations
describing the distorted director field in this case and

in the case of geometry 1 are isomorphic wunder the

transformation [5]
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It therefore follows that in geometry 2 the static
periodic distortion is preferred to the wuniform twist
distortion if the ratio R' = K, /K, is less than the

critical value R:: % 0.303.

Static periodic distortions in a nematic in geometry
1, induced by an external electric field have been the
subject of many experimental [7] and theoretical studies
[8,8]. The theory of Bobylev and Pikin [8] explains these
periodic distortions as arising from the flexoelectric
effect [10]. Neglecting the elastic anisotropy they showed
that these distortions can be obtained if the dielectric

anisotropy satisfies the inequality

2

| e, | < (4n/K)(e, - o ) y

a 3

where e, and e, are the flexoelectric coefficients. This
model was later extended by Bobylev et al. [11] by
including the elastic anisotropy. It may be noted here
that the three dimensional analysis presented in chapter 4
reduces to the model of Bobylev et al. when the wavevector
of the distortion is normal to ?\o, in which case all

the hydrodynamic terms drop out of the problem.



The fact that the static periodic distortion observed
under a magnetic field follows from the model of Bobylev
et al. appears not to have been appreciated in the recent
literature. W have therefore calculated the threshold
field of the static distortions in geometry 1 as a

function of the ratio R =K2 /K1 . When €, =0, the periodic
distortion is caused by flexoelectricity and can be
observed for any value of R. When €, > 0, the periodic
distortion is obtained upto a critical value R, of R. For
R >R, , the classical splay Freedericksz transition is
obtained and the flexoelectric terms do not contribute to
the solutions. As |ei— es| / €, is decreased, the critical
value Rc decreases and when [e‘- e3] / €, =0, RC = 0. 303.
When a magnetic field is used to induce the distortion the
flexoelectric terms are naturally absent and as found by

Lonberg and Meyer [4], R. = 0.303.

In this chapter the influence of flexoelectricity on
the static distortions induced by an electric field in
geometry 2 is also calculated. In this geometry the
flexelectric terms are found to decrease the critical
value RC’ of R'= K1 /K2 upto which periodic distortions are
observed. For all values of R’ > R, a new type of transit-
ion is favoured which has a lower threshold than the twist

Freedericksz transition. This transition is caused by the



flexoelectric terms and the distorted state which is non-
periodic is characterized by a non-planar deformation of

the director field, described by two polar angles 8 and ¢.

In geometry 3 flexoelectricity does not lead to any
linear terms in the equations describing the system. Hence
the classical bend Freedericksz transition is obtained in

this case.

6.2 ANALYSIS OF GEOMETRY 1

Taking ﬁo along the X-axis and the applied electric
field E along Z, Bobylev et al.[11] obtain the following
equations, which describe the response of the system to
an external DC electric field. As mentioned earlier, these
equations can be obtained from the electrohydrodynamic

equations of chapter 4 by setting a = n/2.

K, (38/22°) + K, (3°8/3Y") + (e,- e,)E,(26/3Y)

+ (gE, /4m) 8 + (K- K,) (30/3Y3Z) =0  (4)

2 2 2 2 :
K,(oo/dY ) + K, (30/3Z ) - (e,- e,)E (B6/3Y)

+ (K- K,)(36/3Y3z) =0  (5)

where 6 is the angle made by A with the Xy plane and ¢

the angle between the X-axis and the projection of n on



the XY plane. Assuming

(e o]
1

8, expli(a,Z + a Y)]

o
1}

& exp[i(qzz + qu)] (6)

the condition for the existence of non-trivial solutions

leads to the following polynomial in S = q, /qy .

4 2 2
s + [2 - {e,/(an K )} (E, /a,) 1 8

—(Ez/qy)z [Ea/(41t K,) + (ei— 93)2 /(KiKz)] +1 =0 (7)
The boundary conditions are:
@ (Z=+¢d/2) = o (Z=1%4d/2) =0 (8)

As discussed in detail in chapter 4 , these boundary

conditions lead to a boundary value determinant. 1t is

given by

1,4 (9)

The elements of the determinant are:

D1j= cos(sjb), Dzj= sm(SjG), D

Where s. are the roots of Eq.(7), & = q,d/z and
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B, = [(K,~ K,)S, + i (e,- e,)(E,/a )1/(K+ K 8}) .

Egs.(7) and (9) form a characteristic value problem and
the method of solution is similar to that described in

chapter 4.

The threshold voltage V,, and the wavevector q, of the
distortion are shown in Fig.2, for different values of €,.
The standard MBBA values of the other material parameters
were used in the calculations. The dashed lines in the
figure correspond to the wuniform splay Freedericksz
transition, the dotted lines to the periodic distortion
obtained in the absence of the flexoelectric terms and the
continuous lines to the periodic distortion obtained when
the flexoelectric terms are taken into account. It is
clear from the figure that when €, = 0, the periodic
distortion is caused by flexoelectricity and is obtained
for all values of R. When €, > 0, the periodic distortion

a

is found upto a critical value R. of R. For R > Rc the
classical splay Freedericksz transition is obtained.
Further, as |el— e‘,’|/ea is decreased the critical value RC

decreases and when [ei- es]/ea =0, RC ~ 0.303.

In order to clearly understand the influence of

flexoelectricity in this geometry, let us consider the
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Fig.2. Variation of the threshold voltage and the
wavevector of the distortion at the threshold,with the
ratio R = K,/K, in geonetry 1.The curves | abeled (a),
(b) and (Ic) correspond to €; =0, 0.1 and 0.5,
respectively. Dashed lines: uniformsplay Freederiksz
transition. Dotted lines: periodic distortionin the
absence of flexoelectricity. Solid Iines: eriodic
distortion with flexoelectricity. Note that en the
flexoel ectric terns are neglected, q, goes to zero at
R. =~ 0.303 for al | positive ‘values of €.
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flexoelectric energy density given by

fl ——
f = - P.E

- Ez[ele('ad:/aY) + e, ®(26/23Y)] (10)

Here we have neglected the surface terms as the anchoring
of the director at the two surfaces is assumed to be
strong. It is clear from Eq. (10) that flexoelectricity
favours a periodic distortion of the director. Further
fﬂ is minimized if 6(y) and ®(y) are 90' out of phase with
each other. In the absence of the flexoelectric terms the
periodic distortion is obtained only if R is less than
about 0.303. Since the flexoelectric terms also favour
such a distortion, the critical value R, increases when

they are taken into account.

6.3 ANALYSIS OF GEOMETRY 2

Taking ﬁo along the X-axis and the applied field

Ealong Y, the linearized torque balance equations are:

3 2 2 2 2
Ki(BdJ/bY ) + K,(0¢/01Z ) + (K - K,)(2 8/ 3Y32Z)

+ (eaE;/Mt) ® + (e, - es)Ey( 2a6/012)

0 (11)

2 2 2 2 2
Ki(ae/az ) + K,(08/3Y ) + (K - K,)(0®/0Y2Z)

- (e,- e, )E,(30/32) =0  (12)
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Note that Egs.(11) and (12) and Egs.(4) and (5) are not
-—
isomorphic under the transformation (3) with E instead
-—
of H, due to the presence of the flexoelectric terms.

However, these two sets of equations are isomorphic under

the transformation
(91 ¢1 Y, Zv EY) —> (¢s ev Zv Y7 Ez) (13)

In order to clearly understand the influence of
flexoelectricity in this geometry, let us simplify the

problem by taking e, = 0. Assuming the solutions
6 o8, exp[i(azZ + g ¥Y)] and ¢ = ¢, expli(a Z + q Y)I,

we get the following relation between the electric field

and the wavevector:
/7 2 2
E, = (KK, )" (a, +a, )/l q,le-e.] ] (14)

It is clear from this equation that E, is minimized for

a, = 0. Thus in this geometry flexoelectricity does not
lead to a periodic distortion of the director field when
€, = 0, but gives rise to a wuniform distortion at a
critical value of the field. However, unlike the uniform

twist Freedericksz transition this new transition is
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characterized by both @ and ¢ distortion angles in the
director field. Neglecting the Y dependence in Egs.(11)
and (12) the follow ng solutions can be obtai ned.

Ya o,
a (K /K, ) sin(2nzZ/d)

[¢0]
1

© =+ a { cos(2rnz/d) - 1 } (15)

where a is an arbitrary constant., The relative signs of 6
and @ depend on the signs of (e,- e,) and E The critical

value of the field is given by

1/2
E = (2n/d) (Ksz) / lel— e

v (16)

31
Wien e, # 0 the problem can be solved numerically as in
the previous section. The variation of the threshold field
and the wavevect or q, at the threshold obtained fromthe
cal culations are shown in Figs.3 and 4, for a few values
of €, . The standard ™MBBA values of all the other
paraneters were used in the calculations. In the absence
of flexoelectricity, as found by Kini [5)] and O dano (6]
for the anal ogous magnetic case, a periodic distortion is
favoured for R’< 0.303 for any positive value of e, . For
R> 0.303 the wuniform tw st Freedericksz transition

occurs. Wien the flexoelectric terns are included the

critical value R! of R up to which the periodic
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Fig.3. The product Ey, .d as a function of R’ o K, /K, in

geonetry 2. (a) €, = -0.1,(b) €, =0, (c) €, <0.1
and (d) €, = 0.5. Inthe last tw cases the dotted
| ines correspond to the periodic distortion and the
dashed lines to the twi st Freedericksz transition in
t he absence of flexoelectricity. The solid lines are
obtai ned fromcal cul ati ons i ncluding the flexoelectric
ternmns.



distortion is favoured decreases, the decrease being
greater for larger values of |e1— 33| / €, - Further, for
R’ R.é + a uniform distortion with both polar angles & and
¢ is found to have a Ilower threshold than the uniform
twist distortion. When €, = 0, we get the new type of
transition for all values of R’. As shown later, it can

also be obtained for small negative values of €, less

than a critical value.

I n almost all nematics the ratio R' is larger than 1
and therefore in practical situations we can neglect the Y
dependence in Egs.(11) and (12). They can then be solved

analytically for any value of €, to obtain the following

solutions:

@
]

(a Mi/L) [sin(LZ) + R (1- cos(LZ) + {NZL/(Mle)} Z]

-4
"

+ a [ cos(LZ) + R sin(LZ) - 1] (17)
with the condition that tan x = - Nzx/(MiMz) (18)

2 .
where N, o e E /(4m K,)i My = (e - ez.)Ey/K-1 , 1.=1,2;

L= (N, t Mle)l/’-, x = Ld/2 and R = (1- cos Ld)/sin Ld.

2

The condition (18) gives the following expression for the
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Fig.4. Variation of q, with R. The dashed line is

obt ai ned when the flexoelectric terms are neglected
and the solid lines are obtained when they are
included. (c) €3=0.1 and (d) €, o 0.5, Not e that
qy,> 0 at sone K.
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Fig.5. Variation of tan x / X wth x.
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threshold field:
- . 2 1/9_
E,, = (2 x,/d) [e, /(4w K,) + (e,- e,) /(K,K,)] (19).

where x, is the lowest non-zero value of x satisfying
Eq.(18). X, can be easily read off a plot of tanx /x
(Fig.5). From Eq.(18) we see that when €, > @, X, /2

and Eqg. (19) reduces to
_ 2 1/2
Ey, = (mn/d) [e,/(4m K,) + (e,- e,) /(K K,)] (20)

Comparing Egs.(20) and (2) it is clear that even in the
limit of €, @, the new type of transition has a slightly
lower threshold due to the presence of the flexoelectric
terms. From Eqg.(19) we find that if €, i's negative the

flexoelectric transition can be observed only if
2
|Ea| < (4n/K, ) (e, - e,)

Fig.6 shows the 8 and ¢ profiles in the <cell just
above the threshold calculated for the standard MBBA

values of the material parameters. When €,= 0, the

amplitudes of 8 and ¢ are comparable and when €, = 5, the

amplitude of ¢ is much Ilarger than that of © since the

dielectric torque strongly favours the ¢ distortion.



Fig.6. The 8 and 9 profiles just above the threshold of
t he new type of deformation. Upper part: €, = 0. Lower
part: €, = 5.0. Inthe latter case 9/6 is shown in the
figure to save space.
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The flexoelectric free energy density due to an
arbitrary non-planar director distortion in geometry 2 is
given by

£ = - E,fe,0 (36/32) + e,6 (20/22)] (21)

It is clear from this expression that flexoelectricity
does not favour a periodic distortion of the director
field, but a uniform distortion characterized by a non-
planar deformation of the director. fﬂ is minimized if
the ® and ¢ distortions are 90' out of phase. However,

since these variables have to satisfy the boundary
conditions we get the profiles shown in Fig.6. The
director distribution in the deformed state is shown
schematically as dashed lines in Fig.7. The dotted line is
the projection of the director pattern on the XZ plane and
t he dashed and dotted line the projection on the XY plane.

The variation of the Y component of the flexoelectric

—

polarization P is also shown.

Thus it is clear that in geometry 2 the flexoelectric
terms do not favour a periodic distortion of the director
field. Hence when they are taken into account, the
critical value R} of R’ up to which a periodic distortion

is favoured decreases. For R’>R] , however, flexoelectric-



Fig.7. Schematic diagramof the director profile in the
sanpl e above the threshold of the new flexoelectric
transition (dashed lines) and its projection on the XZ
(dotted lines) and XY pl anes ﬁdashed and dotted line).
The undistorted director is along X The variation of
t he Y-conponent of the flexoelectric polarization P
across the sanple thickness is also shown.



ity gives rise to a new type of transition to a deformed
state with nonplanar distortion of the director field

characterized by two polar angles 8 and ¢.

VW have detected the new type of transition in
geometry 2 in a nematic mixture with €, *® 0, containing
CE-1700, CM-5115 and PCH-302 of Roche chemicals. Using a
quarter wave plate as compensator, we observe the onset of
the 8 distortion at a critical value of the applied
electric field. At higher fields longitudinal domains are
seen. Though such a trend is suggested by Eq. (14) a non-
linear analysis is needed to clarify this point. As many

of the relevant material parameters of this mixture are

not known a comparison with the theory 1is not possible.

Thus we find that the influence of flexoelectricity on
the static distortions in geometries 1 and 2 is very
different. In geometry 2 it gives rise to a wuniform non-
planar director distortion described by two polar angles.

This transition has been experimentally detected.
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