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CHAPTER IV

FERRONEMATICSIN MAGNETIC AND
ELECTRIC FIELD

4.1 Introduction

To observe the magneticfield effectsin liquid crystals we usually require rather large
fields, d theorder d 10*G. Thisisdueto their weak diamagnetic anisotropy. In 1970
Brochard and de Gennessuggested the possibility of obtaining stable" ferronematic"
and "ferrocholesteric" phases with a uniform suspension of ferromagnetic grains in
the host liquid crystal [1]. They also worked out the effectsof an external magnetic
‘field on these systems under the assumption that diamagnetic anisotropy d the host
liquid crystal can be neglected compared to the magnetization of the grains. Such
ferronematic phases were madein thelaboratory first by Rault at ¢! [2]and later by
others [3,4,5] using needlelikeferromagnetic grains. Similar ferro systems with plate
like grains have also been made (7]. In all these systems the magnetization of the
grains appears to be quite small (of the order of 10=*G ). This is further supported
by the experiments of Chen and Amer [5] who studied the Freederickzs transitions
in a ferronematic, with magnetization M perpendicular to the nematic director,
in homeotropic geometry and with the applied field parallel to the magnetization.
Their results indicate that the effects o diamagnetic anisotropy o the host cannot
beignored. This prompted usto work out the implications o elastic anisotropy in
such systems. We have considered the effectsd elastic anisotropy also.

In this chapter we work out [6] the effects o magnetic and electric fields on
ferronematics in the classical Freederickzs geometries. The free energy density for
a ferronematic having magnetization M in an applied electric and magnetic field
[depicted in Fig 4.1]):
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Fig 41 TFerronematic in homeotropic geometry with the magnetic field applied
along the z-direction



Ferronematics .......

Fy = %(V.n)2 + -’f;?—(n.v x n)? + l%B(n X (V x n}))?
.} 2 _ _ fa 2
5 (n.H) M.H 87l_(n.E) (4.1)
where
M = Magnetization
e = Podtive diamagnetic anisotropy
e, = Positive dielectric anisotropy
H = Magneticfidd
E = Electricfied

iy, ko ,ksa, @r€thesplay, twist, and bend elastic constants respectively

We consider a ferronematic with M aong the director n. Further we assume
the magnetic and electric fields to be paralel to the undistorted director, with the
magnetic field antiparallel to theinitial magnetization.

4.2 Homeotropic Geometry

In this geometry which isshown in Fig 4.1 thedistortionisgiven by n = (sin§ cos¢,
sin0sing, cosf). Thisdistortionis cylindrically symmetric about the z-axis and re-
sults in what are called umbilics [8]. For small # distortions we get

0 = 0,(r) sin(nz/d)
_ 1Y
¢ = Xtan "

where d is the sample thickness. 8,, being the distortion at the center.

Then for regions far away from the core o the umbilic i.e.,r >> ¢ (where € is
the coherence length) the average free energy density from 4.1 is.

1 4
Fd = 2./0Fddz

2o, + 2o (4.2)

— 22
= F0+29m+ 6.m



o)
N

A8 (radians ) —»

o
()

0 ] | 1 :
1.80 - 1.81 Mc¢ 1.82

10°xM (Gauss) -+

Fig 4.2: Jump AO at thetransition as afunction o M for the homeotropic geometry
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Fig 4.3: Onset of first order Freedericksz transition in the homeotropic geometry
and for parameters shown in Fig.2
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where
O Y e E*
« § [ 3;2 - MH <+ XGHZ + ?] (43)
1 (ku - k33)ﬂ'2 MH ) EGEz .
A= [ & t xR - (44)
_ 1 (,333 - kll)’ﬂ'z MH 2 éaEz
YT T4 [ 7 ~ e T+ (45)

Notice that 4.2 has the form d a Landau free expansion. We keep terms up to
sixth power and dlow 2 to take negative vaues a so.

421 Magnetic field effects
Effect of xa

.First we work out the effects d magnetic fieldsonly. Let us for simplicity assume
k = K11 = 22 = K33 then the equation system 4.3-4.5 will take the form

1 [kn?
a = 5[—dz——~MH+xaH2J (4.6)
1 [mil - | 9 _
b= [T -] D
1 MH .
- Ll [_MH 4.
7 144[ 16 +X“H] (48)

Wefind that for valuesd M lessthan the critical value M, = (4 /d)(kx./3)'/?,
B is negative and y is positive resulting in a first order transition to the umblic
configuration. And for higher values of magnetization g is positive giving a second
order transition. Therefore as M changes we find a tricritical behavior at M,. Fig
4.2 shows the variation d A#,,, the jump in the order parameter at transition as
afuction & M. In Fig 4.3 is shown the variation o 8,, with H in the first order
transition. It should be remarked that this variation of 8,, isonly approximate since
the harmonic solution that we have assumed is not strictly valid when the sixth
power term is included.
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CHAPTERI1I

NEMATIC DEFECTSIN MAGNETIC FIELD

2.1 Introduction

In this chapter welook at the effectsd a magnetic field on the structure and prop-
ertiesd some defectsin nematicliquid crystals. The diamagnetic anisotropy x, of a
nematic can be positive or negative. Usualy nematics with rod like molecules have
positive x, and those with disc like molecules have negative x,: We consider both
the cases. When a sample o nematic with x, > 0 is placed in a uniform magnetic
field the director n aligns parallel to the magnetic field. Whilein thecase df x, <0

“nematics the director alignsin a plane perpendicular to the magnetic field. In both
the cases since n is apolar solutions with n and -n have the same energy. Two such
solutions get connected by a domain wall inside which the director turns through an
angler. These walls werefirst discussed by Helfrich [1] and are called Helfrich walls
or planar solitons. We can have bend rich, splay rich or pure twist walls. Volovik and
Mineev showed that these wals can end in disclination lines of half integral strength
[2,3]. Two Helfrich walls can get interconnected through a disclination. Volovik and
Mineev aso showed the possibility d having cylindrical domains ending in point
singularities. These has been named as linear solitons. Ranganath {1] predicted
that in uniform magnetic field point singularities can result in discs inside which
the director turns through =. In addition the symmetry of nematic liquid crystals
alows one to consider cylindrical shell structures -Bubble domains- connecting the
inside and outside uniform regions by twist or bend cylinderical shell.

It may be remarked in passing that such structures can exist in biaxial nematics
as wel. The simplest d biaxia nematics have orthorhombic symmetry and have
three directors a, b and c. The possible structures of various types d solitons in
these, systems was discussed by Ranganath [5}.

In this chapter we have considerd two types of magnetic fields. (1)The uniform
magnetic field H, acting in the z direction and (2)that o a circular magnetic field
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Fig 21: A pair o unlike disclinations d strength 1/2 in a magnetic field acting
normal to the disclination lines (a) Field perpendicular to theline joining the discli-
nations, (b) Field along the line joining disclinations.
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He generated by a linear current element [1]. The effects o elastic anisotropy,
ie.,k11 # kqz # kas have also been worked out.

2.2 Interaction between disclinations

Let us consider the case o +1/2 disclination line in a nematic with x, positive.
It was said earlier that this disclination line gets transformed to a domain wall
terminating in a singular line under the action of a magnetic field H. The wall
thickness is of the order of the magnetic coherence length ¢ = (k/x.H)'?* where
k= ki = koo = ka3 1s the elastic constant. We consider the interaction between
such disclinations. ’

Consider now the case d a magnetic field H acting perpendicular to the line
connecting two unlike 1/2 wedge disclinations. Thefield induced structureis shown
in Fig 2.1a. The two singularities are connected by a splay wall. The energy per
unit area of these walls is given by E = 2H(kx,)"/* [1]. It is clear from the figure
that by moving the the two disclinations towards or away from each other the direc-
tor pattern inside the dashed circles of radius T or at far off distances is not much
affected. But the size o the connecting wall is altered by moving the two disclina-
tions towards each other. We assume the distance d separation to be much larger
than £. Then for a change of distance Ad theenergy of the wall configuration is de-
creased (toagood approximation) by AE = energy per unit areadf the wall x Ad
i.e., AE=2H(kx,)"*Ad. Hencethe change in total energy is proportional to the
change in the distance o separation Ad between two disclinations. Therefore two
unlike disclinations attract with a force that is independent of distance separating
them.

We now consider the case when the magnetic field is acting parallel to the line
joining two unlike line disclinations. In this case we get a planar bend soliton
extending on either side to infinity and away from the disclinations. Thisisshown in
Fig 2.1b. Theenergy per unit aread thissolitonis E = x,H?/2. Most of the region
between the two defects is free from director distortion. To a good approximation
we see that small displacements d the two defects do not change the director field
either inside the dashed circles or at infinity. Hence by moving the two disclination
away from each other by Ad the change in energy is given by:
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Fig2.2: Pairsd like disclinations o strength 1/2 in a magnetic field acting along
the line connecting them . The force d interaction is independent of the distance
d separation and can be repulsive (a) or attractive (b).
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Fig 2.4: Poincare defects o different strengths with line singularities (dashed line)
ending at a point inside the material.
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Fig 25. Generation of Poincaré defects in a nematic with negative diamagnetic
anisolropy (@) before the Freedericksz threshold. (b) At much higher fields
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_ 2
AE = X;H Ad

Thus in this geometry we find that thefield favors repulsion between two unlike
disclinations. The force d repulsion being independent of distance. This is an
unusual interaction, since in general two unlike defects always attract each other.

In the same way we see that two disclination of opposite strength can experience
an attractiveor repulsive forcein the presence o a magnetic field. The strengths o
the attractive and repulsive forces are, however, different.

In the case d two like defects we have four walls being generated by a magnetic
field. Thisis shown in Fig 22 and Fig 2.3 for magnetic field acting paralel and
perpendicular to the line joining the defects. However, the interaction between the
disclinations can be repulsiveor attractivedepending upon the geometry. Hereagain
the force of interaction is independent o distance o separation.

In theabove analysis we haveignored theformal elasticinteraction. A calculation

.of the net interaction taking both contributions into account is not easy. However

we can make some approximate estimates. We know that the elastic free energy

density varies as k(A#)? while the magnetic energy varies as x,H?sin?§. Thus

over distances d lessthan £, to a good approximation the magnetic energy can

be neglected compared to the elastic energy which dominates. Thus the distance
independent interaction law will be valid only when d >> ¢,

Very similar arguments can be applied to nematics in electric field where the
dielectric anisotropy ¢, aligns the director to the field

2.3 Poincare structures

In all the experimental situations known to date a line singularity is found to end
either on itself forming a loop or on the surface d the sample. However it is known
that a line singularity can also be terminated in a pair o half point disclinations
[7,6). While working out the defects in nematics, by Poincaré’s technique Nabarro
found that structures o the type shown in Fig 24 are aso alowed. The first
two structures have cylindrical symmetry with S = +1/2 director pattern in the
meridional plane. We can aso have= +1/2 structuresin one planeand —1/2 in the
orthogonal plane. Poincarii structures are very unique. Firstly they are singular for
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z <0 and are strictly non-singular for z > 0,i.e.,a singular line ends in the body of
the material. Secondly the line singularity has a strength o 4z1. Such topological
defects have not been experimentally seen sofar. In thissection we suggest a method
d generating such defects.

If a magnetic field is applied paralel to the director of a homeotropically aligned
nematic with x, < 0,it will undergo a Fredericks transition at a critical field given
by He = (n%k/x,d*)*/* Just above this threshold we get cylindrical nonsingular
structure shown in Fig 2.5a. It should be noticed that in the central region the
director is still opposing the magnetic torque. Hence at fields much higher than
the critical field this structure can break down to a singular structure shown in Fig
2.5b. Herea S = +1 line singularity is shown to end in a pair of unlike Poincark
half point singularities.

This phenomena can be expected in nematic discotics since they usually have
negative diamagnetic anisotropy. In rod-like nematics it is easier to get systems
with negative dielectric anisotropy than negative diamagnetic anisotropy. Here the
above arguments are vaid mutantis mutandis in the presence of an electric field,
provided the system isfree d ions.

2.4 Bubble domains

As mentioned earlier Bubble domains are cylindrical shell structures connecting
the inside and outside regions through twist, splay or bend deformation. We have
investigated such structuresin the presenced an al circular magnetic field o H, =
A/r (generated by alinear current element A)in a nematic with x, <O0.

In cylindrical polar coordinates (r,4,¢) the director n is given by

N = [sinf@ cos(¢ — a), sin0 sin($ — a), cos §]

The distortion free energy density is:

F= g[(ve)2 + sin?9(vV¢)?Y] T X;:: sin?0 sin®(4 — a)
Minimization o the total energy [ F' dv energy with respect to # resultsin

2

2
k[V* - sing cosO(V¢)* - XoA sind cosf sinf($-a) = 0 (2.1)

r2
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Fig 2.6: A twist bubble domain in a nematic with x, < 0, in an ail circular field.
The dashed lines are the boundary o the domain
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similarly minimizatibn with respect to ¢ gives
2

k(V24) -—X-:zi sin(¢ — @) r;os(qﬁ ~a)=0 (2.2)

The solution satisfying both the equations (2.1) and (2.2) with the boundary
conditions

f=0a r=0Oand d=r at r=00 is

B = 2tan"(r/r,)" and $ = at x/2

where

p = (1T x. A%k

I-lere r, is the point at which 0 becomes =/2. This solution represents a Bloch
bubble domain which has been depicted in Fig 2.6. The variation of § with respect
to r/r, isshown in Fig 2.7 for different valuesd 7. We see that the width of the
cylindrical domain wal decreases as the fiedld increases. Thus in such a field the
'bubble domain is a natural soliton solution. The total energy of this structure per
unit height isfound to be4rkn. Interestingly theenergy isindependent of its radius
r. At high fields 5 — [v,A?/k]'/* and the energy become 47 A(kya.)'/?, which is 2xr
times the energy/area of the planar soliton obtained in uniform fields.

Bubble domains can also exist in diamagnetically positive materials. Here for
all circular fields A < (k/x,)'/* wefind a collapsed +1 all circular disclination [9].
This becomes a planar all circular singular structure at a critical value of A given
by (k/x.)'% On this structure we can now impose a twist-bubble or an inplanar

bend-bubble domains. We consider here the case o twist bubble domain where the
boundary conditions are:

6 = —7/2 at r=0& 8=n/2 at r=00
tlie equations o equilibrium
k[V20 T sind cosf(V¢)?] — xaA?/r? sinf cosd sin®(+-a) = 0
and

(V) + xaA*/r? sin(é - a) cos($—a) =0
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yield the following solutions.
6= o+ 7/2& 0 = 2tan"r/r,]" — 7/2
where 7 = [x.A4%/k — 1)/2

The energy o the bubble domains in this case is 4mky + E,, where B is the
energy of the singular core.

It should be mentioned in passing that although it isalso possible to have such
bubble domainsin a uniform H, field, an energy analysis is not possible in a linear
theory o elasticity.

To conclude, we notice that effect d an external field on defects are non trivial.
And in some cases the field can induce some defects. In either case wefind not only
interesting but in some cases even unexpected results.
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CHAPTER III

SMECTIC AND DISCOTIC DEFECTSIN A
MAGNETIC FIELD

3.1 Introduction

In the previous chapter we saw that a magnetic field not only chgnges the structure
o nematic defects considerably but can aso lead to new defectsin nematics. It must
be remarked that these structures were possible because nematics have no lattice
order. But in smectics and discotics lattice ordering is an additional constraint,
sinceit is difficult to bend the director in a smectic or splay it in a discotic without

“introducing dislocations. In this chapter we work out the effects of a magnetic field
on defectsin smectic and discotics. We aso investigate the structure d field induced
defects in these systems. Asin the case d nematics the effects of uniform linear as
wedl as circular magnetic fields on systems with x, < 0 and x, > 0 will be analyzed
here too. At theend of the chapter we briefly discuss the effects of a magnetic field
on the core structure d disclinations in smectics.

3.2 Smectic A - Screw and helical dislocations

Smectic A has rod like molecules stacked in layers with molecular long axis prefer-
entially aligned aong the layer normal. By virtue d its lattice structure edge and
screw dislocations are possible in smectics. But in many ways these are different
from the edge and screw dislocations in crystals. Thisis due to thefact that smec-
tics have not only lattice elasticity due to layers but also nematic like curvature
elasticity. For example smectic edge dislocations have finite self energy even in an
infinite sample and smectic screw dislocations have no sef energy at all. Since not
many studies exist on the effect o fields on such defects this will be addressed to
here.

Within the linear theory o elasticity the free energy density of smectic A upto
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second order in deformations can be written as [1],:

B (0u\? | ki [0 0%
n-3(5) + 5 [ 5] .

where

u=the layer displacement

B=the elastic constant for lattice dilation {~ 10 — 107 dynes/cm?)
k1= the elastic constant for layer curvature (~ 10~% dynes)

The minimization o the total free energy with respect to « gives:

Pu_ (PPN
0zt dz®  Oy?

where A = ky;/B. This permits solutions of the form

U= 2% tan"'(y/z) (3.2)

Here bis called strength o the dislocation. It isan integral multiple of the layer
spacing. It is clear that equation 3.2 represents a screw disloction with « changing
by b as one goes once around the dislocation line. Since it does not involve lattice
dialatation du/dz or layer curvature 9%u/dx? T 8%u/dy® it is easily seen that this
screw dislocation solution in smectic-A has no salf energy. Alsosince superposition o
such solutions is also a solution the interaction energy between any two dislocations
is aso zero.

| 3.2.1 Field induced effects on screw dislocations

In this section we will study the energeticsd screw dislocations in the presence o an
uniform magnetic field applied along normal to the layers(z-axis). The free energy
density for x, > 0 material is

: i Xa]]?, Q‘Lﬁ 2 ?_tf_ 2
e[ ®)] e
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and the equation o equilibrium is
8%u ) ) 82 32

IZven in this case the screw dislocation described by:

b -1
u = z—tan (y/z)
isa solution. But this timeit has a sdf energy

xoH?0? R
_ In ~

Ey, =
0 4n e

due to the second them in 3.3. When two such dislocations of strengths &;andb;,
are centered at positions {1,y Jand(zz, y3) respectively, the net solution is a linear
combination o the individual solutions and is

N b (¥ — 92)
U= .2_')1“ tan X — 2, -+ 2%_ ta,n’l (&7—_3»'25 (35)

substituting equation 3.5 in equation 3.3 and integrating over the sample we find
the total energy Ey to be
2 2
E = mxﬂﬂz In & + (%) XoH?In (2R/d) (3.6)

47 Te 2T

The first term represents the total sdf energy and the second term gives the
interaction energy F;. Here R is the sample size, r, is the radius of the singular
cored the dislocations and dis the distance of separation between the dislocations.

Hence we find, in a magnetic field, like screw dislocations to repel and unlike
dislocations to attract with a force prapotional to 1/d. This interaction law is
exactly the same as that between screw dislocations in crystals.

A similar interaction law is aso to be expected in a nonlinear smectic. Herethe
free energy will have a nonlinear term given by

I C R
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Fig 3.1. Smectic A with layers digned paralel to the sample boundary

F,issimilar to the magnetic term in equation (3.3). Comparing equations (3.3)
and (3.5) we can predict the force d interaction in this case to be proportional to
imposed lattice compression du/dz.

3.2.2 Field induced defects
Hz field

In an homeotropically aigned sample (shownin Fig 3.1) with x, < 0 in a magnetic
field applied along the z direction, the free energy density takes the form:

B (ou\? ky [6%  8%)® xoH? | {Ou 2 (6u)2
_B Fu |0 _ gu ou 3.8
Fa 2 (Bz) T3 [8:1:2 * 3y2} 2 &) T dy (3:8)

We can easily see that equation (3.2) which represents a screw dislocation solu-
tion is a solution in this case aso. The sdf energy is then given by:

_XxH
™
This energy is negative i.e. it is possible to lower the energy by creating many
screw dislocations. Hence the structure develops an instability through a prolifera-
tion of screw dislocations. It should be mentioned that (3.2) is not the only solution
to equation of equilibrium. But solutions with contribution from the elastic term
should be o higher energy and a threshold will be needed to excite them.

E = In(R/r.) (3.9)
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. It should he mentioned that in a non-linear smectic we can expect a similar
instability under alattice dilatation du/0z.

H, field

Here we will investigate in the same geometry a material with x, = ¢ in an al
circular magnetic field A, = A/r (generated by the linear current element A)
acting parallel to the layers. Let usintroduce a perturbation in thg director field o

the form
=0 — __l ,(r)_u’. ' =1 .__1.._ QE ’
e =5 Me= g da)’ s 2r? \ O J

Then the free energy density is given by:

kn 8215 2
Fa= 2rt (30:2
Minimizing the total free energy leads to
kll 8411 XGA2 32u _
.t Jat rt Qo

This equation again permits the screw dislocation solution given by

0 (3.10)

u=g-a (3.11)

The energy per unit length is now'
YA [1 1
since R > r, this energy is negative. Thus the system is unstable against such
perturbation. Thus energy can he lowered by creating screw dislocations. We can
therefore expect a proliferation o screw dislocationsin an #,, field. Noticethat this

screw dislocation is different from the classical one in the sense that its energy is
finite even for an infinite sample (R — oo).

1
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3.2.3 Spiral Instability of a disclination in an H, field

Now we study the effect d the circular field on a +1 wedge disclination in smectic
A shown in Fig 3.2. This has smectic layers in concentric cylinders about the
disclination line. Consider the disclination to be along the z direction with thefield
acting parallel to the smectic layers. When the molecules have positive diamagnetic
anisotropy we can expect a perturbation o the form

=1 .._1_ 3_u 2' —,..l Q’L—t n, =0
TrEIT I\, T T \Ba) 0 T

Then the free energy densi.ty up to second order in uis:

_ ku 1 1 du 2 XaAz "‘_1_8_’& ?
Fa= 2 [73 + rd (3_a) ] T 2?7 | 7 Ba (3.12)

It can be easily verified that a solution d the form

e 3.13
u=——a (3.13)

where ay is the layer spacing and N an integer minimizes this energy. This
solution represents a spiral distortion, resulting in a helical wrapping of smectic
layers as shown in Fig 3.3. Substituting for u in equation (3.12) wefind the extra
energy due to the spiral distortion to be

. p 2
I

This becomes negative for A > (ky;/x.)/*making the system unstable against
such distortions. This is a new type o dislocation. Such a structure was first
described by Kleman and Parodi [2). They looked at the stability of a structure
with layers stacked in concentric cylinders against the helical structure. But energy
calculations ruled out such a possibility. Also thisspiral disclination is very different
from that described by Bouligand [3] wherethelayersend on a cylindrical boundary.
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3.3 Srnectic C

Structurally these are similar to smectic A, but with the molecules tilted by an
angle 4 in a particular direction with respect to layer normal. This resultsin an
additional degree of freedom. We find a wesk curvature elasticity associated with
azimuthal variations i.e,, distortion in the projection vector c. Also topological
defects similar to the ones in smectic A can be generated here. Again many of the
field effects are the same. In addition we find that in an H, field, a disclination
in the c-director(projection of the molecular axis to the plane of the layer) can be
expected.

For small layer displacements u, with x, > 0 the free enefgy density F (by
ignoring coupling terms o Saupe theory) is given by:

= Ege
F = 56%(V9)

2 XaA? }_
202 |

2 2 12
(%) + @sin(¢ — a)] + ;% [gﬁ;} (3.14)
Where

0 = thetilt angle

¢ = azimuth o the c-director

k = the elastic constant for the in-plane bend or splay in the c-director
Minimization o the total energy with respect to ¢ and u leads to the following
equations:

rkd? Vi¢ = Xa:ig [% (%) .+ Fsin(¢ — a)] cos(¢ — a)
ky, O A2 1 [ Ou L 1 [ 8%
-73-(;)?5 = —-—X—r2~— {; (-a-a) + @sin(¢ — a)] {; (@) — Bcos(¢ — a)]

These can be solved to get

$ = q+1;- (3.15)

and

U= (3.16)
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Here égain o IS the layer spacing and N is an integer.

Equation (3.15) represents a disclination in the c-director while (3.16) is the
familiar screw didocation. Substituting (3.15) and (3.16) in (3.14) we get the free
energy density to be

2 2 R
F= %5 [k - xod? _% [(%) +-25’£;} (3.17)

The second term in (3.17) is due to the screw dislocation. Since this term is
negative at any value o A the uniform structure is unstable against screw diloca-
tions. Moreover for fields A > A, (= (k/xs)V/?) thisenergy if further lowered by the
creation o a disclination in the c-director. The net distortion will have the features
o both a screw dislocation and a disclination. Such composite structures are called
dispirations [5,6,7].

'3.4 Columnar discotics

These mesophases are made up o disc like molecules stacked in columns with the
columns arranged in a two dimensional lattice. In each columns the molecules are
irregularly positioned t.e. fluid likeorder prevails {4]. Discotics have x, < 0 with the
director nn perpendicular to thedisc plane. In thesimplest of the columnar discotics
the lattice has hexagona symmetry. One d the many possible defect states in this
system has columns bent around into concentric circles [3) with thedirector forming
an al circular pattern i.e.,n, = 1. In thissection we will investigate the stability of
this defect configuration in the presenced an all circular field A, acting parallel to
the column axis i.e. to thedirector n

Let us assume a perturbation o the form:

1 {0u 1 2

nr:“;(%))n(:)::l"ﬁb_& y Ny =0

where u is the displacement o the layers perpendicular to n and the singular
line. The resulting structure represents various columnar circles in any given plane
getting interconnected to form a spiral., Neglecting lattice distortions the change in
free energy density due to this perturbations is



..............

Fig 3.5: Coaxia helicesdf discotic columns
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§Fy = — (Qf‘»)z(k%- XaA2) " (3.18)

= ord Jda

where ka3 is the bend elastic constant

We see that asolution o theformu = (b, /27 )a minimises the total freeenergy.
Here by isanintegral multiple d thelatticespacing of the columns perpendicular to
thesingular line. Weseefrom (3.18)that such a distortion will lower the free energy
above a threshold field given by A, = (kss/x.)'/% When this sets in the various
circularl columns in any given plane will get connected into a continuous spiral as
shown in Fig 3.4. Thus above this field a smectic like spiral dislocation will exist
in addition to the disclination in the director n. The resulting distortion is again a
dispiration in wich a classical disclination is associated with a spiral dislocation.

We will now investigate the effect o an another form o perturbation of the same
_system leading to a coaxia helical columns.

n—On*I——l- ?-Ezn——-l-@
T 2 \ga) " T r \ e

Again neglecting the lattice distortions, the change in the free energy density is:

57 = L (2 2hos — xod? (3.19
_27,4 o ( 33 — Xa ) . )

From equation (3.19)weseethat abovethecritical field gi\(/en by A, = (2ksa/xa)"?
weget u = [(b||/27r)a] as the lowest energy solution. Here & isan integral multiple
d the layer spacing parald to the singular line. The resulting structure illustrated
in Fig 3.5. This has a helical connection between the circular columns o different
planes,i.e., we get coaxial helices.

It should be remarked that these two structures are very different from the spiral
columns around a cylinder proposed by Kleman {8] and a helical distortion around
a helix discussed by Bouligand [3]for columnar discotics, on the basis of the theory
o developable domains.
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3.5 The core of a disclination near A-C transi-
tion.

Many smectic C materials undergo on heating a second order phase transition to
smectic A at a definite temperature. Near such A-C transitions the tilt angle ¢
smoothly and continuously goes to zero. It is important to recognize that ¢ also
becomes a function of the applied field. Moreover in a disclination in the c field
there will be at the center a singularity in the c vector. This singularity gets lifted
through a smooth decrease in the tilt angle which vanishes at » = 0. Hence 0 will
also be a function o 7 in the disclinations. It's variation is just the same as the
variation of order parameter in a superfluid quantum vertex [9]7 In this section we
discuss the field effects on the variation o 8 near the core o a disclination on both
the smectic A side and the smectic C side d the transition point. We use a Landau
theory with 0 as the order parameter.

3.5.1 Smectic C disclinations

Consider a %1 disclination in smectic C near A-C transition. Very near thetransition
the order parameter 4 (tilt angle) issmall. Then thefreeenergy density for the core
in the presenced a H, fidd for x, > 0 can be written as:

E|/o0\* 62 & 8
Fo= = bl ST B 2
d 2[(&) +r2]+2 T3 (3:20)

where
. 2
& = a-+XaH21 ﬂ — AB_§XaH2; a = aO(T_Tc)andﬁ >0

op and B are thermodynamic parameters o the classical Landau expansion. Min-
imisation d the total free energy leads to the Ginsburg-Pitavskii equation:

é% (6%{-) - Efa +f1-f)=0 (3.21)
where
==, & = (—k/&)V?* 1 = i, ;?0 = (4/#)V? = Tilt angleat r — o

fo’ 0o



Fig 3.6: The variation tilt angle in smectic C as a function o distance from the core
of a +1 disclination (for x, = 1077, k = .5 x 10~%)
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In Fig 3.6 is shown the variation off as a function of ¢ for ﬁ > 0, the tilt angle
drops to zero at the centre df thesingularity. Most d the variation in ¢ takes place
over a distance &. As H decreases ¢ increases dowly sweeping whole area. At
the critical fiedd H = [|e|/x.]!/? tilt angle becomes zero everywhere,i.e.,we get a
smectic A state.

It is possible for A to be negative depending on the thermodynamic parameter
B and the fidd strength H. When this happens we can speculate on,the possibility
o afirst order transition to the smectic A state at a critical value of £.

3.5.2 Smectic A - fidd induced disclinations

Here if an dl-circular fidd i.e. I/, = A/r acts pardlel to the smectic layersin a
Xe = 0 material, the free energy density will be d the form

k . B o8 e x AT o,
_k il - Z 22
Fy 2_[(&79) +r2]+ sty e (1= + 3 (3.22)

From equation (3.22) we see that due to the magnetic term the coefficient of 6*
can be negativeover arange d r. In thisrange of r, thefield will inducea ¢ and we
will have a smectic C-like disclination. A detailed analysis d this again leads to a

Ginsburg-Pitaevskii type equation and the result is similar to the one shown if Fig
3.6.
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tion and thefull line thefirst order transition. The point A represents the tricritical

point
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If we give up the assumption that kyy = ky; = ka3 wefind another interesting
result. From Equation 4.4 we see that even when diamagnetic effects are ignored 3
changes sign at the Freedericksz transition threshold when k33 = 4k;,/3. Thus the
transition is first order or second order depending on whether k33 is greater or less
than this value resulting in a tricritical behavior.

4.2.2 Combined effect of electric and magnetic field

There are many important effects associated with Freedericksz transition in com-
bined electric and magnetic field. For example a transition between the four states
d distortions that are characterized by the uniform state, pure twist state, splay
bend state and mixed state, in a homogeneously aligned nematic placed in crossed
electric and magnetic fields that are orthogonal to the undistorted director was re-
ported by Barbero et.al., [9]. In view d this we have considered the same geometry
in ferronematics also. Here welook at the effectsd an electric field applied parallel
'to the magnetic field. For simplicity we assume k3 = k22 = ks3. we find that up
to a critical value of theelectric fid £, = (2r/d){kr/3¢,)"/? the transition will be
first order thus exhibiting tricritical behavior as in the case M. This feature is
illustrated in Fig 4.4.

4.3 Homogeneous geometry

In this case aso the magnetic field is antiparallel to M. Here we have both the out
o plane0 and in plane ¢ distortions. Just above the threshold we can assume ¢ and
4 to be small and given by the harmonic solutions:

6 = 0,sinzz/d
¢ = ¢Ppsinmz/d b

Then the free energy density after averaging ovér the sample thickness is.

Fu=Fo+ S0 + 244 + ﬁ‘@‘* %:¢ + 92 28 (49)
here |
' 1 k117r2 ) .‘€aE2

o = -2- “—'32—*- - MH + Xufilz + . (4.10)
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o = % :’“2;;‘2 — MH + x H? + %i] | (4.11)
R B
B2 = i —A%{{' - XaH2 - %J (4.13)
T L. ) B

This expansion for /7 issimilar to the generalized Lifshitz’s expression for a two
order parameter system [10].

When g, (or §;) is negative , we also take the sixth power terms (-, /6)6S,
[or (v2/6)¢%;] to 4.9 for stability reasons.

where;

— 1 -(kll - k33)ﬂ‘2 MH 2 2 EaEz

mE Gl e T Tyl )| (1)
L[ MH 2f B

(T 24‘""3("“1{ L )] (4.16)

Lifshitz's theory predicts four possible states:

(@) §=0, ¢=0 when a> 0 (undistorted state)
;) 0=0 ¢#0]

(c) 640, g=0 when a<0, g<|§

(d) 0#0, ¢#0 when a<0, 8> |6

The possibility o obtaining these four states and transitions between them is
investigated in the next section.

4.3.1 Magnetic field effects

We first look at the effect o x, in the one constant approximation. Numerical
calculations show that condition (d) is never satisfied in this case and the transition
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Fig 4.5: The classical second order Freedericksz transition with the second instability
in the homogeneous geometry. The second transition isd first order and it isfrom
splay-bend (represented as (4,0)) to a twist configuration (0, ¢). d= 20 um, ki =
0.55 X 105, kop = 0.6 X 107, k33 = 1.5 x 10~%dynes, M = 8 Gauss, x, = 1077
Cgs units.
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always takes place to states described by (b) or (c). Also in the one constant
approximation (b) and (C) solutions are equally energetic. This transition to § or 4
alone can befirst or second order, depending on thevaluedf M. Thusinthiscaseitis
possible to think of a new type of wall connecting the distortions @ and 4. This wall
Is quite different from the familiar Brochard walls which connect only degenerate 4
(or ¢). In the case d second order transition the wall will be continuous. In the
case o lirst order transitions the wall will have discontinuities in ¢ and 4.

Now we will assume diamagnetic terms to be absent and look at the effects of
elastic anisotropy. A numerical calculations shows some interesting results. For
example when k; < ky; we aways get solution (c) (8 # 0,¢ = 0). This transition
is first order for kys < (4/3)k;; and second order for ksz > (4/3)kyy. FOr kyp < ki
we always gel solution (b) (¢ # 0,0 = 0) whenever k33 > ky; and this transition
is always second order. However one can even get solution (C) z.e, (¢ = 0,0 # 0),
when kyy < kyy provides ks is very much smaller than k;; and the transition to this

. State is always first order.

When diamagnetic effects are also included we get solution (c) (4= 0,0 # 0).
for ki1 < ko2 and k33 < ky;. Depending on the value of magnetization this transition
will befirst or second order. However, one can also get thesolution (b) (¢ # 0,0 = 0)
for ki3 < kqp provided ks; is very much smaller than &;; and the transition to this
state is always first order. But in the case o k3 < ky; the diamagnetic term plays
no significant role and the results given in the previous section are valid.

Another interesting pbssibility in this geometry is the occurrence d a second
thereshold at which the system goes from solution (b) to solution (c) or vice versa
under certian conditions. It goes from (¢ = 0,0 # 0) to (¢ # 0,0 = 0) through a
first order transition when k1 < k2 and kyy < ka3 Similarly afirst order transition
from (4# 0,0 = 0) to (4= 0,0 # 0) isalso possible when kyy > kg and kyy > ksa.
This is depicted in Fig 4.5
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