CHAPTER III

ELECTROMECHANICAL EFFECT IN CHOLESTERIC
SAMPLES WITH FIXED BOUNDARY CONDITIONS:
THEORETICAL ANALYSIS

3.1 Introduction

Asexplained in the previous chapter, chiral systems can sustain novel cross-couplings
between fluxes and forces. The Lehmann rotation phenomenon is an unique exam-
ple of cross-coupling between fluxes and forces in chiral systems. We also saw in
the previous chapter that it is generally difficult to get cholesteric drops with zero
azimuthal anchoring energy which is necessary to obtain the rotation phenomenon.
This ideal situation can be realised only with a very special combination of chemi-
cals. Since it is relatively easy to get samples with fixed boundary conditions using
appropriately treated glass plates, it is desirable to develop techniques for observing
the electromechanical effect in such samples. In this chapter we present a theoretical
analysis of samples with fixed boundary conditions and subjected to both DC and

AC electric fields.



3.2 DC field applied to a material with negative
dielectric anisotropy

We first consider a material whose dielectric anisotropy in the untwisted state is
negative, so that thereis no dielectric realignment of the director under the action
o the external field which is applied along the helical axis. This simplifies the
.analysis considerably. As was shown in chapter II, the torque balance equation can
be written as (see equation 2.15 in Sec.2.2)

¢ _ . 0% . ,
Ny = ¢y ) + vel (3.1)

This equation can be integrated to obtain a solution for ¢ by using appropriate
boundary conditions. We now assume that a DC field is applied to a sample in
which the director is fixed at both the boundaries z = 0 and d, where d is the
thickness of the cdl. In this case the medium has a static deformation. Equation

(3.1) simplifies to
g
022

Integrating this equation with respect to z, the solution is

1{22 + VE‘E =0 (32)

_ %z vebz
W)=+ 9k,

(d - z) (3.3)
where ¢ = 0 and ¢4 at z =0 and d respectively. The director has a uniform twist
in the sample in the absence of the applied field. When the field is applied, the
variation o ¢ across the sample thickness becomes non-uniform as shown in figure
3.1. The thickness averaged value of ¢ can be calculated by integrating egn. (3.3)

with respect to z, i.e.,

or
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Figure 3.1. Theoretical $-profiles (from equation 3.3) of the director in a /2
twisted cholesteric cell subjected to a DC electric field. v, = 5x 107NV ='m™!,

K, = 5x107!2 newton, d = 3um. The curves from top to bottom correspond to
V=810 V, +3V,0V,-3V and -10 V respectively.



The thickness averaged value ¢ will be greater than or lessthan that of the field-free

value of ¢4/2 depending on the sign d E (and that of vg), as seen in figure 3.1.

3.3 AC field applied to a material with negative
dielectric anisotropy

It is usually preferable to apply an AC electric field rather than a DC electricfield to
liquid crystals to avoid electrolytic processes. The measurement of the electrooptic
responseisalsoeasier with an AC field. If we choose a sample with negative dielectric
anisotropy and apply an AC field, the corresponding torque produced due to the
field will favour the director to be perpendicular to tlie field. However, in this case,
above a certain threshold voltage, the field can produce an electrohydrodynamic
instability in the medium (de Gennes, 1975). As this results in a convective flow
in the medium, the electromechanical effect will be masked. Therefore here we
restrict tlic applied voltage to values lower than the threshold for the formation of
electrohydrodynamic instability. If tlie applied field is given by E = E, €™, one
may expect in tlie linear regime that ¢ also oscillates with the frequency w. The

time-dependent part of ¢ can be written as
§(2,t) = §(z) e™* (3.4)

where ¢(z) is a complex amplitude. Substituting this in eqn. (3.1),
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This is a second order differential equation in ¢ , and the general solution for the

complex amplitude is of the form

Mz) = ¢ et+IP7 4oy em(HIPz _ wek,
| wn -
= aCOShP(l+i)2+bsinhp(1+i)z_“/E o (3.6)
W

wherea=¢; + ¢, and b=¢; — ¢; and p = Jwn /2K,

Using the boundary conditions

A

$(0)=0 and ¢(d) =0

the explicit expression for the amplitude is given by

d)(z) = [—(VEEO){Sin pz sinh pz — (cos pd T cosh pd)!

wm

X (sinh pd sin pz cosh pz T sin pd cos pz sinh pz)}

. '/Eo
+i [(VF ) {cos pz cosh pz — (cos pd + cosh pd)~!

wn

X (sinh pd cos pz sinh pz —sin pd sin pz cosh pz) — 1” (3.7

Wec liavc shown the rcal and imaginary partsof ¢(z) for two diflerent frequencies
infig. (3.2). The lower frequency corresponds to '—’f% ~ 0.86 and the higher one to
0.086. It isclear that as the frequency increases, the amplitude decreases while the

phase lag with respect to the applied field increases.

When an AC field isapplied to aliquid crystal with negative dielectric anisotropy,
the director prefers to be perpendicular to the field. A convenient way of detecting

changes in the director profile is by using an optical technique. However, in a
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Figure 3.2. Theoretical curves showing the real and imaginary components of the
field dependent amplitude $/¢d (from egn.3.7) superposed on the uniform field free
azimuthal profile. d=3um, K3,=5x10"12N. (a) wy; = 0.7 Nm~2. The first and
third curves from the top (bottom) correspond to the real and imaginary parts of
¢/ b for 1F,=0.6(-0.6)Nm~? respectively. (b) wyi=TNm=2. The first and third
curves from the top (bottom) correspond to the imaginary and real parts of ¢/¢y
for ko, = -0.6(+0.6)Nm™? respectively.



chiral nematic made of the usual materials and for typical sample thicknesses, the
optical phase difference of the sample is much larger than the angle o twist. In
such a case, the polarisation of an incident parallel light beam follows the director
(Mauguin limit) and the deformation in +-profile cannot be detected optically by
using a beam of light passing along the helical axis ( see for e. g., de Gennes, 1975).
But the avcrage azimuthal angle of the distorted director ficld for a material with
negative Ae can be sensed using light beams propagating at a large angle to the

helical axis. We describe in chapter 1V the use d conoscopy for this purpose.

3.4 AC fidd applied to a material with positive
dielectric anisotr opy

The optical problem can also be overcome by using a material which has positive
dielectric anisotropy in the untwisted state. When an AC field is applied to tlie
sample so that the applied voltage is above the threshold for the Freedericksz tran-
sition, a tilt-deformation is produced in the director field thus reducing the effective
birefringence of the sample. This reduces the total phase difference introduced by
the cell. It isthen possible to avoid the problem discussed above and to detect the

changes in the ¢(z) profile.

The thickness o the sample aso plays a crucia role when using materials with
positive Ae. It is necessary to select a sample thickness d < £4?’ where P is the pitcli
o thecholesteric helix. For larger thicknesses the helical axisrotates to the XY plane
above a threshold voltage (Chigrinov et al., 1979) giving rise to a striped domain
pattern. Also if Ae is very large, the Freedericksz transition occurs at a very low
voltage. The average orientation of the director in tlie sample tilts towards tlie field

asthevoltageisincreased above the threshold and the effect of the electromechanical



coupling becomes weaker. Since the torque due to this coupling is linear in I
(see equation 3.1), it is better to apply higher voltages to the cell to improve the
possibility of detecting the corresponding signal. However, we cannot make Ae too
small as the sample becomes unstable to aflexoelectric periodic distortion if Ae~ 0

(Bobylev et al., 1977).

From the above discussion, we can expect to get an electrooptic signal dueto the
electromechanical coupling if a material with weakly positive dielectric anisotropy

is chosen and the pitch and sample thickness are properly adjusted.

We consider a cholesteric liquid crystal sample with a natural helical wavevector
q taken between two conducting glass plates separated by a gap d (Fig.3.3). As in
the previous section, the lower plate is treated for an alignment of the director in
the plane of the plate along the X-axis. The upper plate is treated for an alignment
along a direction making an azimuthal angle ¢d' with respect to the X-axis. The
material has a positive dielectric anisotropy Ae = ¢y — ¢,. llere we ignore the
small biaxiality of the cholesteric medium. When we apply an AC electric field at a
frequency f between the two conducting plates, the azimuthal profile becomes non-
uniform and oscillates at the frequency f because of the electromechanical coupling
vg. We notethat in the present geometry thereis no contribution to the orientation
of the director from the other independent electromechanical coefficient (de Gennes,

1975).

In a positive dielectric anisotropy material, the distortion of the director pattern
brought about by the electric field can induce an electric polarisation due to flexo-
electric effects. Our electrooptic experiments (see Chapter 1V) have shown that
thereis no significant flexoelectric contribution to the signal. We have neglected this

contribution in our theoretical model. In principle the anisotropy of conductivity



can produce space charges in a distorted director field. We have ignored this effect

aso for the sake o simplicity.

There is no threshold for the distortion due to electromechanical effect as it
changes linearly with the applied electric field E. As we have already discussed,
at low voltages, this distortion is not detectable optically because of the strong
anchoring conditions at the two boundaries with a parallel beam of light. As the
applied field is increased beyond the Freedericksz threshold value, the director field
develops a tilt-distortion. The components of the director in the XY Z coordiriate

system (Fig.3.3) are
n O (cosd cos ¢, cos § sin ¢,sin ) (3.8)

Both 6 and ¢ are functions o the z-coordinate. The elastic energy density of the

distorted medium is given by

- K
- 1{22 (divn)? + 1‘222 (- curln—q ) + 2 (R x curln)?® (3.9)

where Ky, K,, and K53 are the splay, twist and bend elastic constants respectively.
The dielectric energy density is

JAYG = 5
Fooo=——1(f-E)?. 1
diel 8r (n ) (3 O)

The field is applied along the z-direction, i.e., E = E,. For the sake of simplicity,

we assume that tlie medium is free of ionic impurities, i.e,
divD =0 (3.11)

where D is the dielectric displacement vector.

Since variations occur only along the z-direction, we get e 0 or D, = constant,
where

D, =e 5, T Aen® E, (3.12)
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Figure 3.3. Schematic diagram o the geometry considered in section 3.4.
P and A are polarizer and analyzer respectively.
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The voltage across the sampleis

d d dz
V= /o E.dz=D, /o (Lt Aend) (3.14)
The molecular field corresponding to the elastic and dielectric energy densities are

obtained by using the relation
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Using thisequation the X, Y and Z components d the molecular field corresponding

to the elastic energy are given by
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(3.18)

In order to calculate the dielectric contribution to the molecular field, we note that

u§XE=O,
0F,
0z

OF,
Oz

But at the plates = " 0. Hence E, = constant which should be zero on the

conducting plate.

Hence from equation (3.10),

pliel —
and similarly £, =0 and
hziel _
Finally from equation (3.10),
Fdiel
and h ¢ =

0 (3.19)

0 (3.20)
A

- 8—; E?n? (3.21)

Ac Eln, (3.22)
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The molecular field due to the electromechanical coupling is given by (seeequation
2.5)
hEM = ypi x E (3.23)

The components o this molecular field are

REM = ypn,E, (3.24)
th = -—VETL,;EZ (325)
hEM = ¢ (3.26)

The hydrodynamic contribution to the molecular field is given by

hy=m N, t Y2 a A (3.27)
where
N = n—wxh,
5 = geurlV,
and A,p = —6-‘1——‘@——_—;%

In considering the hydrodynamic contribution, for the sake of sirriplicity, we
ignore all velocities and takeinto account only the rotational motion of the director.

We then get
hgydro =7 ha

The three components of the molecular field are
phvdre — 41 n, (3.28)

hivde =y (3.29)

hpvie =y, (3.30)



Here the dot represents the time derivative and v, isthe rotatiorial viscosity constant
(de Gennes, 1975). We can now write the torque balance relations taking into

account the molecular fieldsdue to all the processeslisted above, i.e., with ' = 72 X ﬁ,
Fel + Fdiel + FEM _ thdro =0 (331)

There are only two independent torque balance relations for the director. Following
the procedure given by Bodenschatz et al. (1988 ) we write the two independent

components o the torque as follows:
[;=sn6(h,cos¢+h,sing)—h, cosl =0 (3.32)
and
I'3=~h,sSin¢+h cos¢g=0 (3.33)

where the x-component d the total molecular fidd &, arising from the elastic (from
equation 3.16), dielectric (from equation 3.19), the electromechanical (from equation

3.24) and hydrodynamic contributions (from equation 3.28) is given by
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where equation (3.13) has been used for E,.
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Similarly using equations (3.17), (3.20), (3.25) and (3.29) the y-component of the
total molecular fidd is given by

?&)2 +9 ong On, 5 On,

hy = K“['Q"y( oz "5z 9z T 9

0*n, on,
~Talty 022 - ’Bz]

(0 + () B, 22
v 0z + 0z " Jdz Oz faly 02?2

82ny] vgng D,
022 (e1 + Aen?

+(ny +n3) y M

Similarly using equations (3.18), (3.22), (3.26) and (3.30) the z-component o

the total molecular field h, isgiven as
. 0*n, ; ong\? on,\?2
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Using these molecular field componentsand the components o the director given

in equation (3.8) after simplification we get
2

: )0
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where equation (3.13) has been used for F£,.

The above relations rcducc in the static limit to those derived by Leslie (1971)

when vg = 0. If an AC field at a frequency f is applied to the cell, we can write
D,=D,, sin2r ft (3.36)

If the cell thickness d is less than P/4, the medium can be expected to be

untwisted. The fixed boundary conditions can then be written as
0(0) t) = ¢(0vt) = a(dat) = d’(dvt) =0 (337)

Equations (3.34) and (3.35) are coupled non-linear partial differential equations
in0and ¢. 0 would remain zerofor a material with negative dielectric anisotropy and

these equations would reduce to those that we have already discussed in Section 3.3.
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8 # 0inthe present case and 8 and ¢ get strongly coupled through the q -dependent
terms in equations (3.34) and (3.35). We have tried to solve these equations using
the DPDES subroutine of the IMSL library. We found that the program was not
very efficient for this purpose and it took a very long computation time to solve the
equations. In fact, we could only make calculations by dividing the thickness o the
sampleand tlie time period of tlieapplied AC signal to only 41 equal parts. We used
the following material parameters which are typical values for a room temperature

nematic:

Ki = 14x 100N, Ky =1.0x 107UN, Kaz3 =3 x 107N,

vy = 0.07Nsm™?% e, =4, Ae=10 and vg=05X 107 %go N/Vm2.

The sample thickness d used in these theoretical calculations was 3um which is a
typical value used in our experiments to be discussed in the next chapter. Someillus-
trative calculations have been made at frequency =18 Iz and D,,=9.36X10°V/m

for a few different values o q (and hence vg).

We have calculated tlie voltage across the cel using equation (3.14). The in-
tegration was performed by Simpson's rule. The voltage is 4.93 volt which is well
above the expected Freedericksz threshold [Vi, ~ 7(I1,/e,A€)'/?] voltage of 3.95

volt.

In figures 3.4 we have plotted § as a function o position across tlie cell thickness
at three different times t= 0225 T, 0.5 T, and 0.775 T within the period T for
g = 300000 m~!. The 0 profile is found to be independent of both tlie sign and
magnitude of q asis to be expected. Further, ¢ is symmetric about the centre of
the cell. It does not change sign with time because ¢ oscillations arise due to the
dielectric anisotropy o the sample and are quadratic in E. From equation (3.22)

the dielectric torque is only a function of n, and henced only §.
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Figure 3.4. 6 plotted as afunction of position across the cell thickness at three
different times. (a) t=0.225 T (b) 0.5T and (c) 0.775 T for ¢ = 3x10°m™".



Infigures 3.5 and 3.6 we have plotted thedependence of ¢ asafunction of position
across the cell calculated at thesame times asinfigure 3.4and for . ¢ =3X 105m~!
and ¢ = -3x 10°m™! respectively. The ¢ profile is asymmetric about the centre

o the cell. This is due to the fact that the torques I'; and I's depend linearly

a8
oz

on g gf and ¢ 22 respectively [see equations (3.34) and (3.35)). The asymmetry
changes sign during one period. This is because 4-oscillations which are caused by
the electromechanical coupling are linear in E which changes sign with time. As
the sign of ¢ ischanged, thesign of ¢ profile isalso secn to cliange (see figures 3.5
and 3.6) as vg changes sign with that of ¢ . In figure 3.7 ¢ has been plotted as a
function of position at the same three relative times for ¢ =1x10°m™='. Comparing
the profiles with those in figure 3.5, it is seen that as the ¢ value is reduced by a
factor of 3, the 4-values have been reduced by the same factor, though the shape of
the profile remains unaltered. This result aso follows from our assumption that the

electromechanical coupling coefficient is proportiorial to g .

We have also made calculations of thetransmitted intensity as a function of time
when such a sample is kept between crossed polarisers as shown in figure 3.3. We
assume that the angle made by the director at the lower plate with the polariser,
1= /8 radians which maximises the signal due to ¢ oscillations as will be discussed
in the next chapter. For this purpose, at any given instant of time in which 0(z)

and ¢(z) profiles are known, the calculations are made as follows.

Since both ¢ and ¢ vary with z in the nematic cell, the calculation of intensity
should take into account both variations. For the purpose of calculation of optical
transmission through the medium, we cut the sample into a number of slicesaf equal
thickness Ad aong the z axis. Then we calculate the phase acquired by the light

beam passing through the slice, which depends on thelocal tilt angle §. We assuine
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Figure 3.5. ¢ plotted as a function of position across the cell thickness at three
different times. (a) t=,0.225 T (b) 0.5 Tand (c¢) 0.775 Tfor ¢ = +3x10°m™".
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Figure 3.6. ¢ plotted as afunction of position across the cell thickness at three
different times. (a)t=0.225 T, (b) 0.5 T and (¢)0.775 T for g = -3x10°m ™!,
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Figure 3.7. ¢ plotted as a function of position across the cell thickness at three
different times. (a) t=0.225 T (b) 0.5 T and (c)0.775 T for ¢ = 1x10°m™".



each dlice makes a uniform azimuthal angle ¢, which is equal to that at the centre
o the dlice and a uniform tilt angle 8, which again corresponds to that at the centre

of the cdll.

Let ¢, be the angle between the polariser and m,, which is the projection o 7
at the centre of thefirst dice on the surface of thecell. Let £, be the amplitude of
the electric vector o the incident light beam at any given instant (Fig.3.8). Then

the component d E, along m, is given by
ﬁ"(l) = F,cos ¢,
and the component o E, perpendicular to m, is given by

EV(1) = E,siné, .

Then the component o the field parallel to m, after tlie light beam emerges from
the first dliceis (Fig.3.8)

Ej(1) = EP(1)e .
Here «; is the phase angle acquired by the light beam and is given by

2
ay = ’Tﬂ-neff Ad

where, n.;; = (n.n,/(n? sin? 6 + n’ cos? 0)'/2,

Similarly the component orthogonal to 1, isgiven by ES(1) = E*(1) e**> where

a, = ZTWnOAd. The components o the electric field o the light beam incident on

the next dlice are given by,

Iiln(z) = Ej(1)cos Az + E2(1)sin A¢,

and  EV(2) = E5(1)cos Agyz — Ep(1)sin Agyz
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Figure 3.8. (a) P is the polarizer, A is tlie analyses, n is the nematic director at tlie
lower plate and tlie dotted line represents tlie projection of i at tlie upper plate; (1)) m,
is the projection of the director in the centre o the first slice on the XY plane. I/, is
tlie amplitude o the electric vector of the incident light beam. (c) 1 and m, are tlie
projections of tlie director at the centres of first and second slices respectively on the XY
plane.



where A¢,, is the angle made by the projection d the director at the centre of the

sccond slice on the XY plane, i.e., 7, with m, (Fig.3.8).
After passing through the second dlice the electric field components are given by
Ef(2) = E{*(2)€® and E3(2) = E'(2) e,
Continuing the calculations in the same way the light beam coming from the

last, i.e., N'" slice has the components of the field given by

Ey(N) = Eﬁ"(N — 1) e parallel to sy and

ES(N) = E™(N -1)e perpendicular to miy.
Thereforethe resultant electric field of the emergent light beam is given by,
E° = Ej(N)cos ¢1 + E{(N)sin ¢

where ¢, is the azimuthal angle between the analyser (which is crossed with respect

to the polariser) and my.

Theintensity o the emergent light is given by
I° = E°E> =| E° |*,

where E°* is the complex conjugate of E°.

I° isshown as afuriction of time in figure 3.9 for ¢ =+3x10°m~1. The intensity
has two nearly equal peaks within the time period, showing that the 2f -component
due to O-oscillations make the dominating contribution. However, there is a clear
phase difference between § and E oscillations, as can be expected from a viscous
systern. We may also note that the second peak is slightly lower than the first
one showing that thereisan 1f component which arises from the electromechariical

coupling. Indeed the time-dependence of the intensity for g=—3x10%m~! shown in
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Figure 3.9. Intensity of transmitted light plotted as a functiori of time
for g = +-3x10°m=1.



figure 3.10 has the opposite trend: thefirst peak is lower than the second one as is
to be expected.
We have calculated the DC, 1f and 2f components of the intensity of light by

calculating the appropriate Fourier components as follows:
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where I,4(i) and I;4(0) are the components of intensity of the transmitted light in
phase and 7 /2 out of phase with the applied electric field E = E,e™" etc. The

absolute values of the intensity are given by

| hy| = 112](i)+]12](0)

| iy | = Izzj(i) + 1221(0)

Ascan beexpected, |, and | Iy, | are practically independent of thesign of g. On
the other hand, the phase of /;; changes when qis reversed. We have calculated /;,
asafunctionof q for D,, =9.36x10°V/m. Theresults are shown in figure 3.11. The
calculated magnitude of theintensity for agiven valueof +¢ isgreater than that for
—¢q . This may arise from the small number o slices (41) used in the calculations.
The sign of the phase however changes when the sign o g changes. We could not

explore values of q close to zero as the computer time became prohibitively long.
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for g = -3x10°m~1.



[ ]
0.0157
|
i |
n
= 0.005- -
[72]
vy
2
IS
||
-0.005- -
|
7 |
"0, 0 1 5T T T ¥ T i T T T T
-5000 -3000 -1000 1000 3000 5000
-1
q/m
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We describe in the next chapter our experimental studies on the electromechan-
ical effect in samples with fixed boundary conditiorisin cliolesteric liquid crystalline
mixtures with a negative dielectric anisotropy using conoscopy. We have aso made

measurements on samples with positive dielectric anisotropy.
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