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CHAPTER IV 

FERRONEMATICS IN MAGNETIC AND 
ELECTRIC FIELD 

4.1 Introduction 

To observe the magnetic field effects in liquid crystals we usually ~ e q u i r e  rather large 

fields, of the order of 104G. This is due to their weak diamagnetic anisotropy. In 1970 
Brochard and de Gennes suggested the possibility of obtaining stable "ferronematic" 

and "ferrocholesteric" phases with a uniform suspension of ferromagnetic grains in 

the host liquid crystal [I]. They also worked out the effects of an external magnetic 
'field on these systems under the assumption that diamagnetic anisotropy of the host 

liquid crystal can be neglected compared to the magnetization of the grains. Such 

ferronematic phases were made in the laboratory first by Rault at a1 [2] and later by 

others [3,4,5] using needle like ferromagnetic grains. Similar ferro systems with plate 

like grains have also been made [7]. In all these systems the magnetization of the 

grains appears to be quite small (of the order of 10-4G ). This is further supported 

by the experiments of Chen and Amer (51 who studied the Freederickzs transitions 

in a ferronematic, with magnetization M perpendicular to the nematic director, 

in homeotropic geometry and with the applied field parallel to the magnetization. 

Their results indicate that the effects of diamagnetic anisotropy of the host cannot 

be ignored. This prompted us to work out the implications of elastic anisotropy in 

such systems. We have considered the effects of elastic anisotropy also. 

In this chapter we work out [GI the effects of magnetic and electric fields on 

ferronematics in the classical Freederickzs geometries. The free energy density for 

a ferronematic having magnetization M in an applied electric and magnetic field 

[depicted in Fig 4.11: 



Fig 4.1: Ferronematic in homeotropic geometry with the magnetic field applied 
along the z-direction 
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Xa - -(n.H)2 - M.H - " ( n . ~ ) '  (4.1) 
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where 

M = Magnetization 

,y. = Positive diamagnetic anisotropy . 
= Positive dielectric anisotropy 

H = Magnetic field 

E = Electric field 

kl l ,  k22 , k33r are the splay, twist, and bend elastic constants respectively 

We consider a ferronematic with M along the director n. Further we assume 

the magnetic and electric fields to be parallel to the undistorted director, with the 

magnetic field antiparallel to the initial magnetization. 

4.2 Homeotropic Geometry 

In this geometry which is shown in Fig 4.1 the distortion is given by n = (sin 0 cos 4, 
sin 0 sin 4, cos0). This distortion is cylindrically symmetric about the z-axis and re- 

sults in what are called umbilics [8]. For small 0 distortions we get 

where d is the sample thickness. 0, being the distortion at  the center. 

Then for regions far away from the core of the umbilic i.e.,r >> ( (where ( is 

the coherence length) the average free energy density from 4.1 is: 



Fig 4.2: Jump A0 at the transition as a function of M for the homeotropic geometry 
(1 = 20~1111, k l l  = kZ2 = k33 = 0.5 x 10-6dynesl M = 1.8 x Gauss, X, = 
0.5 x cgs units 

H (Gauss) --t 

Fig 4.3: Onset of first order Freedericksz transition in the homeotropic geometry 
a ~ ~ d  for parameters shown in Fig.2 
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Notice that 4.2 has the form of a Landau free expansion. We keep terms up to 

sixth power and allow p to take negative values also. 
r 

4.2.1 Magnetic field effects 

Effect of X, 

.First we work out the effects of magnetic fields only. Let us for simplicity assume 

k = Iill = 1 1 2 2  = Ii33 then the equation system 4.3-4.5 will take the form 

We find that for values of M less than the critical value Mc = ( 4 ~ / d ) ( k ~ , / 3 ) ' 1 ~ ,  

p is negative and y is positive resulting in a first order transition to the umblic 

configuration. And for higher values of magnetization /3 is positive giving a second 

order transition. Therefore as M changes we find a tricritical behavior at Mc.  Fig 

4.2 shows the variation of AO,, the jump in the order parameter at transition as 

a fuction of M .  In Fig 4.3 is shown the variation of 0, with H in the first order 

transition. It should be remarked that this variation of 0, is only approximate since 

the harmonic solution that we have assumed is not strictly valid when the sixth 

power term is included. 
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CHAPTER I1 

NEMATIC DEFECTS IN MAGNETIC FIELD 

2.1 Introduction 

In this chapter we look at the effects of a magnetic field on the structure and prop- 

erties of some defects in nematic liquid crystals. The diamagnetic,anisotropy X ,  of a 

nematic can be positive or negative. Usually nematics with rod like molecules have 

positive X ,  and those with disc like molecules have negative x,. We consider both 

the cases. When a sample of nematic with X, > 0 is placed in a uniform magnetic 

field the director n aligns parallel to the magnetic field. While in the case of X.  < 0 

' nematics the director aligns in a plane perpendicular to the magnetic field. In both 

the cases since n is apolar solutions with n and -n have the same energy. Two such 

solutions get connected by a domain wall inside which the director turns through an 

angle n. These walls were first discussed by Helfrich [I] and are called Helfrich walls 

or planar solitons. We can have bend rich, splay rich or pure twist walls. Volovik and 

Mineev showed that these walls can end in disclination lines of half integral strength 

[2,3]. Two Helfrich walls can get interconnected through a disclination. Volovik and 

Mineev also showed the possibility of having cylindrical domains ending in point 

singularities. These has been named as linear solitons. Ranganath [l] predicted 

that in uniform magnetic field point singularities can result in discs inside which 

the director turns through n. In addition the symmetry of nematic liquid crystals 

allows one to consider cylindrical shell structures -Bubble domains- connecting the 

inside and outside uniform regions by twist or bend cylinderical shell. 

It may be remarked in passing that such structures can exist in biaxial nematics 

as well. The simplest of biaxial nematics have orthorhombic symmetry and have 

three directors a, b and c. The possible structures of various types of solitons in 

these, systems was discussed by Ranganath (51. 

In this chapter we have considerd two types of magnetic fields. (1)The uniform 

magnetic field Hz acting in the z direction and (2)that of a circular magnetic field 



Fig 2.1: A pair of unlike disclinations of strength 112 in a magnetic field acting 
normal to the disclination lines (a) Field perpendicular to the line joining the discli- 
nations, (b) Field along the line joining disclinations. 
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Ha g enerated by a linear current element [I]. The effects of elastic anisotropy, 
ie.,kll # kzz # k33 have also been worked out. 

2.2 Interact ion between disclinations 

Let us consider the case of f 112 disclination line in a nematic with X, positive. 

It was said earlier that this disclination line gets transformed to a domain wall 

terminating in a singular line under the action of a magnetic field H. The wall 

thicltness is of the order of the magnetic coherence length t = ( I ~ / ~ , H ) ' I ~  where 

k = kll = kZ2 = k33 is the elastic constant. We consider the interaction between 

such disclinations. 
9 

Consider now the case of a magnetic field H acting perpendicular to the line 

connecting two unlike 112 wedge disclinations. The field induced structure is shown 

in Fig 2.la. The two singularities are connected by a splay wall. The energy per 

unit area of these walls is given by E = 2 ~ ( k ~ , ) ' I ~  [I]. It is clear from the figure 

that by moving the the two disclinations towards or away from each other the direc- 

tor pattern inside the dashed circles of radius t or at far off distances is not much 

affected. But the size of the connecting wall is altered by moving the two disclina- 

tions towards each other. We assume the distance of separation to be much larger 

than t. Then for a change of distance Ad the energy of the wall configuration is de- 

creased (to a good approximation) by A E  = energy per unit area of the wall x Ad 

i.e., A E  = 2 ~ ( k ~ , ) ' / ~ ~ d .  Hence the change in total energy is proportional to the 

change in the distance of separation Ad between two disclinations. Therefore two 

unlike disclinations attract with a force that is independent of distance separating 

them. 

We now consider the case when the magnetic field is acting parallel to the line 

joining two unlike line disclinations. In this case we get a planar bend soliton 

extending on either side to infinity and away from the disclinations. This is shown in 

Fig 2.lb. The energy per unit area of this soliton is E = X,H2/2. Most of the region 

l>clwccn the two defects is free from director distortion. To a good approximation 

we see that small displacements of the two defects do not change the director field 

either inside the dashed circles or at infinity. Hence by moving the two disclination 

away from each other by Ad the changk in energy is given by: 



Fig 2.2: Pairs of like disclinations of strength 112 in a magnetic field acting along 
the line connecting them . The force of interaction is independent of the distance 
of separation and can be repulsive (a) or attractive (b). 





Fig 2.4: I'oincarZ: defects of different strengths with line singularities (dashed line) 
ending at a point inside the material. 

POINCARE' 
POINTS 

Fig 2.5: Generation of PoincarZ: defects in a nematic with negative diamagnetic 
anisotropy (a) before the Freedericksz threshold. (b) At much higher fields 

, 
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Thus in this geometry we find that the field favors repulsion between two unlike 

disclinations. The force of repulsion being independent of distance. This is an 

unusual interaction, since in general two unlike defects always attract each other. 

In the same way we see that two disclination of opposite strength can experience 

an attractive or repulsive force in the presence of a magnetic field. The strengths of 

the attractive and repulsive forces are, however, different. 

In the case of two like defects we have four walls being generated by a magnetic 

field. This is shown in Fig 2.2 and Fig 2.3 for magnetic field acting parallel and 

perpendicular to the line joining the defects. However, the intemction between the 

disclinations can be repulsive or attractive depending upon the geometry. Here again 

the force of interaction is independent of distance of separation. 

In the above analysis we have ignored the formal elastic interaction. A calculation 

.of the net interaction taking both contributions into account is not easy. However 

we can make some approximate estimates. We know that the elastic free energy 

density varies as k ( A ~ 9 ) ~  while the magnetic energy varies as x,H2sin20. Thus 

over distances d less than 4 , to a good approximation the magnetic energy can 
be neglected compared to the elastic energy which dominates. Thus the distance 

independent interaction law will be valid only when d >> E ,  
Very similar arguments can be applied to nematics in electric field where the 

dielectric anisotropy c, aligns the director to the field 

2.3 Poincare structures 

In all the experimental situations known to date a line singularity is found to end 

either on itself forming a loop or on the surface of the sample. However it is known 

that a line singularity can also be terminated in a pair of half point disclinations 

[7,6]. While working out the defects in nematics, by Poincarii's technique Nabarro 

found that structures of the type shown in Fig 2.4 are also allowed. The first 

two structures have cylindrical symmetry with S = f 112 director pattern in the 

meridional plane. We can also have = +1/2 structures in one plane and -112 in the 

orthogonal plane. Poincarii structures &e very unique. Firstly they are singular for 
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z < 0 and are strictly non-singular for z > O,i.e.,a singular line ends in the body of 

the material. Secondly the line singularity has a strength of f 1.  Such topological 

defects have not been experimentally seen so far. In this section we suggest a method 

of generating such defects. 

If a magnetic field is applied parallel to the director of a homeotropically aligned 
nematic with X, < 0,it will undergo a Fredericks transition at a critical field given 

by H c  = ( t ~ ~ k / ~ , d ~ ) ' / ~ .  Just above this threshold we get cylindrical nonsingular 

structure shown in Fig 2.5a. It should be noticed that in the central region the 

director is still opposing the magnetic torque. Hence at  fields much higher than 

the critical field this structure can break down to a singular structure shown in Fig 

2.5b. Here a S = $1 line singularity is shown to end in a pair 6f unlike Poincark 

half point singularities. 

This phenomena can be expected in nematic discotics since they usually have 

negative diamagnetic anisotropy. In rod-like nematics it is easier to  get systems 

.with negative dielectric anisotropy than negative diamagnetic anisotropy. Here the 

above arguments are valid mutantis mutandis in the presence of an electric field, 

provided the system is free of ions. 

2.4 Bubble domains 

As mentioned earlier Bubble domains are cylindrical shell structures connecting 

the inside and outside regions through twist, splay or bend deformation. We have 

investigated such structures in the presence of an all circular magnetic field of Ha = 
A/r  (generated by a linear current element A)in a nematic with X, < 0. 

In cylindrical polar coordinates (r10,q5) the director n is given by 

n = [sin0 cos(4 - a), sin0 sin($ - a), cosO] 

The distortion free energy density is: 
k x.A2 

F = -[(VO)2 + ~in~B(Vq5)~)  + - 
2 

sin2 0 sin2(d - a )  
2r2 

Minimization of the total energy J F d v  energy with respect to 0 results in 

x.A2 kIV"0 - sin 0 cos O(V~~I )~ ]  - - sin 0 cos 0 sin2($ - a )  = 0 
1.1 (2.1) 



Fig 2.6: A twist bubble domain in a nematic with X, < 0, in an ail circular field. 
The dashed lines are the boundarv of the domain 
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similarly minimizatibn with respect to 4 gives 

The solution satisfying both the equations (2.1) and (2.2) with the boundary 

conditions 

O = O  at r = O  and B=a at r = c o  is 

0 = 2 tan-'(r/r,)" and 4 = a + n/2 

where 

11 = [l + X a ~ 2 / k ] ' / 2  

I-Iere r, is the point at which 0 becomes n/2. This solution represents a Bloch 

bubblc domain wlricl~ has been depicted in Fig 2.6. Tlie variation of 0 with respect 

to rlr, is shown in Fig 2.7 for different values of 7. We see that the width of the 

cylilldrical domain wall decreases as the field increases. Thus in such a field the 

'bubble domain is a natural soliton solution. The total energy of this structure per 

unit height is found to be 4nkv  Interestingly the energy is independent of its radius 

r. At high fieltls 11 -+ [x,~2/k]1/2 and tlie energy become 4 r ~ ( k ~ , ) ' / ~ ,  wliicli is 2nr 

times the energy/area of the planar soliton obtained in uniform fields. 

Bubble domains can also exist in diamagnetically positive materials. Here for 

all circular fields A < (klX,)'l2 we find a collapsed $1 all circular disclination [9]. 

This becomes a planar all circular singular structure a t  a critical value of A given 

by (k/x,)1/2. On this structure we can now impose a twist-bubl>le or an inplanar 

bend-bubble domains. We consider here the case of twist bubble domain where the 

boundary conditions are: 

tlie equations of equilibrium 

2 2 .  k[V20 + sin 0 cos O(V4)2] - x,A / r  s ~ n  0 cos 0 sin2(+ - a) = 0 

and 
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yield the lollowing solutions. 

where 7 = [x ,A2/k  - 1 ] ' / 2  

The energy of the bubble domains in this case is 4nk7 + E,, where E, is the 

energy of the singular core. 

It should be mentioned in passing that although it is'also possible to have such 

bubble domains in a uniform Hz field, an energy analysis is not possible in a linear 

theory of elasticity. 

To conclude, we notice that effect of an external field on defects are non trivial. 

And in some cases the field can induce some defects. In either case we find not only 

interesting but in some cases even unexpected results. 
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CHAPTER I11 

SMECTIC AND DISCOTIC DEFECTS IN A 
MAGNETIC FIELD 

3.1 Introduction 

In the previous chapter we saw that a magnetic field not only chgnges the structure 

of nematic defects considerably but can also lead to new defects in nematics. It must 

be remarked that these structures were possible because nematics have no lattice 

order. But in smectics and discotics lattice ordering is an additional constraint, 

since it is difIicult to bend the director in a smectic or splay it in a discotic without 

' introducing dislocations. In this chapter we work out the effects of a magnetic field 

on defects in smectic and discotics. We also investigate the structure of field induced 

defects in these systems. As in the case of nematics the effects of uniform linear as 

well as circular magnetic fields on systems with X ,  < 0 and X ,  > 0 will be analyzed 

hcre too. At the end of the chapter we briefly discuss the effects of a magnetic field 

on the core structure of disclinations in smectics. 

3.2 Smectic A - Screw and helical dislocations 

Stncclic A has rod like ~riolecules stacked in layers with ~nolccular long axis prefer- 

entially aligned along the layer normal. By virtue of its lattice structure edge and 

screw dislocations are possible in smectics. But in many ways these are different 

from the edge and screw dislocations in crystals. This is due to the fact that smec- 

tics have not only lattice elasticity due to layers but also nematic like curvature 

elasticity. For exarnple smectic edge dislocations have finite self energy cvcn in an 

infinite sample and smectic screw dislocations have no self energy at all. Since not 

many studies exist on the effect of fields on such defects this will be addressed to 

here. 

Within the linear theory of elasticity the free energy density of smectic A upto 
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second order in deformations can be written as [I],: 

where 

u=the layer displacement 

B=the elastic constant for lattice dilation (N lo6 - lo7 dynes/cm2) 

k l l=  the elastic constant for layer curvature ( N  lo-' dynes) 

The minimization of the total free energy with respect to u gives: 

where X2 = kll/B. This permits solutions of the form 

Here b is called strength of the dislocation. It is an integral multiple of the layer 

spacing. It is clear that equation 3.2 represents a screw disloction with u changing 

by b as one goes once around the dislocation line. Since it does not involve lattice 

dialatation duldz or layer curvature d2u/dx2 + d2u/dy2 it is easily seen that this 

screw dislocation solution in s rnec t id  has no self energy. Also since superposition of 

such solutions is also a solution the interaction energy between any two dislocations 

is also zero. 

3.2.1 Field induced effects on screw dislocations 

In this section we will study the energetics of screw dislocations in the presence of an 

uniform magnetic field applied along normal to the layers(z-axis). The free energy 

density for X ,  > 0 material is: 
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and the equation of equilibrium is: 

Eve11 in this case the screw dislocation described by: 

is a solution. But this time it has a self energy 

due to the second them in 3.3. When two such dislocations of strengths blandbz 

are centered at positions ( ~ ~ , y ~ ) a n d ( x Z , ~ ~ )  respectively, the net solution is a linear 

combination of the individual solutions and is: 

bl u = -tan-' (Y - ~ 1 )  + 5 tan-' (Y - YZ) 
2n (x - xl) 2n (2 - XZ)  

(3.5) 

substituting equation 3.5 in equation 3.3 and integrating over the sample we find 

the total energy Eo to be 

The first term represents the total self energy and the second term gives the 

interaction energy Ei. Here R is the sample size , r ,  is the radius of the singular 

core of the dislocations and d is the distance of separation between the dislocations. 

Hence we find, in a magnetic field, like screw dislocations to repel and unlike 

dislocations to attract with a force prapotional to lid. This interaction law is 

exactly the same as that between screw dislocations in crystals. 
I 

A similar interaction law is also to be expected in a nonlinear smectic. Here the 

free energy will have a nonlinear term given by 
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Fig 3.1: Smectic A with layers aligned parallel to the sample boundary 

F,,! is similar to the magnetic term in equation (3.3). Comparing equations (3.3) 

and (3.5) we can predict the force of interaction in this case to be proportional to 

imposed lattice cornspression BulBz. 

3.2.2 Field induced defects 

111 an l~or~~eotropical l~ aligned sarnple (shown in Fig 3.1) wit11 X,  < 0 in a magnetic 

field applied along the z direction, the free energy density takes the form: 

We can easily see that equation (3.2) which repre$ents a screw dislocation solu- 

tion is a solution in this case also. The self energy is then given by: 

This energy is negative i .e. it is possible to lower the energy by creating many 

screw dislocations. Hence the structure develops an instability through a prolifera- 

tion of screw dislocations. It should be mentioned that (3.2) is not the only solution 

to equation of equilibrium. But solutions with contribution from the elastic term 

should be of higher energy and a threshold will be needed to excite them. 
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. It should he mentioned that in a non-linear smectic we can expect a similar 

instability under a lattice dilatation a u / a z .  

H ,  field 

Here we will investigate in the same geometry a material with X ,  > 0 in an all 

circular magnetic field H, = A/T (generated by the linear current element A) 

acting parallel to the layers. Let us introduce a perturbation in the director field of 
\ 

the form 

Then tlie free energy density is given by: 

Minimizing the total free energy leads to 

This equation again permits the screw dislocation solution given by 

The energy per unit length is now 

since 13 > T, this energy is negative. Thus the system is unstable against such 

perturbation. Thus energy can he lowered by creating screw dislocations. We can 

therefore expect a proliferation of screw dislocations in an H, field. Notice that this 

screw dislocation is different from the classical one in the sense that its energy is 

finite even for an infinite sample (R + co). 
I 



Fig 3.2: A wedge disclination of strength $1 is smectic A 

Fig 3.3: Spiral distortion in Snlectic A with the helical wrapping of layers 
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3.2.3 Spiral Instability of a disclination in an Ha field 

Now we study the effect of the circular field on a $1 wedge disclination in smectic 

A shown in Fig 3.2. This has smectic layers in concentric cylinders about the 

disclination line. Consider the disclination to be along the z direction with the field 

acting parallel to the smectic layers. When the molecules have positive diamagnetic 

anisotropy we can expect a perturbation of the form 

Then the free energy density up to second order in u is: 

, It can be easily verified that a solution of the form 

where a0 is the layer spacing and N an integer minimizes this energy. This 

solution represents a spiral distortion, resulting in a helical wrapping of smectic 

layers as shown in Fig 3.3. Substituting for u in equation (3.12) we find the extra 

energy due to the spiral distortion to be 

This becomes negative for A > (kll/X,)'/2rnaking the system unstable against 

such distortions. This is a new type of dislocation. Such a structure was first 

described by I<leman and Parodi [2]. They looked at the stability of a structure 

with layers stacked in concentric cylinders against the helical structure. But energy 

calculations ruled out such a possibility. Also this spiral disclination is very different 

from that described by Bouligand [3] where the layers end on a cylindrical boundary. 
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3.3 Srnectic C 

Structurally these are similar to smectic A, but with the molecules tilted by an 

angle 0 in a particular direction with respect to layer normal. This results in an 

additional degree of freedom. We find a weak curvature elasticity associated with 
azimuthal variations i.e., distortion in the pojection vector c. Also topological 

defects similar to the ones in smectic A can be generated here. Again many of the 

field effects are the same. In addition we find that in an H, field, a disclination 

in the c-director(projecti0n of the molecular axis to the plane of the layer) can be 

expected. 

For small layer displacements u, with ,Y, > 0 the free eneEgy density F (by 

ignoring coupling terms of Saupe theory) is given by: 

Where 

0 = the tilt angle 

4 = azimutll of the c-director 

k = t l ~ e  elastic constant for the in-plane bend or splay in the c-director 

Minimization of the total energy with respect to 4 and u leads to  the following 

equations: 

These can be solved to get 

?r 
m = a - t :  

and 
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L 

Here again a0 is the layer spacing and N is an integer. 

Equation (3.15) represents a disclination in the c-director while (3.16) is the 

familiar screw dislocation. Substituting (3.15) and (3.16) in (3.14) we get the free 

energy density to be 

The second term in (3.17) is due to the screw dislocation. Since this term is 

negative at any value of A the uniform structure is unstable against screw diloca- 

tions. ~oreo;er for fields A > A, (= (k/X,)1/2) this energy if furjher lowered by the 

creation of a disclination in the c-director. The net distortion will have the features 

of both a screw dislocation and a disclination. Such composite structures are called 

dispirations [5,6,7]. 

'3.4 Columnar discotics 

These mesophases are made up of disc like molecules stacked in columns with the 

columns arranged in a two dimensional lattice. In each columns the molecules are 

irregularly positioned i.e. fluid like order prevails [4]. Discotics have X, < 0 with the 

director 11 perpendicular to the disc plane. In the simplest of the columnar discotics 

the lattice has hexagonal symmetry. One of the many possible defect states in this 

syslein has colui~iiis bent around into concentric circles [3) with the director forming 

an all circular pattern i.e.,n, = ' I .  In this section we will investigate the stability of 

this defect configuration in the presence of an all circular field H, acting parallel to 

the column axis i.e. to the director n 

Let us assume a perturbation of the form: 

where u is the displacement of the layers perpendicular ,to n and the singular 

line. The resulting structure represents various columnar circles in any given plane 

getting interconnected to form a spiral., Neglecting lattice distortions the cha~ige in 

free energy density due to this perturbations is 



Fig 3.4: Two neighboring columns in the sbiral distortion in columnar discotics 

Fig 3.5: Coaxial helices of discotic columns 
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where k33 is the bend elastic constant 

We see that a solution of the form u = ( b 1 / 2 n ) a  minirnises the total free energy. 

Here b l  is an integral multiple of the lattice spacing of the columns perpendicular to 
the singular line. We see from (3.18) that such a distortion will lower the free energy 

above a threshold field given by A, = ( I C ~ ~ / ~ . ) ' / ~ .  When this sets in the various 

circular1 columns in any given plane will get connected into a continuous spiral as 

shown in Fig 3.4.  Thus above this field a smectic like spiral &slocation will exist 

in addition to the disclination in the director n. The resulting distortion is again a 

dispiration in wich a classical disclination is associated with a spiral dislocation. 

We will now investigate the effect of an another form of perturbation of the same 

.system leading to a coaxial helical columns. 

Again neglecting the lattice distortions, the change in the free energy density is: 

( 

From equation (3.19) we see that above the critical field given by A, = [2k33/Xa]1/2  

we get u = [ ( b l l / 2 n ) a ]  as the lowest energy solution. Here bll is an integral multiple 

of the layer spacing parallel to the singular line. The resulting structure illustrated 

in Fig 3.5. This has a helical connection between the circular columns of different 

planes,i.e., we get coaxial helices. 

It should be remarked that these two structures are very different from the spiral 

columns around a cylinder proposed by Icleman [ S ]  and a helical distortion around 

a llelix discussed l ~ y  Bouligand [3] for colurnnar discotics, on the basis of the tl~eory 

of developable domains. 
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3.5 The core of a disclination near A-C transi- 
tion. 

Many smectic C materials undergo on heating a second order phase transition to 

smectic A at  a definite temperature. Near such A-C transitions the tilt angle 0 
smoothly and continuously goes to zero. It is important to recognize that 0 also 

becomes a function of the applied field. Moreover in a disclination in the c field 

there will be a t  the center a singularity in the c vector. This singularity gets lifted 

through a smooth decrease in the tilt angle which vanishes a t  r = 0. Hence 0 will 

also be a function of r in the disclinations. It's variation is just the same as the 

variation of order parameter in a superfluid quantum vertex 191: In this section we 

discuss the field effects on the variation of 0 near the core of a disclination on both 

the smectic A side and the smectic C side of the transition point. We use a Landau 

theory with 0 as the order parameter. 

3.5.1 Smectic C disclinations 

Consider a f 1 disclination in smectic C near A-C transition. Very near the transition 

the order parameter 0 (tilt angle) is small. Then the free energy density for the core 

in ihe presence of a Hz field for X, > 0 can be written as: 

where 

2 
6 = a + X o ~ 2 ,  B = /J - -xoH2; a = ao(T - T,) and /J > 0 

3 

a0 and /J are tl~ermodynamic parameters of the classical Landau expansion. Min- 

imisation of the total free energy leads to the Ginsburg-Pitavskii equation: 

where 

1' Q C  

= - to = ( -k/~$) ' /~  f = -, Qo = (dc/8)'12 = Tilt angle a t  r + co 
Eo 00 



Fig 3.6: The variation tilt angle in smectic C as a function of distance from the core 
of a $1 disclination (for X .  = lo-', k = .5 x 
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In Fig 3.6 is shown the variatioi off as a function of t for ) > 0, the tilt angle 

drops to zero at  the centre of the singularity. Most of the variation in 0 takes place 

over a distance to. As H decreases to increases slowly sweeping whole area. At 

the critical field H = [lal/X,]'12 tilt angle becomes zero everywhere,i.e.,we get a 

smectic A state. 

It is possible for ,h to be negative depending on the thermodynamic parameter 

p and the field strength H. When this happens we can speculate on&he possibility 

of a first order transition to the smectic A state at a critical value of t. 

3.5.2 Smectic A - field induced disclinations 

llere if at1 all-circular field i.e. II, = A / r  acts parallel to the s~riectic layers in a 

x,, > 0 material, the free energy density will be of the form 

Fro111 equation (3.22) we see that due to the magnetic term the coefficient of O2 
can be negative over a range of r. In this range of r, the field will induce a 0 and we 

will have a smectic C-like disclination. A detailed analysis of this again leads to a 

Ginsburg-Pitaevskii type equation and the result is similar to the one shown if Fig 

3.6. 
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Fig 4.4: 'I'ricritical behavior in parallel electric and magnetic fields in the 
llo~neotropic geometry. d = 5pm,  k l l  = kzz  = k33 = 10-6dynes, M = 
.1 Gauss, c, = 0.1 cgs units. The dashed line represents the second order transi- 
ti011 and the full line the first order transition. The point A represents the tricritical 
point 
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If we give up the assumption that kll = kz2 = k33 we find another interesting 

result. From Equation 4.4 we see that even when diamagnetic effects are ignored P 
changes sign at the Freedericksz transition threshold when kS3 = 4k11/3. Thus the 

transition is first order or second order depending on whether kS3 is greater or less 
than this value resulting in a tricritical behavior. 

4.2.2 Combined effect of electric and magnetic field 

There are many important effects associated with Freedericksz transition in com- 

bined electric and magnetic fiel?. For example a transition between the four states 

of distortions that are characterized by the uniform state, purg twist state, splay 

belid state and mixed state, in a homogeneously aligned nematic placed in crossed 

electric and magnetic fields that are orthogonal to the undistorted director was re- 

ported by Barbero et.al., [9]. In view of this we have considered the same geometry 

in ferronematics also. Here we look at the effects of an electric field applied parallel 

' to  the magnetic field. For simplicity we assume kll = kz2 = k33. we find that up 

to a critical value of the electric field E, = (27r/d)(kn/3~.)'/~ the transition will be 

first order thus exhibiting tricritical behavior as in the case of M. This feature is 

illustrated in Fig 4.4. 

4.3 Homogeneous geometry 

I11 this case also the magnetic field is antiparallel to M. Here we have both the out 

of plane 0 and in plane 4 distortions. Just above the threshold we can assume 0 and 

4 to be small and given by the harmonic solutions: 

Then the free energy density after averaging over the sample thickness is: 

here 
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This expansion for i;h is similar to the generalized Lifshitz's expression for a two 

order parameter system [lo]. 

When PI (or /Iz) is negative , we also take the sixth power terms (y1/6)0k 

[or (y2/6)q56,] to 4.9 for stability reasons. 

where: 

Lifshitz's theory predicts four possible states: 

(a) 0 = 0, q5 = 0 when a > 0 (undistorted state) 
= O' ' ' } when a < 0, P < 161 (c) 0 # 0, d = 0 

(4 o f  0, 4 # 0 '  when a < 0, p > 161 

The possibility of obtaining these four states and transitions between them is 

investigated in the next section. 

4.3.1 Magnetic field effects 

We first look at  the effect of X ,  in the one constant approximation. Numerical 

calculations show t1ia.t condition (d) is never satisfied in this case a ~ ~ d  the transition 



Fig 4.5: The classical second order Freedericksz transition with the second instability 
in the homogeneous geometry. The second transition is of first order and it is from 
splay-bend (represented as (8,O)) to a twist configuration (O,$). d = 20pm, kll = 
0.55 x kz2 = 0.6 x k33 = 1.5 x 10-6dyne~, M = 8 Gauss, X ,  = 
cgs units. 



Ferronematics ....... 

always l a k e  place to states described by (b) or (c). Also in the one constant 

a p p r o x i ~ ~ ~ a l i o ~ ~  (b) and (c) solulions are equally energetic. ' h i s  transilion to O or 4 
alone can be first or second order, depending on the value of M. Thus in this case it is 

possible to think of a new type of wall connecting the distortions 0 and 4. This wall 

is quite different from the familiar Brochard walls which connect only degenerate 0 

(or 4). In the case of second order transition the wall will be continuous. In the 

case of Iirst order transitio~ls the wall will have discontinuities in O and 4. 
Now we will assume diamagnetic terms to be absent and look at the effects of 

elastic anisotropy. A numerical calculations shows some interesting results. For 

example when kll < kzz we always get solution (c) (8 # 0 , 4  = 0). This transition 

is first order for k33 < (4/3)kll and second order for k33 > (4/5)kll. For kZ2 < kll 

we always gel solulion (b) ( 4  # 0,0 = 0) whenever k33 2 kll and tliis transition 

is always second order. However one can even get solution (c) i .e . ,  ( 4  = 0,0 # O), 
when kzz < kll provides k33 is very much smaller than kll and the transition to tliis 

. state is always first order. 

When diamagnetic effects are also included we get solution (c) (4  = 0,0 # 0). 

for k11 < k22 and k33 5 kl l .  Depending on the value of magnetization this transition 

will be first or second order. However, one can also get the solutiori (b) ( 4  # 0,0  = 0) 

for lilt < kZ2 provided k33 is very much smaller than kll and the transition to this 

state is always first order. But in the case of kzz < kll the diamagnetic term plays 

no significant role and the results given in the previous section are valid. 

Anoll~er interestir~g pbssibility in this geometry is the occurrence of a second 

thereshold at which the system goes from solution (b) to solution (c) or vice versa 

under certian conditions. It goes from ( 4  = 0,0 # 0) to ( 4  # 0,0 = 0) through a 

first order transition when kll  < kzz and 1211 < k33. Similarly a first order transition 

from (4 # 0,O = 0) to (4  = 0,0 # 0) is also possible when kll > kzz and kll > 1233. 

This is dcpicled in Fig 4.5 

UMAN RESEARCH INSTITWI 
B A N G A L O R E- 8 0  
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