# A Study of the Cometary Globules in the Gum Nebula

A Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science

by

T.K. Sridharan

Department of Physics Indian Institute of Science Bangalore October 1992

### Declaration

I hereby declare that the work presented in this thesis is entirely original, and has been carried out by me at the Raman Research Institute under the auspices of the Department of Physics. Indian Institute of Science. I further declare that' this has not formed the basis for the award of any degree, diploma, membership, associateship or similar title of any University or Institution.

T.K.Sridharan October 1, 1992.

Department of Physics Indian Institute of Science Bangalore 560 012 India. To My Parents

One should not abandon one's duty suited to one's nature, O Arjuna, though it may be imperfect; for every enterprise is involved in imperfection, like fire in smoke. -Bhagavadgita XVIII:48 ( borrowed from Arora )

#### Acknowledgements

It is my belief that any feeling of gratitude is diluted by publicly expressing it. Also, those who ought to be thanked do not expect to be thanked. Nevertheless, in order to avoid deviating too much from customary practice I would like to record my deep sense of indebtedness to several people, perhaps in a subdued manner.

I am very grateful to the organizers of the Joint Astronomy Programme, and S.Ramadurai in particular who was of great help during my troubled initial phase. After the course work at the Department of Physics I went to the Raman Research Institute for doing research, and I would like to thank the Director of RRI for making available to me all the facilities at the Institute.

Library facilities are obviously of utmost importance for any research worker. It was, indeed, a luxury to have the facilities and services offered by RRI Library. I am deeply indebted to Ratnakar and all the other members of the staff of the Library for their continued help over the years. Equally important was the help offered by Ramachandra Rao and Raju Varghese of the Photographic Lab.

The first part of my thesis was to construct a tunable Gunn Oscillator and it was R.S.Arora who introduced me to this field. I am very grateful to him for all his help and also to Valsan who decided the machining steps and fabricated the Oscillator. Narayanaswamy and Achankunju also helped in important ways in the machining. I also wish to thank Ananthasubramanian of the Millimeterwave Lab for help in testing and phase-locking the Oscillator.

My grateful thanks are also due to all the members of the Millimeterwave Lab and the Observatory, especially Sarma, Ganesan, Narayanan, Ramesh Kumar and Ramachandran. Rengarajan, Sukumar and Lakshmy were of immense help with the data acquisition and telescope software. During my last observing season when things started going wrong Rajasekar, Lakshmy and Seetha helped me with the observations by putting in extra hours - I would like to thank them profusely for this. Rajasekhar also helped me during data processing on AIPS. I thank my thesis supervisor V.Radhakrishnan arid also G.Srinivasan, Rajaram Nityananda arid B.Ramesh for many helpful discussions, G.Srinivasan in particular who has spent an enormous effort in improving both the contents and presentation of the thesis.

I am grateful to Krishnamaraju for help in official transactions with I.I.Sc.

Finally, I wish to express my gratitude to B.Ramesh whose friendship has been a great support, and to the members of my family for their understanding, support and concern.

# Contents

|   | A S  | Summary of the Main Results Presented in the Thesis | iv |
|---|------|-----------------------------------------------------|----|
| 1 | Inti | roduction                                           | 1  |
|   | 1.1  | Millimeter-wave Astronomy                           | 2  |
|   | 1.2  | Molecular Clouds                                    | 3  |
|   | 1.3  | Cometary Globules                                   | 3  |
|   | 1.4  | Previous Studies                                    | 5  |
|   | 1.5  | Present Study · · · · · · · · · · · · · · · · · · · | 6  |
| 2 | Wid  | le-band Local Oscillator                            | 9  |
|   | 2.1  | Millimeter-Wave Receivers                           | 10 |
|   | 2.2  | Local Oscillator Requirements                       | 10 |
|   |      | 2.2.1 Klystrons                                     | 11 |
|   |      | 2.2.2 IMPATTS                                       | 11 |
|   |      | 2.2.3 Gunn device                                   | 11 |
|   | 2.3  | The transferred electron effect                     | 12 |
|   | 2.4  | Oscillator designs for W-band                       | 13 |
|   | 2.5  | Wide-band oscillator design                         | 13 |
|   | 2.6  | Fabrication                                         | 14 |
|   | 2.7  | Performance · · · · · · · · · · · · · · · · · · ·   | 15 |
|   | 2.8  | Conclusion · · · · · · · · · · · · · · · · · · ·    | 15 |

| 3 | Ob    | Observations                                        |    |  |
|---|-------|-----------------------------------------------------|----|--|
|   | 3.1   | The Observing System                                | 18 |  |
|   | 3.2   | Observing Method                                    | 18 |  |
|   | 3.3   | The 1989 run                                        | 19 |  |
|   | 3.4   | New co-ordinates                                    | 20 |  |
|   | 3.5   | 1990-91 run • • • • • • • • • • • • • • • • • • •   | 20 |  |
|   | 3.6   | Detection statistics                                | 21 |  |
|   | 3.7   | Observations of tails                               | 21 |  |
|   | 3.8   | Mapping of CG22 · · · · · · · · · · · · · · · · · · | 21 |  |
|   | 3.9   | Comparison with other observations                  | 22 |  |
| 4 | Kin   | nematics of the <b>Cometary</b> Globules            | 25 |  |
|   | 4.1   | Introduction                                        | 26 |  |
|   | 4.2   | The center of the distribution of the CGs           | 26 |  |
|   | 4.3   | Is Puppis A associated with the CGs?                | 27 |  |
|   | 4.4   | Distance to the CGs                                 | 28 |  |
|   | 4.5   | Radial velocities                                   | 29 |  |
|   | 4.6   | Expansion of the globules                           | 29 |  |
|   | 4.7   | Radial velocities along the tails                   | 30 |  |
|   | 4.8   | Conclusions                                         | 31 |  |
| 5 | M a j | ps of CG 22                                         | 33 |  |
|   | 5.1   | Introduction ,                                      | 34 |  |
|   | 5.2   | Data Reduction                                      | 34 |  |
|   | 5.3   | Basics of calibration                               | 34 |  |
|   | 5.4   | Calibration at the 10.4m telescope                  | 35 |  |
|   | 5.5   | Temperature                                         | 36 |  |
|   | 5.G   | Optical Depth                                       | 37 |  |
|   | 5.7   | Column Density                                      | 37 |  |

|   | 5.8  | Mass estimates                                   | 37 |
|---|------|--------------------------------------------------|----|
|   | 5.9  | Discussion                                       | 38 |
| 6 | IRA  | AS sources in the dark clouds in the Gum Nebula  | 41 |
|   | 6.1  | Introduction                                     | 42 |
|   | 6.2  | Selection Criteria of the YSOs                   | 43 |
|   | 6.3  | The Search                                       | 44 |
|   | 6.4  | Analysis                                         | 44 |
|   | 6.5  | Confidence Level                                 | 45 |
|   | 6.6  | Conclusion · · · · · · · · · · · · · · · · · · · | 46 |
| 7 | Dis  | cussion                                          | 48 |
|   | 7.1  | Introduction                                     | 49 |
|   |      | 7.2.1 Supernova explosions                       | 50 |
|   |      | 7.2.2 Radiation pressure                         | 50 |
|   |      | 7.2.3 Stellar wind                               | 51 |
|   |      | 7.2.4 Rocket effect                              | 52 |
|   | 7.3  | The proper motion of $\zeta$ Pup                 | 53 |
|   | 7.4  | The Gum Nebula                                   | 54 |
| A | ppen | dix A                                            | 57 |
|   | A.1  | Temperature                                      | 57 |
|   | A.2  | Optical Depth                                    |    |
|   | A.3  | Column Density                                   | 58 |

## A Summary of Main Results Presented in the Thesis

The first part of the thesis deals with the development of a wide-band mechanically tuned local oscillator. using the Gunn diode for use with the 10.4m millimeter-wave radio telescope at the Raman Research Institute. This provides sufficient power to efficiently operate two cryogenic Schottky mixers (dual polarisation) and tunes over the frequency range 75-115 GHz covering most of the 3-mm atmospheric transmission window (W-band). Rotational transitions of many astrophysically importarit molecules including CO fall in this range.

A study of the cometary globules in the Gum Nubula forms the second part. Among the smaller interstellar molecular clouds the Cometary Globules (CGs) stand out due to their peculiar morphology. They are characterised by compact, dusty heads with long faintly luminous tails extending on one side and narrow bright rims on the other side. There exists a significant population of such CGs in the Gum Nebula. The Gum Nebula is a large structure  $\sim 12.5$  parsec in radius delineated by H $\alpha$  emitting filaments. The true nature of the Gum Nebula is ill understood; according to various conjectures it could he an old supernova remnant, or a bubble in the interstellar medium excavated by strong stellar winds from hot stars, or an evolved IIII region. The CGs in the Gum Nebula arc distributed over a region  $\sim$  80 parsec in radius with their tails pointing away from an apparent common center. In the visible region these globules have bright rims on the side facing the common central region. Some of the heads have embedded young stars. In the region bounded by the CGs there are a few massive hot stars including (Puppis believed to he tlie most luminous star in tlic southern sky. It has been suspected that the morphological appearance of the CGs may be due to tlie influence of these stars.

Although these globules have been known for more than a decade now there has been no satisfactory attempt to study their origin and kinematics. A detailed study was therefore undertaken using the 10.4 m millimeter-wave radio telescope at the Raman Research Institute. The study consisted of <sup>12</sup>CO observations of the heads and the tails of the CGs using the  $\mathbf{J} = 1 \rightarrow 0$  millimeter-wave rotational transition of the carbon monoxide molecule. In addition, the Globule No.22 was mapped in both <sup>12</sup>CO and <sup>13</sup>CO. An analysis of the radial velocities obtained from the survey and the maps have led to the following findings:

- 1. The system of CGs is expanding with respect to a common morphological center at  $\sim 12 \text{ kms}^{-1}$ . The expansion age is  $\sim 6 \text{ Myr}$ .
- 2. Some of the tails observed show systematic velocity gradients. If the tails were formed due to the elongation resulting from these velocity gradients then the estimated stretching age is  $\sim 3$  Myr.
- 3. The mass of CG 22 is  $\sim 27 M_{\odot}$ . Interestingly, if the cloud was in virial equilibrium then its mass must be  $\sim 250 M_{\odot}$ .

There have been previous conjectures that the young stars embedded in the heads of some of the globules may have been formed as a result of external triggering. In order to clarify this question an analysis of the locations of the embedded young stellar objects (YSOs) in the dark clouds in the Gum-Vela region was undertaken. Since these embedded YSOs are obscured in the visible region by dust in the molecular clouds, the far-infrared point sources from the Infra-Red Astronomical Satellite catalogue were used to identify them. This study has clearly shown that the YSOs have a stastically significant tendency to fall on the sides of dark clouds facing the morphological center rather than the far sides.

From the above analysis we come to the following conclusions:

- 1. The rough agreement between the *expansion age* and the *tail-stretching* age suggests a common origin for the expansion and the formation of the tails. The presence of young stars of comparable ages in the heads of some of the globules suggests that the processes responsible for the expansion may have also triggered star formation in them.
- 2. The radiation pressure from the hot stars in the central region or the stellar winds from them cannot account for the momentum of the expanding globules. It is more likely that the *rocket* effect arising out of the heating and the consequent anisotropic ablation of the globules can supply the necessary momentum.

All the above conclusions can be reconciled easily if one could argue that they are causally connected and have a common origin. The main apparent obstacle to such a unified picture for the system of CGs in the Gum Nebula is that although there appears to be a morphological center there are no identifiable objects, say, massive

stars, *presently* located at or near tlie morphological center. However, the observed large proper motion of the massive star  $\zeta$  Puppis holds an important clue, leading to the following scenario: It is an extraordinary fact that  $\zeta$  Puppis has a large proper motion  $\sim 75 \text{ kms}^{-1}$ , and its trajectory when extrapolated backwards passes close to the morphological center of the system of CGs. It lias been known for a long time that large space velocities of massive stars can only be understood in terms of the disruption of a massive binary system when one of the stars explodes as a supernova. If the supernova explosion is spherically symmetric then the binary will disrupt due to a sudden mass loss only if the mass ejected exceeds half the total mass of the binary system. Since the estimated mass of  $\zeta$  Puppis is ~ 40 $M_{\odot}$ , it follows that its former companion must have been even more massive than this. If one accepts this picture then it follows that till roughly half a million years ago there must have been a massive binary system ( $\zeta$  Puppis and its companion) near the center of the system of CGs. The combined effect of the ultra-violet radiation and the stellar wind from this binary as well as from other stars in the neighbourhood, must have resulted in much of the molecular material in the vicinity being blown away except the numerous regions of enhanced density (condensations) in the original molecular cloud. Continued effect of the radiation and stellar winds resulted in these condensations being set in motion, as well as developing cometary tails. Roughly half a million years ago the companion (Puppis exploded as a supernova propelling the latter towards its present location.