SOME NEW ADDRESSING TECHNIQUES FOR RMS RESPONDING MATRIX LCDs

A Thesis
Submitted for the Degree of
Doctor of Philosophy
in the Faculty of Engineering

11 11

By
T. N. RUCKMONGATHAN

INDIAN INSTITUTE OF SCIENCE

BANGALORE-560 012,

FEBRUARY 1988

CONTENTS

		Pages
Preface		i
Acknowledgments		ü
List of Abbreviations		<i>iii-</i> ∨
List of Symbols		νί-νίί
1 INTRODUCTION		1.1-1.7
2 LIQUID CRYSTAL DISP	LAYS - A REVIEW	2.1 - 2.87
3 ANALYTICAL STUDIES		3.1 - 3.88
4 EXPERIMENTAL WORK		4.1-4.74
5 CONCLUSION		5.1-5.13
REFERENCES		R1 - R8
APPENDICES		A1 - A35

PREFACE

The work presented in this thesis has been carried out in the Liquid Crystal Laboratory, Raman Research Institute, Bangalore and is submitted to the Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, under the external registration programme. The development of 32 x 32 and 64 x 64 matrix LCDs discussed in this thesis was supported by the Electronics Commission (IPAG), Government of India, under the project 'Multiplexed Liquid Crystal Matrix Display Systems'.

ACKNOWLEDGMENTS

I am highly indebted to Prof. N.V. Madhusudana, Raman Research Institute, Bangalore, and Prof. B.S. Sonde, Chairman, Electrical Sciences Division, Indian Institute of Science, my Research Supervisors, for their guidance, without which the present work would have been impossible to carry out.

I am extremely thankful to Prof. S. Chandrasekhar, FRS, for his keen interest and constant encouragement throughout this work.

I wish to express my gratitude to all my colleagues at Raman Research Institute for their direct or indirect help during the course of this work. Especially K. Subramanya, S.A.Majeed and H.Subramonyam for the fabrication of LCDs, Dr. G.S.Ranganath for a derivation in Appendix 3.b and N. Udaya Shankar as well as A.A.Deshpande for some useful discussions.

Several of my colleagues have extended their help in reproducing this thesis. I would like to thank S. Raghavachar in the preparation of typescripts, P.S. Somasundaram for drawings, Mrs. Jayanthi, T.Ramachandran and P.A. Johnson for plots, C. Ramachandra Rao for photographs, G. Hanumappa for xeroxing and S.A. Majeed for his help at all the stages of preparation of this thesis.

I wish to thank the authorities of both Raman Research Institute and Indian Institute of Science for providing an opportunity to register for my research programme and for providing the required facilities during the course of this work.

Finally, 1 wish to express my gratitude to T.N.Lokanath Rao, my brother, for being a source of inspiration and B.S.Nagamani, my wife, for her understanding and cooperation.

T. N. RUCKMONGATHAN

LIST OF ABBREVIATIONS

APT - Alt and Pleshko Technique

ASCII - American Standard Code for Information Interface

BAT - Binary Addressing Technique

BFM - Bit-mapped Frame Memory

BPMS - Bi-Polar Monopulse Strobe

CD - Column Driver

CG - Character Generator

CL - Control Logic

CMOS - Complementary Metal-Oxide Semiconductor

CNPC - Cholesteric-Nematic Phase Change

CNPC-GH - CNPC-Guest-Host

CSG - Column Signal Generator

DAC - Digital to Analog Converter

DDF - Display Data Formatter

DPC - Dye Phase Change

ECB - Electrically Controlled Birefringence

EEPROM - Electrically Erasable Programmable

Read Only Memory

EPROM - Erasable Programmable Read Only Memory

FEE - Ferro Electric Effect

FIFO - First In First Out

FMT - Frame Multiplexing Technique (also referred to

as SFMT)

GH - Guest Host Displays

GHE - Guest Host Effect

HAT - Hybrid Addressing Technique

HATs - Hybrid Addressing Techniques

HST - Half-Select Technique

1APT - Improved Alt and Pleshko Technique

IAPT-R - IAPT with reduced selection ratio; used for comparing the supply voltage requirement of a technique

with IAPT, for the same selection ratio

1Cs - Integrated Circuits

1HAT - Improved Hybrid Addressing Technique

1HAT-S3 - 1HAT - Special case with 3-voltage levels in the

column waveforms

1HAT-S4 - 1HAT - Special case with 4-voltage levels in the column

waveforms

1TO - Indium Tin Oxide

LCDs - Liquid Crystal Displays

LM - Legend Memory

LSB - Least Significant Bit

MIM - Metal-Insulator-Metal

MSB - Most Significant Bit

NLC - Nematic Liquid Crystal

OST - One-third Select Technique

PCT - Pulse-Coincidence Technique

PRT - Pseudo-Random Technique

RAM - Random Access Memory

RCR - Re-Circulating Register

RD - Row Drivers

ROM - Read Only Memory

RPAT - Restricted Pattern Addressing Technique

RPATs - Restricted Pattern Addressing Techniques

RPAT-NC - RPAT - Negative Contrast

RPAT-PC - RPAT - Positive Contrast

SBAT - Switching Bias Voltage Addressing Technique

SBE-Displays - Super-twisted Birefringence Displays

SBE-180 - SBE Display with 180° twist SBE-270 - SBE Display with 270° twist.

SG - Sequence Generator SSE - Smectic Storage Effect

STNLCDs - Super-Twisted Nematic LCDs (SBE Displays)

TFAT - Two Frequency Addressing Technique

TFT - Thin Film Transistor

TFMS - Two Field Monopulse Strobe

TNFE - Twisted Nematic Field Effect

TN-GH - Twisted Nematic Guest Host

TNLCDs - Twisted Nematic LCDs

UV-EPROM - Ultraviolet Erasable Programmable Read Only

Memory

VLG - Voltage Level Generator

WAM - Waveform Acquisition Module

WM - Waveform Memory.

LIST OF SYMBOLS

- A number of times a pixel gets a favourable voltage during $2^{(N-1)}$ or $2^{(\ell-1)}$ time intervals
- A_i number of times a pixel gets a favourable voltage, when C_i row-select patterns with i mismatches are considered.
- A_m see eqn. (3.123) in page 3.55
- B number of times a pixel gets an unfavourable voltage during $2^{(N-1)}$ or $2^{(\ell-1)}$ time intervals considered.
- B_i number of times a pixel gets an unfavourable voltage, when C_i row-select patterns with i mismatches are considered.
- C; number of row-select patterns with i mismatches.
- C* see eqn. (3.121) in page 3.55.
- D see eqn. (3.147) in page 3.63.
- E see eqn. (3.148) in page 3.63.
- F see eqn. (3.149) in page 3.63.
- G see eqn. (3.150) in page 3.63.
- K square of the selection ratio (R).
- M number of columns in a matrix display, i.e., number of signal electrodes.
- N number of address lines multiplexed, i.e., number of scanned lines; number of rows in the matrix display.
- N_I Number of leads to the display.
- Neq The number of address lines to be multiplexed using APT or IAPT in order to get the same selection ratio as that of the technique being compared.

P - Pitch

R - Selection ratio

V - Reduced voltage normalized to the V_{th}

Up - amplitude of the column (signal) voltage

UDD - positive supply voltage

VEE - negative supply voltage

 V_i - amplitude of the column voltage when the number of mismatches is i

 V_m - amplitude of the column voltage in 1HAT-S3.

 V_{m1} - amplitude of the column voltage in IHAT-S4 (see page 3.52).

 V_{m2} - amplitude of the column voltage in IHAT-S4 (see page 3.52).

V₁ - amplitude of the row-select voltage

 V_{s} - supply voltage in BAT.

 V_{supply} - supply voltage requirement of the addressing technique.

 V_{sat} - saturation voltage (also referred to as V_{90})

Uth - threshold voltage (also referred to as U10)

W - Number of selected pixels in a column.