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Hot QCD equations of state and relativistic heavy ion collisions
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We study two recently proposed equations of state obtained from high-temperature QCD and show how they
can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves
extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn
will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously,
the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative
in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the
first, with contributions up to O[g6 ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The
interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and
the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application,
we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening
lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to
distinguish the two equations of state in heavy ion collisions.
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I. INTRODUCTION

Recent experimental results [1–4] indicate that the quark-
gluon plasma (QGP) has already been produced at RHIC and
that its behavior is not close to that of an ideal gas. Indeed,
measurements of flow parameters [1] and observations of
jet quenching [5] have stimulated the theoretical interpreta-
tion that the QGP behaves like a nearly perfect fluid [6],
characterized by a small value of the viscosity to entropy
density ratio, lying in the range 0.1–0.3 [7–9]; this range
may be contrasted with the corresponding value for liquid
helium (above superfluid transition temperature), which is
close to 10 [10]. These observations signal the fact that the
deconfined phase is strongly interacting and are consistent
with the lattice simulations [11], which predict a strongly
interacting behavior even at temperatures of a few times
the critical temperature Tc. In an attempt to appreciate this
surprising result, interesting analogies have been drawn with
AdS/CFT correspondence [10] and also with some strongly
coupled classical systems [12]. In any case, the emergence of
the strongly interacting behavior puts into doubt the credibility
of a large body of analyses that are based on ideal or nearly
ideal behavior of QGP.

In this context, there is an interesting attempt by Arnold
and Zhai [13] and Zhai and Kastening [14], who have
determined the equation of state (EOS) of interacting quarks
and gluons up to O(g5) in the coupling constant. This strictly
perturbative EOS, which we henceforth denote by EOS1,
has been improved upon by Kajantie et al. [15,16], who
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have incorporated the contributions from the nonperturbative
scales (i.e., gT and g2T ) and determined the EOS up to
O[g6 ln(1/g)] [17]. The latter will be denoted by EOS2.
Subsequent studies [18–20] have emphasized the relevance of
these equations of state for studying QGP. One would naturally
wish to compare these equations of state with (the fully
nonperturbative) lattice results. EOS2 has been found [15]
to be in qualitative agreement with the lattice results. It is
not without interest to explore further whether this qualitative
agreement can be further quantified, and whether a hard
thermal loop (HTL) improved EOS can describe the QGP
produced in heavy ion collisions. It is worthwhile noting the
earlier attempts [21–23] that have been made to determine
thermodynamic quantities such as entropy and the specific
heat cv in improved perturbative approaches to QGP.

On the other hand, it is by now well established that
the semiclassical approach is a convenient way to study the
bulk properties of QGP [24–28], since they automatically
incorporate the HTL effects [27,28]. There is a wealth of
results that have been obtained within this framework [24–26],
where the nonperturbative features manifest as effective mean
color fields. These color fields have the dual role of producing
the soft and semisoft partons, apart from modulating their
interactions. The emergence of such effective field degrees of
freedom, together with a classical transport, has been indicated
earlier by Blaizot and Iancu [29].

In this context, it is pertinent to ask whether one could use
heavy ion collisions to distinguish the various equations of
state and pick the right one, by employing the semiclassical
framework involving an appropriate kinetic equation. The
purpose of this paper is to explore such possibilities. As a
first step in this direction, we shall show how the distribution
functions underlying the proposed EOS can be extracted with
a minimal ansatz (i.e., the effective chemical potentials for
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quarks and gluons). Once the distribution function is obtained,
it can be used to study the bulk properties of the system
such as chromo responses, including the ubiquitous Debye
mass. Postponing all the other applications to a future work,
we shall concentrate on determining the Debye mass through
this procedure. As mentioned, we focus on EOS1 and EOS2.
Both of these have been proposed for the case when the
baryon number density vanishes. The corresponding chemical
potentials are hence set to zero. There exist generalizations of
these equations of state, proposed by Vuorinen [30] and more
recently by Ipp et al. [17] (who have determined the equations
of state up to order g4 at all chemical potentials and also claim
the validity of their equations of state for all temperatures),
which allow for a finite baryon number. The two sets are
applicable to distinct physical situations; the former (EOS1
and EOS2) are relevant to the QGP in the central midrapidity
region of URHIC whereas the works of Refs. [17,30] are
applicable to peripheral collisions and/or when the so-called
nuclear transparency is only partial. An application of these
equations of state to URHIC will be taken up separately.

This paper is organized as follows. In the next section,
we extract the distribution functions for the gluons and the
quarks from EOS1 and EOS2. We consider the pure gluonic
case separately from the full QCD, by first setting Nf = 0.
The (interacting) quark sector is then dealt with. In Sec. III,
the Debye mass is determined by employing the semiclassical
method developed by Kelly et al. [27,28]. In Sec. III(B), we
compare our results on screening length for EOS1 and EOS2
with the recent lattice results. We summarize the results and
conclude in Sec. IV. The Appendix contains some details of
calculations that are not explicitly given in the main text; it
also lists some useful integrals.

II. EXTRACTION OF THE DISTRIBUTION FUNCTIONS

Recently, Arnold et al. [13] have derived an equation of
state (EOS1) for high-temperature QCD up to O(g5). EOS1
reads
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EOS1 has been subsequently improved by Kajantie et al.
[15,16], who proposed another equation of state (EOS2) by
improving the accuracy to the next order in the coupling
constant. They also included the HTL effects(which are
essentially nonperturbative and contain contributions from
scales T , gT , andg2T ). EOS2, which is thus determined up
to O[g6 ln(1/g)], has the form
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In these expressions, Nf is the number of fermions, αs =
g2/(4π ) is the strong coupling constant, and µ̄MS is the
renormalization scale parameter in the MS scheme. Note that
αs runs with β and µ̄MS. As remarked, the utility of this EOS
in the context of QGP thermodynamics has been discussed
earlier by Rebhan [20].

We now set to determine equilibrium distribution functions
〈ng,f 〉 for the gluons and the quarks such that they would
yield these particular equations of state. The ansatz for the
determination involves retaining the ideal distribution forms,
with the chemical potentials µg and µf being free parameters.
Note that for the massless quarks (u and d), which we consider
to constitute the bulk of the plasma, µ ≡ 0 if they were
not interacting. This approach is of course not novel, since
it underlies many of the ideas whose aim is to describe
the interaction effects in terms of the quasiparticle degrees
of freedom. In the present context, we refer the reader to
Refs. [31,32], where an attempt is made to describe the lattice
results in terms of effective mass for the partons.

We pause to note that the chemical potentials that we
introduce are not the same as those that yield a nonzero
baryon number density, as, for example, in Refs. [17,30]. Here,
the chemical potential merely serves to map the interacting
quarks and gluons at zero baryon number chemical potential
to noninteracting quasiparicles (i.e., the dressed quarks and
gluons). Their interpretation is, therefore, more akin to the
effective mass, albeit as functions of the renormalization scale
and temperature as we show in the following. Thus, the baryon
number density of the plasma continues to vanish.

As the first step in our approach, we express the EOS in the
form

P = P I
g + P I

q + �Pg + �Pf . (3)

The first two terms in the right-hand side of Eq. (3) are
identified with the distributions of an ideal gas of quarks
and gluons. The effects of the interaction in pure QCD are
represented by �Pg and the residual interaction effects by
�Pf . For the EOS in which we are interested, the identification
of these terms is straightforward. �Pg can be identified by
first setting Nf = 0 and then subtracting the ideal part. The
residual term is naturally identified as �Pf after the ideal part
for quarks is subtracted. The general form of the EOS [see
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Eq. (1) and Eq. (2)] is

P = 8π2
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For EOS1 the coefficients A,B,C, and D are denoted with
a prime and are given by

A′[αs(Nf )] = −15

4

αs

π
+ 30

(αs

π

) 3
2 +

[
237.2

+ 135

2
log

(αs

π

)](αs

π

)2
− 799.2

(αs

π

) 5
2
,

B ′[αs(Nf )] = −165

8

(αs

π

)2
+ 495

2

(αs

π

) 5
2
,

C ′[αs(Nf ), Nf ] = −15

4

(
1 + 5

12
Nf

)
αs

π

+30

(
1 + 1

6
Nf

) (αs

π

) 3
2

+
[

237.2 + 15.97Nf − 0.413N2
f + 135

2

×
(

1 + Nf

6

)
ln

[
αs

π
(1 + Nf /6)

]](
αs

π

)2

+ (1 + Nf /6)1/2[ − 799.2 − 21.99Nf

− 1.926N2
f

] (αs

π

) 5
2 − A′[αs(Nf )],

D′[αs(Nf ), Nf ] = −165

8

(
1 + 5

12
Nf

) (
1 − 2

33
Nf

) (αs

π

)2

+ 495

2

(
1 + 1

6
Nf

) (
1 − 2

33

)(αs

π

) 5
2

−B ′[αs(Nf )], (6)

whereas for EOS2 the coefficients can be written in terms of
the these primed coefficients for EOS1 as
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We seek to parametrize the contributions from all the nonideal
coefficients in terms the chemical potentials µg and µf for
gluons and quarks, respectively. Because the equations of state
have been proposed at high T , with their validity being at
temperatures greater than 2Tc [33], we treat the dimensionless
quantity µ̃g,f ≡ βµg,f perturbatively. This approximation
needs to be implemented self-consistently, and accordingly,
we expand the grand canonical partition functions for gluons
and quarks as a Taylor series in µ̃g,f . We obtain the following
expressions:

log(Zg) =
∞∑

k=0

(µ̃g)k∂k
µ̃g

log(Zg)|(µ̃g=0),

(8)

log(Zq) =
∞∑
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(µ̃f )k∂k
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log(Zf )|(µ̃f =0),

where Zg and Zf are given by
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1

[1 − exp(−βεp + µ̃g)]
,

(9)

Zq =
∏
p

1

[1 + exp(−βεp + µ̃f )]
.

We determine Zg and Zq [defined in Eq. (8)] up to O(µ̃g,f )3.
The truncation is seen to yield an accuracy of ∼10% when
we consider EOS1. However, for the more physical EOS2, the
agreement is within 1%. The gluon chemical potential µg gets
determined by
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Similarly, the equation determining µf reads
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The coefficients A(n)
g and A

(n)
f are given by

A(n)
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µ̃g
log(Zg)|(µ̃g=0),

(12)
A

(n)
f = ∂n

µ̃f
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The explicit forms of An up to n = 3 are listed in the Appendix.

A. Explicit evaluation of the chemical potential

Before we discuss the solution of Eq. (10) and Eq. (11), it is
instructive to evaluate µg,f with just the linear and quadratic
terms for the sake of comparison. In the linear order, the
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solutions read
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where Cg = 2�PgβV /A(2)
g and Cf = 2�Pf βV /A

(2)
f . Fi-

nally, the exact solutions can be obtained by using well-known
algebraic techniques. Since the explicit algebraic solutions
do not have an illuminating form, we show the solutions
graphically instead in the next section.

The distribution functions for the gluons and the quarks get
determined, in terms of the chemical potentials, through

〈ng〉p = exp(−βεp + µ̃g)

1 − exp(−βεp + µ̃g)
,

(17)

〈nf 〉p = exp(−βεp + µ̃f )

1 + exp(−βεp + µ̃f )
.

The extraction of the distribution functions is, neverthe-
less, incomplete because the EOS—and hence the chemical
potentials—depend on the renormalization scale. However,
the physical observables should be scale independent. We
circumvent the problem by trading off the dependence on µ̄MS

to a dependence on the critical temperature Tc. To that end, we
exploit the temperature dependence of the coupling constant
αs(T ) [33]1 and of the renormalization scale:

µ̄MS(T ) = 4πT exp[−(γE + 1/22)],

αs(T ) = 1

8πb0 log(T/λT )
= αs(µ

2)|µ=µ̄MS(T ), (18)

λT = exp(γE + 1/22)

4π
λMS,

where b0 = 33 − 2Nf /12π and λMS = 1.14Tc. With this step,
the distribution functions get determined completely and are
obtained as functions of T/Tc.

1The expression for the QCD running coupling constant displayed
in Eq. (18) is allowed in the region where the weak perturbative
techniques are valid. Because the weak coupling techniques give
convergent results for more than 2Tc, where Tc is the QCD transition
temperature and a free parameter here, in this region, we can consider
the asymptotic limit of the running coupling constant. Employing
this, we shall see that the hot QCD EOS relative to the ideal EOS and
effective chemical potentials scales with T/Tc.
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FIG. 1. (Color online) Behavior of R with temperature for EOS1.

We note that the results presented in the following, being
valid for T > 2Tc, need to be supplemented by a similar
analysis for equations of state that are valid for T ∼ Tc. Such an
analysis does indeed exist, along the lines of that presented by
Allton et al. [32], who have considered the lattice EOS. They
do not determine the Debye mass but focus on the impact of
the EOS on the flow parameters in heavy ion collisions.

Although EOS1 and EOS2 have been computed within the
framework of weak coupling technique they give convergent
results for temperature ranges that are higher than 5Tc. We
shall see in the next section that these equations of state are far
away from their ideal behavior up to the extent that they can
be utilized to make definite predictions for QGP.

B. Hot QCD EOS versus ideal EOS

As a warm up, we compare EOS1 and EOS2 with the
ideal EOS by plotting the ratio R ≡ P

P I
q +P I

g
, as functions of

temperature, in Figs. 1 and 2.
The most striking feature that we see is the large sensitivity

to the inclusion of the g6 ln( 1
g

) contributions. It is most
pronounced in the behavior of pure QCD, where major
qualitative and quantitative differences appear: (i) For EOS1,
R increases with T , in contrast to EOS2, where it decreases
from above, approaching the same asymptotic value for large
T . (ii) Interestingly, the nonperturbative (and higher order)
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FIG. 2. (Color online) Behavior of R with temperature for EOS2.
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FIG. 3. (Color online) Effective chemical potentials at the linear
order for EOS1.

corrections makes the system less nonideal. Indeed, EOS1
yields values of R that are 10%–45% away from the ideal
value 1, in contrast to EOS2 (see Fig. 2), for which R is
only 2%–8% away from the ideal value. Incidentally, this
observation implies that the expansion in Eq. (8) works better
for EOS2 than for EOS1. This will be reflected later in the
behavior of effective chemical potentials with temperature.
We shall further see that smaller the value of |µ̃g,f | better will
be the approximation.

C. The chemical potentials

The variation of the effective chemical potentials with
renormalization scale at a fixed temperature has already been
studied in Ref. [14]. We prefer to recast it into a dependence
of µ̃g,f on T

Tc
(see the previous section) since it is more

relevant to the study of QGP in heavy ion collisions. This
is shown in Figs. 3–8, where the contributions coming from
linear, quadratic, and cubic approximations in the Taylor series
[Eq. (8)] are individually displayed, for both EOS1 and EOS2.
These figures exhibit, in essence, all the interaction effects.

A number of features emerge from examining Figs. 3–8.
Consider EOS1 first. Here, the linear approximation does
reasonably well for pure QCD, but it fails badly in the quark
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FIG. 4. (Color online) Effective chemical potentials at the linear
order for EOS2.
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FIG. 5. (Color online) Effective chemical potentials at the
quadratic order for EOS1.

sector. The chemical potential is negative in both sectors
and approaches the ideal value asymptotically from below.
In contrast, EOS2 leads to a different behavior: µ̃g starts
with a small positive value at T ∼ 2Tc and stays essentially
constant until T ∼ 13Tc, when it switches sign to acquire
a small negative value. Since the magnitude remains less
than 0.1 throughout, the deviation from the ideal behavior
is minimal. The quark chemical potential µ̃f remains negative
(with a maximum magnitude ∼0.25 at T = 2Tc), which is
about a one-quarter the corresponding value from EOS1. The
interaction effects get manifestly stronger as we increase the
number of flavors.

It is significant that the ideal value is not reached even at
T ∼ 10Tc, which indicates that the phase remains interacting.
We also note that our method of extracting the chemical
potential works more efficiently for EOS2, as indicated by
small corrections from higher order terms to the linear
estimate.

III. THE DEBYE MASS AND SCREENING LENGTH

The extraction of the equilibrium distribution functions
affords a determination of the Debye mass mD , via the
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FIG. 6. (Color online) Effective chemical potentials at the
quadratic order for EOS2.

054909-5



VINOD CHANDRA, RAVINDRA KUMAR, AND V. RAVISHANKAR PHYSICAL REVIEW C 76, 054909 (2007)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 2  3  4  5  6  7  8C
he

m
ic

al
 p

ot
en

tia
l i

n 
th

e 
cu

bi
c 

or
de

r

 T/Tc   

 Pure QCD
Nf=2
Nf=3
Nf=4
Nf=5

FIG. 7. (Color online) Effective chemical potentials at the cubic
order for EOS1.

semiclassical transport theory [28]. The Debye mass controls
the number of bound states in heavy qq̄ systems, yields
the extent of J/	 suppression in heavy ion collisions [38],
provided that we have a reliable estimate of the temperature of
the plasma. Even otherwise, the qualitative significance of the
Debye mass cannot be overestimated because the deconfined
phase remains strongly interacting even at large T .

The determination of mD is straightforward if we employ
the classical transport theory [28]. It is simply given by

M2
g,f = g′2Cg,f

∫
d

dp0
〈ng,f 〉d3p. (19)

This expression has to be used cautiously, though. The
coupling constant g′ in Eq. (19) has a phenomenological
character, and it should not be confused with the fundamental
constant g appearing in the EOS. Keeping this in mind, we
recall that if the plasma were to be comprised of ideal massless
partons, the Debye mass would be given by

M2
id = M2

g,id + M2
f,id ≡ (N + Nf /2)

3
g′2β−2. (20)

The hot QCD equations of state modify this expression. It
is easy to see, from Eqs. (19) and (20), that the new Debye
masses, scaled with respect to their respective ideal values, get
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FIG. 8. (Color online) Effective chemical potentials at the cubic
order for EOS2.
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FIG. 9. (Color online) The relative Debye screening length Rh/g

for EOS1 as a function of temperature. Note that it is Rh/g � 0.7.

determined in terms of the standard PolyLog functions2 by

M2
g,hot

M2
g,id

= 6

π2
PolyLog[2, exp(µ̃g)] ≡ F1(µ̃g),

(21)
M2

f,hot

M2
f,id

= − 12

π2
PolyLog[2,− exp(µ̃f )] ≡ F2(µ̃f ).

Consequently, the expression for the total relative mass is
obtained as

M2
hot

M2
id

=
[

N
3 F1(µ̃g) + Nf

6 F2(µ̃f )
]

(N/3 + Nf /6)
. (22)

It is, however, more convenient to plot the inverse Debye mass
(i.e, the screening length) as a function of T/Tc.

A. Relative screening lengths

We first establish the notation. Let λh denote the screening
length generated by the hot EOS. Let λid be the screening

2The function PolyLog[2, z] is defined by the series
PolyLog[2, z] = ∑∞

k=1
zk

k2 , with a radius of convergence given by
|z| < 1.
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EOS1 as a function of temperature.
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the way up to 13Tc.

length of an ideal QGP. It is convenient to consider also
the contribution coming from the pure QCD sector, whose
screening lengths we denote by λ

g

h and λ
g

id, respectively.
The behavior of the screening lengths is shown in

Figs. 9–12. As in the case of the chemical potentials, the
dependence on the order of perturbation is striking here as
well. For EOS1, where the contributions up to O(g5) are
included, the screening lengths in the full QCD as well as pure
QCD remain nonzero. The dominant contribution is from the
gluonic sector, which dominates over the quark sector, as may
be seen in Fig. 9 where we plot the ratio Rh/g = λh/λ

g

h, which
is in excess of 0.7 throughout. Note, however, that the relative
dominance gets weaker as we increase the number of flavors.
Figure 10 shows the variation of the ratio Rh/id = λh/λid as a
function of temperature. Interestingly, the interaction is seen
to weaken the screening, and so does an increase in the number
of flavors.

These results are in sharp contrast with the case of
EOS2, which we recall has nonperturbative O[g6 ln(1/g)]
contributions. These are shown in Figs. 11 and 12. It is
clear from Fig. 11 that the contribution from the pure gluonic
sector saturates the contribution to the screening all the way
up to temperatures T ∼ 13Tc and drops sharply thereafter.
This feature is reinforced by Fig. 12, where the ratio Rh/id
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stays at zero between 2Tc and 12Tc–13Tc. It is of a purely
academic interest that the screening length should become
nonzero beyond 12Tc.

It appears that the perfect screening is indeed the strongest
prediction of EOS2 and must be most easily tested in heavy
ion collisions, where temperatures up to 3Tc are expected at
LHC. This is in sharp contrast with the assumptions of a near
ideal behavior and also some theoretical analyses, which in fact
propose an enhanced production of J/	 at LHC energies [34].
We, therefore, attempt to compare these predictions with the
lattice results in the following.

B. Comparison with the lattice results

In this section, we compare our results on screening length
of EOS1 and EOS2 with the lattice results. Lattice computa-
tions extract the screening lengths from the quark-antiquark
free energies. To be concrete, we make the comparison with
three distinct values of the coupling constant, g′ = 0.3, 0.5,
and 0.8.

Further, we consider three cases: (i) pure QCD, (ii) NF = 2,
and (iii) NF = 3. To facilitate a proper comparison, we take
the respective transition temperatures to be Tc = 270, 203, and
195 MeV, as given by lattice computations. The comparison is
shown only with EOS1 since EOS2 predicts absolute screening
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in the range 2Tc < T < 12Tc in which we are interested. The
results are shown in Figs. 13–15. As observed, the screening
weakens with increasing g′; moreover, the screening weakens
with the increase in the number of flavors as well. For
an explicit comparison, we consider the results reported by
Kaczmarek and Zantow [35], who determine the screening
length by identifying it essentially with the first moment of
the qq̄ free energy. Their results are displayed in Fig. 2 of
Ref. [35], to which we refer henceforth. Interestingly, the
same qualitative features are exhibited for EOS1 and the lattice
results, in both aspects (i.e., the dependence on the coupling
constant as well as on the number of flavors). However, the
agreement fails to get quantitative. The lattice results predict
screening lengths that are smaller in value, except for NF = 3,
than the EOS1 results. Indeed, the lattice screening length is
∼0.7 fm in the vicinity of Tc, and it drops to ∼0.4 fm close
to 2Tc. It is evident from Figs. 13–15 that the results of EOS1
are 3 to 10 times higher in value. Any better agreement with
a further increase in the value of g′ is ruled out since g′ � 1
necessarily.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have extracted the distribution functions
for gluons and quarks from two equations of state, in terms
of effective chemical potentials for the partons. The chemical
potentials are shown to be highly sensitive to the inclusion of
O[g6 ln(1/g)] contributions, as exhibited most vividly by the
screening length. Surprisingly, EOS2, which has interactions
up to O[g6 ln(1/g)], shows less nonideal behavior compared
to EOS1 [which has contributions up to O(g5)]. Equally
strikingly, the plasma corresponding to EOS2 is predominantly
gluonic, in the sense that the Debye mass from the gluonic
sector diverges in the range 2Tc � T � 12Tc. This result
contrasts with that of the less precise EOS1, where the gluonic
contribution is not that overwhelming.

To place our analysis in perspective, we note that our
analysis is based on but two equations of state, neither of
which has full nonperturbtive contributions. Nevertheless, it
may not be without merit: EOS2, for instance, makes rather

strong predictions that may be tested and EOS1 is seen to
be in qualitative agreement with the lattice results. Indeed, the
work does provide a platform to study quantitatively the import
of the EOS to heavy ion collisions in a quantitative manner.
Experiments at LHC may be able to probe these equations of
state since a temperature in the range T ∼ 2Tc–3Tc is expected
to be achieved there. More importantly, the method developed
here can be easily employed to study equations of state that
are more precise (from lattice computations) or more general
(from the inclusion of baryonic chemical potentials). To be
sure, an incisive analysis is possible only after studying other
quantities such as the viscosity, its anomalous component
[36,37], the viscosity to entropy ratio, and the specific
heat. Finally, the insertion of the appropriate equilibrium
distribution functions in the semiclassical transport equations
allow for studying (i) the production and the equilibration rates
for the QGP in heavy ion collisions [24–26] and (ii) the color
response functions [39], of which the Debye mass is but one
limiting parameter. These topics will be taken up in subsequent
publications and will be investigated separately.
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APPENDIX

We use the following standard integrals while extracting
effective chemical potential:∫ ∞

0
p2 exp(−p)

[1 − exp(−p)]3
dp

= 2

{
1 +

∞∑
n=1

[
1

(n + 1)3

n∏
k=1

3 + k − 1

k!

]}
,

∫ ∞

0
p2 exp(2p)

[1 + exp(p)]3
dp = π2

12
+ log(2), (A1)

∫ ∞

0
p2 exp(p)

[1 − z exp(p)]2
dp = PolyLog[2, z]

z
,

∫ ∞

0
p2 exp(p)

[1 + z exp(p)]2
dp = −PolyLog[2,−z]

z
. (A2)

The coefficients in the perturbative expansion of log(Zg) and
log(Zf ) are as follows:

A(1)
g = V

2π2gb

2ζ (3),

A
(1)
f = V

2π2gf

3

2
ζ (3),

A(2)
g = V

2π2gb

π3

3
,
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A
(2)
f = V

2π2gf

π3

6
,

A
(3)
f = V

2π2gf

2 log(2),

A(3)
g = V

2π2gb

×
{

4

[
1 +

∞∑
n=1

(
1

(n + 1)3

n∏
k=1

3 + k − 1

k!

)]
− π2

3

}
,

(A3)

where gb = 8 × 2 and gf = 6Nf are the degeneracy factors
for gluons and quarks, respectively.

[1] STAR Collaboration, Nucl. Phys. A757, 102 (2005).
[2] PHENIX Collaboration, Nucl. Phys. A757, 184 (2005).
[3] PHOBOS Collaboration, Nucl. Phys. A757, 28 (2005).
[4] BRAHMS Collaboration, Nucl. Phys. A757, 01 (2005).
[5] K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002); C. Adler

et al., ibid. 89, 202301 (2002); S. S. Adler et al., ibid. 91, 072301
(2003); J. Adams et al., ibid. 91, 172302 (2003).

[6] M. J Tannenbaum, Rep. Prog. Phys. 69, 2005 (2006).
[7] D. Teaney, Phys. Rev. C 68, 034913 (2003).
[8] R. Baier and P. Romatschke, arXiv: nucl-th/0610108.
[9] H.-J. Drescher, A. Dumitru, C. Gombeaud, and J.-Y. Ollitrault,

Phys. Rev. C 76, 024905 (2007).
[10] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[11] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,
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C. R. Allton, M. Döring, S. Ejiri, S. J. Hands, O. Kaczmarek,
F. Karsch, E. Laermann, and K. Redlich, ibid. 71, 054508 (2005);
For a very recent work, see M. Bluhm, B. Kämpher, R. Schulze,
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