
CHAPTER I11 

ELECTROMECHANICAL EFFECT IN CHOLESTERIC 
SAMPLES WITH FIXED BOUNDARY CONDITIONS: 

THEORETICAL ANALYSIS 

3.1 Introduction 

As explained in the previous chapter, chiral systems can sustain novel cross-couplings 

between fluxes and forces. The Lehmann rotation phenomenon is an unique exam- 

ple of cross-coupling between fluxes and forces in chiral systems. We also saw in 

the previous chapter that it is generally difficult to get cholesteric drops with zero 

azimuthal anchoring energy which is necessary to obtain the rotation phenomenon. 

This ideal situation can be realised only with a very special combination of cherni- 

cals. Since it is relatively easy to get samples with fixed boundary conditions using 

appropriately treated glass plates, it is desirable to develop techniques for observing 

the electromechanical effect in such samples. In this chapter we present a theoretical 

analysis of samples with fixed boundary conditions and subjected to  both DC and 

AC clcctric fields. 



3.2 DC field applied to a material with negative 
dielectric anisotropy 

We first consider a material whose dielectric anisotropy in the untwisted state is 

negative, so that there is no dielectric realignment of the director under the action 

of the external field which is applied along the helical axis. This simplifies the 

.analysis considerably. As was shown in chapter 11, the torque balance equation can 

be written as (see equation 2.15 in Sec.2.2) 

This equation can be integrated to obtain a solution for 4 by using appropriate 

boundary conditions. We now assume that a DC field is applied to a sample in 

which the director is fixed at both the boundaries z = 0 and d, where d is the 

thickness of the cell. In this case the medium has a static deformation. Equation 

(3.1) simplifies to 

Integrating this equation with respect to z, the solution is 

where 4 = 0 and q5d at z = 0 and d respectively. The director has a uniform twist 

in the sample in the absence of the applied field. When the field is applied, the 

variation of 4 across the sample thickness becomes non-uniform as shown in figure 

3.1. The thickness averaged value of 4 can be calculated by integrating eqn. (3.3) 

with respect to z, i.e., 



Figure 3.1. Theoretical $-profiles (from equation 3.3) of the director in a. r/'L 

twist,ctl cliolt~,c:ric cell s~rl~jcctctl  to a 1)C elcctsi(. fivld. vE = 5 x  10-'N I/-' rrt-' , 
= 5x10- l2  newton, d = 3pn2. The  curves from top Lo bottom correspolld to 

V = $10 V, + 3V, 0 V,  -3 V and -10 V respectively. 



The thickness averaged value 4 will be greater than or less than that of the field-free 

value of d d / 2  depending on the sign of E (and that of vE), as seen in figure 3.1. 

3.3 AC field applied to a material with negative 
dielectric aniso tropy 

It is usually preferable to apply an AC electric field rather than a DC electric field to 

liquid crystals to avoid electrolytic processes. The measurement of the electrooptic 

response is also easier with an AC field. If we choose a sample with negative dielectric 

anisotropy and apply an AC field, the corresponding torque produced due to the 

field will favour the director to be perpendicular to tlie field. However, in this case, 

above a certain threshold voltage, the field can produce an electrohydrodynamic 

instability in the medium (de Gennes, 1975). As this results in a convective flow 

in the medium, the electromechanical effect will be masked. Therefore here we 

restrict tlic applied voltage to values lower than the t1irc:shold for the forrnatio~l of 

electrohydrodynamic instability. If tlie applied field is given by E = Eo e'"', one 

may expect in tlie linear regime that 6 also oscillates with the frequency w. The 

time-dependent part of can be written as 



This is a second order differential equation in q5 , and the general solution for the 

complex amplitude is of the form 

wllere a = cl + c2 and b = cl - c2 and p = \jw71/21122 

Using the boundary conditions 

j(o)  = O and $(d) = 0 

the explicit expression for the amplitude is given by 

{sin pz sinh pz - (COS pd + cosh pd)- l  

x (sinh pd sin pz cosh pz + sin pd cos pz  sin11 p z ) )  

+ i [(z) { cos pz C O S ~  pz - (COS pd + cash pd)- l  

x(si1111 pd cos pz  sinh pz  - sin pd sin pz  cosh p z )  - 1 )] (3.7) 

Wc liavc sl~owri tlic rcal a ~ i d  irliagiriary parts of $ ( z )  for two dilI'crcrit frcqucricicu 

in fig. (3.2). The lower frequency corresponds to % 0.86 and the higher one to 

0.086. It is clear that as the frequency increases, the amplitude decreases while the 

phase lag with respect to  the applied field increases. 

When an AC field is applied to a liquid crystal with negative dielectric anisotropy, 

the director prefers to be perpendicular to the field. A convenient way of detecting 

changes in the director profile is by using an optical technique. Iiowever, i r i  a 



Figure 3.2. Theoretical curves sliowirig the real and imaginary components of the 

field dependent amplitude $ / d d  (from eqn.3.7) superposed on the uniform field free 

azimuthal profile. d=3pm, I i ' 22=5~  10-12N. (a) WYI = 0.7 Nm-2. The first and 

third curves from the top (bottom) correspond to the real and imaginary parts of 

$ / # d  for .lfGo=0.6(-0.6)Nm-2 respectively. (b)  w71=7Nrn-~. The first and third 

curves froni tlie top (bottolri) correspoild to tlie irriagiliat-y ancl real p r t s  of 

for uEE, = -0 .6(+0.6)N~n-~ respectiveIy. 



chiral nematic made of the usual materials and for typical sample thicknesses, the 

optical phase difference of the sample is much larger than the angle of twist. In 

such a case, the polarisation of an incident parallel light beam follows the director 

(Mauguin limit) and the deformation in +-profile cannot be detected optically by 

using a beam of light passing along the helical axis ( see for e. g., de Gennes, 1975). 

But the avcragc azimutlial angle of the distorted director ficld for a material with 

negative Ae can be sensed using light beams propagating a t  a large angle to  the 

helical axis. We describe in chapter IV the use of conoscopy for this purpose. 

3.4 AC field applied to a material with positive 
dielectric anisotropy 

r 7  I lle oj)tical proble~n call also be overcorne by using a ~riatcrial which has positive 

dielectric anisotropy in the untwisted state. When an AC field is applied to tlie 

sample so that the applied voltage is above the threshold for the Freedericksz tran- 

sition, a tilt-deformation is produced in the director field thus reducing the effective 

Lircfri~igcncc of tile sa~nple. This reduces the total phase dilfcrerlce i~itroduced by 

the cell. It is then possible to avoid the problem discussed above and to  detect the 

changes in the +(z )  profile. 

The thickness of the sample also plays a crucial role when using materials with 
I' 

positive A€. It is necessary to select a sample thickness d < -, where I' is the pitcli 
4 

of the cholesteric helix. For larger thicknesses the helical axis rotates to the XY plane 

above a thresliold voltage (Chigrinov e t  al., 1979) giving rise to  a striped domain 

pattern. Also if A€  is very large, the Freedericksz transition occurs a t  a very low 

voltage. The average orientation of the director in tlie sample tilts towards tlie field 

as the voltage is increased above the threshold and the effect of the electromechanical 



coupling becomes weaker. Since the torque due to this coupling is linear in E 

(see equation 3.1)) it is better to apply higher voltages to the cell to irriprove t11c 

possibility of detecting the corresponding signal. However, we cannot make Ac too 

small as the sample becomes unstable to  a flexoelectric periodic distortion if Ac z 0 

(Bobylev et al., 1977). 

From the above discussion, we can expect to get an electrooptic signal due to the 

electromechanical coupling if a material with weakly positive dielectric anisotropy 

is chosen and the pitch and sample thickness are properly adjusted. 

We consider a cholesteric liquid crystal sample with a natural helical wavevector 

q takcn Lctwcc:~~ two cotiductirig glass plates scparatcd by a gap d (17ig.3.3). As i l l  

the previous section, the lower plate is treated for an alignment of the director in 

the plane of the plate along the X-axis. The upper plate is treated for an alignrnerit 

along a direction making an azimuthal angle 4; with respect to the X-axis. The 

~naterial has a positive dielectric anisotropy Ac = € 1 1  - t l .  IIere we ignore the 

small biaxiality of the cholesteric medium. When we apply an AC electric field a t  a 

frequency f betwecri tlie two conducting plates, the azimuthal profile becornes rloli- 

uniform and oscillates at the frequency f because of the electromechanical coupling 

VE. We note that in the present geometry there is no contribution to  the orientation 

of the director from the other independent electromechanical coefficient (de Gennes, 

1975). 

In a positive dielectric anisotropy material, the distortion of the director patter11 

brought about by the electric field can induce an electric polarisation due to flexo- 

electric effects. Our electrooptic experiments (see Chapter IV) have shown that 

there is no significant flexoelectric contribution to the signal. We have neglected this 

contribution in our theoretical model. In principle the anisotropy of conductivity 



can produce space charges in a distorted director field. We have ignored this effect 

also for t l ~ e  sake of si~rl~)licity. 

There is no threshold for the distortion due to electromechanical effect as it 

changes linearly with the applied electric field E. As we have already discussed, 

at  low voltages, this distortion is not detectable optically because of the strong 

anchoring conditions at the two boundaries with a parallel beam of light. As tlie 

applied field is increased beyond the Freedericksz threshold value, the director field 

develops a tilt~distortion. The components of the director in the XYZ coordiriate 

system (Fig.3.3) are 

f i  (cos 0 cos 4, cos O sin 4, sin 0) (3.8) 

Both 0 and are functions of the z-coordinate. The elastic energy density of the 

distorted medium is given by 

where I(11, and I{33 are the splay, twist and bend elastic constants respectively. 

'l'he dielectric energy density is 

The field is applied along the z-direction, i.e., E = E,. For the sake of simplicity, 

we assume that tlie ~nediuni is free of ionic impurities, i.e, 

div D = 0 (3.11) 

where D is the dielectric displacement vector. 

- 0 or D, = constalit, Since variations occur only along the z-direction, we get - - 
dz 

where 

U ,  = eLE, + A cn; E, (3.12) 

4 8 



LIGHT BEAM 

Figure 3.3. Schematic diagram of the geometry considered in section 3.4. 

P and A are polarizer and analyzer respectively. 



The voltage across the sample is 

The molecular field corresponding to the elastic and dielectric energy densities are 

obtained by using the relation 

Using this equation the X, Y and Z components of the rnolecular field corresponding 

to the elastic energy are given by 



any an, 
+ ~ ( ~ ~ [ n , { ( % ) ~  + ( $ ) 2 }  + 2n, - dz - az 

and 

In order to calculate the dielectric contribution to the molecular field, we note that 

But at the plates - - - 0. Hence E, = constant which should be zero on the 
ax 

conducting plate. 

Hence from equation (3. lo), 

h:"' = 0 

and similarly E, = 0 and 

h:"' = O 

Finally from equation (3. lo),  

~ d i e l  - - A€ 
- - E: n: 

87r 

- and h e  - 
A€ 
- Ef 12, 
4n 



The molecular field due to the electromechanical coupling is given by (see equation 

2.5) 
-, 

h E M = v E ~  x E (3.23) 

The components of this molecular field are 

The hydrodynamic contribution to the molecular field is given by 

h,  = 71 N,  + 72 n, A,, 

where 

In considering the hydrodynamic contribution, for the sake of sirriplicity, we 

ignore all velocities and take into account only the rotational motion of the director. 

We then get 

h y r o  - - 71 n'l 

The three components of the molecular field are 



IIere the dot represents the time derivative and yl is the rotatiorial viscosity corista~it 

(de Gennes, 1975). We can now write the torque balance relations taking into 
-t 

account the molecular fields dtle to all the processes listed above, i.e., with l? = li x h, 

There are only two independent torque balance relations for the director. Following 

the procedure given by Bodenschatz et  al. (1988 ) we write the two independent 

components of the torque as follows: 

rz = sin 0 ( h ,  cos 4 -t hy sin 4) - h, cos 0 = 0 

and 

r3 = -hx sin # +  h, cos 4 = 0 (3.33) 

where the x-component of the total molecular field h, arising from the elastic (from 

equation 3.16), dielectric (from equation 3.19), the electromechanical (from equation 

3.24) and hydrodynamic contributions (from equation 3.28) is given by 

anx dn, , d2n, 
+~(m[n,{(%)~ + (2)') + 2n, + nx dl? 

where equation (3.13) has been used for E,. 



Similarly using equations (3.17), (3.20), (3.25) and (3.29) the y-component of the 

total ~nolccular field is givcn by 

Similarly using equations (3.18), (3.22), (3.26) and (3.30) the z-cornponelit of 

the total molecular field h, is given as 

Using these molecular field components and the conipone~its of the director given 

in equation (3.8) after simplification we get 

r2 = (I<ll - I{33) sin 8 cos 0 (: ) 
+{I{33 (COS 28) - 21122 cos2 0) sin 8 cos 8 (2) ' 

d2 8 84 
-(Kll cos2 8 + IC3,sin2 8) - - 2y Kz2 sin 8 cos 8 - az2 az 



At 0: sin 0  cos 0  -- +Y1e  = o 
47r (cL + Ac sin2 0)2 

and 

r3 = (I<33 sin2 O + 1<22 cos2 0 )  cos O (2) 
+2(1<33 cos 20 - 21{~~ cos2 0 )  sin o ( )  (2) 

80 V~ D, cos e 
-211'22q sin 0  - - 

dz (cl + At  sin2 0 )  

-7, cos o ( $ )  = 0 

where equation (3 .13 )  has been used for E,. 

The above relations rcducc in thc static limit to  tl~ose derived by Leslie (1971) 

when VE = 0. If an AC field a t  a frequency f is applied to the cell, we can write 

D, = I!),, sin 27~ f t (3.36) 

If the cell thickness d is less than P/4, the medium can be expected to be 

untwisted. The fixed boundary conditions can then be written as 

Equations (3.34) and (3 .35 )  are coupled non-linear partial differential equatiorls 

in 0  and 4. 0  would remain zero for a material with negative dielectric anisotropy and 

these equations would reduce to those that we have already discussed in Section 3.3.  



6 # 0 in the present case and 0 and q5 get strongly coupled through the q -dependent 

terms in equations (3.34) and (3.35). We have tried to solve these equations usi~ig 

the DPDES subroutine of the IMSL library. We found that the program was not 

very efficient for this purpose and it took a very long computation time to  solve the 

equations. In fact, we could only make calculations by dividing the thickness of the 

sample and tlie time period of tlie applied AC signal to only 41 equal parts. We used 

the following material parameters which are typical values for a room temperature 

nematic: 

I(ll = 1.4 X IO-"N, = 1.0 X 10-l lN,  I(33 = 3 X 10-llN, 

y, = 0.07Nsm-~,  €1 = 4, Ac = 1.0 and v~ = 0.5 x N/Vm2.  

Tlie sample thickness d used in these theoretical calculations was 3111)~ wliicli is :L 

typical value used in our experiments to be discussed in the next chapter. Some illus- 

trative calculations have been made at frequency f =18 I-Iz and DzO=9.36 x 1 0 ~ V / m  

for a few different values of q (and hence vE). 

We have calculated tlie voltage across the cell usilig equation (3.14). 'l'lie ill- 

tegration was performed by Simpson's rule. The voltage is 4.93 volt which is well 

above the expected Frecdericksz tliresllold [ K h  N ~ ( l i ~ ~ / c , ~ c ) ~ / ~ ]  voltage of 3.95 

volt. 

I11 figures 3.4 we have plotted O as a function of position across tlie cell thickness 

a t  three different times t= 0.225 T, 0.5 T, and 0.775 T within the period T for 

q = 300000 tn-'. The 0 profile is found to be independent of both tlie sigli and 

magnitude of q as is to be expected. Further, 8 is symmetric about the centre of 

the cell. It does not change sign with time because 0 oscillations arisc due to the 

dielectric anisotropy of the sample and are quadratic in E. From equation (3.22) 

the dielectric torque is only a function of n, and hence of only 0. 



Figure 3.4. 0 plotted as a function of position across the cell thickness at  three 

different times. (a) t=;0.225 T (b) 0.5 T and (c) 0.775 T for q = 3 x 105nz-'. 



In figures 3.5 and 3.6 we have plotted the dependence of 4 as a function of position 

across the cell calculated a t  the same times as in figure 3.4 and for . q =3x  1o5rn-' 

and q = -3x 105m-' respectively. The 4 profile is asymmetric about the centre 

of the cell. This is due to the fact that the torques and depend linearly 

on q 2 and g respectively [see equations (3.34) and (3.35)). The asymmetry 

changes sign during one period. This is because 4-oscillations which are caused by 

the electromechanical coupling are linear in E which changes sign with time. As 

the sign of q is chaligcd, the sign of 4 profile is also secri to cliange (see figures 3.5 

and 3.6) as v~ changes sign with that of q . In figure 3.7 4 has been plotted as a 

function of position at the same three relative times for q =1 x 105rn-'. Cornparilig 

the profiles with those in figure 3.5, it is seen that as the q value is reduced by a 

factor of 3, the 4-values have been rcduced by the same factor, tliougli the sliape of 

the profile remains unaltered. This result also follows from our assumption that  the 

electro~ncclia~iical coupli~ig coefficient is proportiorial to q . 
I 

We have also made calculations of the transmitted intensity as a function of time 

when such a sample is kept between crossed polarisers as shown in figure 3.3. We 

assume that the angle made by the director at the lower plate with the polariser, 

& = ~ / 8  radians which maximises the signal due to 4 oscillations as will be discussed 

in the next cliapter. For this purpose, at any given irist,arit of time in which O(z) 

and 4(z) profiles are known, the calculations are made as follows. 

Since both 0 and 4 vary with z in the nematic cell, the calculation of intensity 

should take into account both variations. For the purpose of calculation of optical 

transmission through the medium, we cut the sample into a number of slices of equal 

thickness Ad along the z axis. Then we calculate the phase acquired by the light 

beam passing through the slice, which depends on the local tilt angle 8. We assurrle 
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Figure 3.5. q5 plotted as a function of position across the cell thickness a t  three 

different times. (a) t=10.225 T ( b )  0.5 Tand  ( c )  0.775 T for q = +3x105m- ' .  



Figure 3.6. q5 plotted as a function of position across the cell thick~iess at tlirec 

different times. (a) t=0.225 T, (b)  0.5 T and ( c )  0.775 T for q = -3x105n1-I. 



Figure 3.7. q5 plotted as a function of position across the cell thickness a t  three 

different times. (a) t=0.225 T (b) 0.5 T and (c) 0.775 T for q = 1x1o5rn-'. 



each slice makes a uniform azimuthal angle 4, which is equal to that at  the centre 

of tlie slice and a uniform tilt angle 8, which again corresporids to that a t  the centre 

of the cell. 

Let 4, be the angle between the polariser and G l ,  which is the projection of li 

a t  the centre of the first slice on the surface of the cell. Let E, be the amplitude of 

the electric vector of the incident light beam at any given instant (Fig.3.8). 'l'hen 

the component of E, along G l  is given by 

and the component of E, perpendicular to G l  is given by 

Then the component of the field parallel to G l  after tlie light beam emerges from 

the first slice is (Fig.3.8) 

Ei(1) = ~ ; ( l )  eial . 

Here al is the phase angle acquired by the light beam and is given by 

where, ne j j  = (neno/(n: sin2 0 + n: cos" 0)'12. 

Similarly the co~nl)ot~clit orthogonal to riil is given by E l ( 1 )  = E;"(l) eiao wl~crc 
27r 

a, = -n,Ad. The components of the electric field of the light beam incident on 
X 

the next slice are given by, 

~ t ( 2 )  = E ~ ( ~ ) c o s  A h 2  + El(1)s in  Aq!J12 

and ~ ; " ( 2 )  = E;(l) cos Aml2 - Ei(1)  sin Adl2 



Figure 3.8. (a) P is the polarizer, A is tlie analyses, f i  is the nematic director at tlie 

lowcr plate and tlie dotted line reprt~sents tlie projectio~i of i t  at tlie upper platc; ( I ) )  1 1 ~ 1  

is the projection of the director in the centre of the first slice on the XY plalic. is 

tlie amplitude of the electric vector of the incide~it light beam. (c) I anrl rG2 are tlie 

projectio~is of tlie director a t  the centres of first and seco~ld slices respectively 011 ill(: X Y  
plane. 



where Adlz is the angle made by the projection of the director a t  the centre of the 

secolld slice on the XY plane, i.e., 7 i i 2  with rTil (Fig.3.8). 

After passing through the second slice the electric field components are given by 

Ei(2) = EF(2) eia2 and EI (2)  = E;"(2) ela0. 

Continuing the calculations in the same way the light beam coming from the 

last, i.e., N t h  slice has the components of the field given by 

E i (N)  = E ~ ( N  - 1) eiaN parallcl to l i lN and 

EI(N) = E;"(N - 1) elff0 perpendicular to riiN. 

Therefore the resultant electric field of the emergent light beam is given by, 

where is the azimuthal angle between the analyser (which is crossed with respect 

to the polariser) and G N .  

The intensity of the emergent light is given by 

where EO* is the complex conjugate of E O.  

I" is show11 as a furiction of time in figure 3.9 for q = + 3 x l ~ ~ i n - ' .  The i ~ i t e ~ ~ s i t y  

has two nearly equal peaks within the time period, showing that the 2 f -component 

due to 0-oscillations make the dominating contribution. However, there is a clcar 

phase difference between 8 and E oscillations, as can be expected from a viscous 

systern. We niay also note that the second peak is sliglitly lower than tlie first 

one showing that there is an 1 f component which arises from the electromechariical 

coupling. Indeed the time-dependence of the intensity for q=-3x 105nz-' shown in 



Figure 3.9. I~iterisity of transmitted light plotted as a functiori of time 

for q = +3x105m-'. 



figure 3.10 has the opposite trend: the first peak is lower than the second orie as is 

to be expected. 

We have calculated the DC, 1 f and 2 f  components of the intensity of light by 

calculating the appropriate Fourier components as follows: 

1 T  
I, = 1 I( t)  dt 

2 T  
I1 f ( z )  = T 1 I( t)  sin wt dt 

I 2  (i) = 2 lT ~ ( t )  sin 2wt dt 
T 
2 T  

Ilj(o) = T 1 I ( t )  cos wt dt 

where Il (i)  and Il (0) are the components of intensity of the transmitted light in 

phase and w / 2  out of phase with the applied electric field E = ~,e ' " l  etc. The  

absolute values of the intensity are given by 

As can be expected, I, arid I Izj I are practically indc~~cr~t lcnt  of the sigri of q. 0 1 1  

the other hand, the phase of Il changes when q is reversed. We have calculated I1 

as a function of q for I),, = 9.36 x 10GV/nz. The results are shown in figure 3.11. 'l'lic 

calculated magnitude of the intensity for a given value of +q is greater than that  for 

-q . This may arise from the small number of slices (41) used in the calculat io~~s.  

The sign of the phase however changes when the sign of q changes. We could not 

explore values of q close to zero as the computer t i l~ic bcca~ne ~)roliibitively l o ~ g .  



Figure 3.10. Intensity of transmitted light plotted as a function of tirne 

for q = -3x 105m-l. 



Figure 3.11. The plot of I l l  versus q for D,, = 9.36x10"1r~-' 



We describe in the next chapter our experimental studies on the electromechan- 

ical effect in samples with fixed boundary conditioris in cliolesteric liquid crystalline 

mixtures with a negative dielectric anisotropy using conoscopy. We have also made 

measurements on samples with positive dielectric anisotropy. 
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