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2.1 Introduction

In this chapter, we study the interplay between the chemical kinetics of protein binding and

the mechanics of the underlying filament. We focus our attention on binding of proteins to

the DNA filament. In the process of binding, the protein distorts the DNA locally [1].

Both in prokaryotes and eukaryotes, initiation of genetic processes such as transcription,

replication and site-specific recombination requires the successful binding of a variety of

DNA-binding proteins [2]. In most cases, molecular binding to specific or non-specific re-

gions of the DNA is accompanied by a local distortion of the DNA substrate. The binding

modes of such molecules are usually investigated through ensemble in-vitro measurements;

however in order to understand how complexation affects both the structural and mechanical

properties of a single DNA, one needs to use a variety of single molecule (force spectroscopy)

probes such as AFM [3].

Since DNA is a heterogeneous filament, one would like to understand whether the local

DNA sequence affects the binding kinetics of the protein. We start with enumerating various

examples where we believe the local DNA sequence significantly affects the binding of the

proteins.

(a) Repressors regulate the expression of genes by decreasing the rate of transcription. In

the experiments done with 434 repressor [1], it was shown that repressor binding affinity was

reduced by at least 50-fold in response to the sequence changes of the underlying DNA sub-

strate. Subsequent analysis of these experiments done in Ref. [4] showed that the variation

of the local bending rigidity on the DNA sequence, can quantitatively explain the measured

binding rate constants for the repressor.

(b) Integration host factor (IHF), a major component of the bacterial nucleoid, is a DNA-

bending protein and functions as an architectural factor in prokaryotes [2]. IHF is a small

heterodimeric protein that specifically binds to DNA through the sequence-dependent struc-

ture and distortability of the DNA rather than via direct side chain - base hydrogen bonds [5].

Based on crystal structure data, it is believed that the DNA is wrapped around the protein

and bent by an angle in excess of 160◦, thus reversing the direction of the helix axis within a

very short distance [5].

(c) The eukaryotic architectural factor, the histone octamer [2], binds to DNA via a com-

bination of (nonspecific) electrostatic and (specific) hydrophobic and direct side chain - base

hydrogen bonds, inducing the DNA to wrap around it on a scale of 150 bp. The binding to the

DNA involves specific local distortions of the DNA chain. Recent time resolved anisotropy
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Figure 2.1: Sketch of a DNA-binding protein such as RNA-polymerase binding and dis-
torting the DNA substrate over a scale ξ. The binding/unbinding rates k+, k− depend on the
distortion energy over this scale and hence on the sequence.

measurements indicate that the binding may be sequence dependent [6]; indeed short chain

intrinsic bendability is highly sequence dependent [7].

(d) Proteins such as rec-A, transcription factors, gene regulatory proteins and RNA-

polymerase [2] involved in replication and transcription, are widely believed to have two

protein-DNA binding modes : a weak, non-specific binding to non-cognate DNA, usually

assumed to be independent of the DNA sequence that the protein is bound to, and a strong

specific binding at operator sites. For instance, RNA-polymerase, a 20 kD (kilo Dalton) pro-

tein, binds to DNA over a scale of 10 bp, the sequence independence of its non-specific

binding is based primarily on low resolution experiments describing the ease with which

these proteins bind to apparently random sites of the DNA. However even this non-specific

binding of RNA-polymerase needs to locally open out and untwist the DNA over a scale

of 10 bp — successful binding needs to overcome an energy barrier corresponding to the

stiffness of the DNA over this scale.

(e) DNA-binding drugs such as ethidium bromide intercalate into DNA and alter the

base-stacking interaction. Successful binding involves local prestretching and unwinding of

the ds-DNA. The effects of intercalation has been observed in force-extension measurements

[8], particularly in the overstretching plateau regime.

We believe these examples reveal a general principle regarding DNA-protein binding

(Fig. 2.1):

1. The DNA substrate is heterogeneous.

2. On binding, the DNA gets distorted over a scale ξ.

3. The binding of the protein is sensitive to the DNA sequence over this scale.

The scale dependent stiffness of the DNA is a consequence of the relative distortions of

neighbouring stacking plates and bend, twist and stretch of the sugar-phosphate backbone.
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Thus DNA-binding proteins may be viewed as molecular probes which “measure” the local

deformability or stiffness of the ds-DNA over the scale ξ. An immediate manifestation of the

sequence dependent stiffness of the DNA over the scale ξ, will be in the measurable rates of

binding/unbinding of DNA-binding proteins. Thus the binding/unbinding reaction rates of

DNA-binding proteins will depend on the local conformational stiffness of the DNA and on

the applied tension [4].

We therefore investigate the scale and sequence dependent mechanical properties of the

DNA heteropolymer and study how sequence dependent elastic properties of a single fila-

ment affects the chemical kinetics of DNA-protein binding.

We study the ‘sequence’-distribution of thermally averaged global and local elastic prop-

erties of a DNA random heteropolymer of a fixed length N, within a simple elastic, worm-like

chain (WLC) model. In section 2.3, we use a mapping to the disordered Heisenberg chain,

to arrive at a number of qualitative results on the form of the distribution function of the ther-

mally averaged end-to-end distance 〈R2〉, and its moments. We find that for long, N → ∞,

chains, this distribution is a gaussian; for shorter chains, there is a crossover to an exponen-

tial distribution, with the most probable end-to-end distance deviating significantly from the

mean. Further, we find that the distribution of local quantities related to the thermally av-

eraged tangent-tangent correlator are typically broad, even in the thermodynamic limit, i.e.,

they do not self average. In section 2.4, we argue that this scale dependent ‘sequence’ sensi-

tivity should have important biological implications, specifically for the binding of proteins

to DNA — we present a simple model calculation of the binding/unbinding kinetics of DNA-

binding proteins, with numerical estimates for the human DNA-repair enzyme HOGG1.

2.2 Elastic description of DNA

At long scales, the elastic response of a double stranded DNA heteropolymer may be mod-

eled as a semiflexible polymer with bend and twist elastic coefficients [9] which vary with

position along the polymer. Recent progress in micromanipulation techniques and confo-

cal fluorescence microscopy on single biomolecules in vitro, allows us to measure the full

distribution of molecular (elastic) properties without needing to average over a macroscopic

sample [3]; one may thus obtain sample-to-sample variations of the elastic response of DNA

hetero-chains. Yet force-extension and torsion experiments on single DNA heteropolymers

are typically analysed assuming an average homogeneous semiflexible polymer, with one

(few) fit parameters such as L/Lp, the ratio of the contour length to the bend persistance
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length as mentioned earlier in Chapter 1 (see Fig. 1.2) [10]. This invites the question : are the

force-extension measurements sensitive to the heteropolymer nature of DNA, or are the ef-

fects of sequence randomness simply averaged out for long chains. This was first addressed

theoretically in the context of worm-like chain models (or its equivalent) by [11, 12], fol-

lowed by [13, 14]. The analysis, done for large enough chains, suggested that randomness

simply self-averages. However it may be argued that the effects of quenched randomness

were not taken exactly; as is known from exact studies of quenched random spin systems,

randomness can play a dramatic role, especially in one dimension [15]. We therefore revisit

the problem of sequence dependence in the elastic description of the DNA.

2.3 Sequence - distribution in a worm-like chain (WLC)
model

The DNA filament is represented by an inextensible space curve r(s) of total length L,

parametrised in terms of the arc length s. We shall discuss the consequence of sequence

distribution at the largest scales, when the effective description of elastic deformations of a

DNA heteropolymer, free to swivel at one end, is given by a worm-like chain (pure bend)

with arc length dependent moduli κ(s). The Hamiltonian may be written as,

H = 1
2

∫ L

0
ds















κ(s)

(

∂t̂
∂s

)2 













, (2.1)

where, t̂ = ∂r
∂s is the tangent vector with the constraint that | t̂(s)| = 1. The bending moduli

κ(s) ≥ 0 are taken to be uncorrelated (quenched) random numbers derived from a bimodal

or a gaussian distribution.

Earlier work on the random version of the WLC model [11, 12, 13, 14] computed phys-

ical quantities such as the end-to-end distance averaged over both thermal and random dis-

tributions. These calculations, restricted to the lowest moments, incorporated the effects

of randomness only approximately. In this section we compute the entire distribution of

global and local (thermally averaged) elastic quantities as a function of the realisation of

randomness; our treatment of quenched randomness in most cases is exact. Specifically in

the context of single molecule experiments, we would like to know if the average value of

physical quantities computed in these earlier studies represent typical measured values.

The bending energy term involves the energy cost associated with the relative orientation

of neighbouring tangent vectors, thus the discrete version of the WLC model is identical to
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the Heisenberg spin chain,

HDNA = −
N

∑

i=1

ji ti · ti+1 (2.2)

with a local ferromagnetic ji ≡ κ(s)
4 > 0, where 4 is the lattice discretization. A constant force

F applied to one end of the heteropolymer appears as a uniform “magnetic field” f = F4 in

this description,

HDNA = −
N

∑

i=1

jiti · ti+1 − f
N

∑

i=1

tz
i (2.3)

Note that in this representation, the tangent vectors are associated with ‘links’ and the energy

penalty ji with the ‘hinge’ between links i and i + 1 (Fig. 2.2). The bending moduli { ji} ≥ 0

are independent random numbers which may be taken from either a bimodal distribution,

P( ji) = p δ( ji − J1) + (1 − p) δ( ji − J2) (2.4)

or a gaussian distribution,

P( ji) = (2πσ)−1/2 exp
[

−( ji − J)2/2σ
]

. (2.5)

Most of our quoted results are for the bimodal distribution.

We first study the sequence dependence of global elastic properties such as the distribu-

tion of the thermally averaged end-to-end distance 〈R2〉. Next we study the sequence depen-

dence of local thermally averaged quantities such as the local persistence length defined via

tangent-tangent correlators and the local extensional stiffness.

2.3.1 Distribution of global elastic variables

Light scattering in dilute suspensions or measurement of bead fluctuations in single-molecule

experiments, provide information on the statistics of the end-to-end vector R =
∑N

i=1 ti, in

particular the thermally averaged end-to-end distance 〈R2〉 of the polymer

〈R2〉 =
N

∑

i=1

N
∑

j=1

〈ti · t j〉 . (2.6)

The tangent-tangent correlation function in our Heisenberg-chain representation may be

evaluated exactly using transfer matrix methods [17],

〈ti · ti+1〉 ≡ xi = coth (β ji) −
1
β ji

(2.7)

〈ti · ti+R〉 ≡ CiR =

i+R
∏

m=i

xm (2.8)
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Figure 2.2: Typical configuration of a heteropolymer with a bimodal distribution of ‘soft’
(J1 = 0) and ’hard’ (J2 = ∞) hinges. Inset shows the two-string H1 representing a ‘markov
unit’ (see text).

from which, together with (2.6), we obtain 〈R2〉.

Thus far we have expressed the thermal averaged end-to-end distance as a function of a

given sequence of { ji}. To determine the probability distribution of this quantity as a function

of sequence realisation, we need to prepare a natural apriori ensemble. For this we consider

a box containing a large number M → ∞ of hinges of two strengths J1 and J2, with fraction

p and q = 1 − p, respectively. Initiate a polymerisation reaction to generate all possible

heteropolymers of length N; this set has heteropolymers with different N1 of J1 hinges. The

probability of encountering a value ji at the ith hinge is independent of other hinges and is

given by the bimodal distribution (2.4).

We first consider a special limit of the model, J1 = 0 (soft hinge) and J2 = ∞ (hard

hinge), for which we can obtain several exact statements regarding the properties of the

distribution function of global elastic variables.

Let the total number of soft (hard) hinges in the heteropolymer be Ns (Nh), so that Ns +

Nh = N. Consider a typical configuration of the heteropolymer labelled by the following

string H1L1H2L2H2 . . . LnHn, which represents alternating stretches of Lα ≥ 1 soft and Hα ≥
1 hard hinges (except for H1 which can be ≥ 0). Clearly

∑n
α=1 Lα = Ns and

∑n
α=1 Hα = Nh.

To compute the thermally averaged 〈R2〉 for the given sequence, we use the following

strategy. We may represent each Lα string as 1Hα1 1Hα2 . . . 1 where Hα1 = Hα2 . . . = 0 and 1

appears Lα number of times. Since J1 = 0, it is clear that the two-string H1 (containing H

consecutive hard hinges followed by 1 soft hinge) forms a “Markov unit” (Fig. 2.2), with a
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thermally averaged end-to-end distance given by (H + 1)2; the 〈R2〉 for the entire string is

then simply the sum of the 〈R2〉 of the individual two-strings.

We can now calculate the probability distribution of 〈R2〉 and its moments for arbitrary

N. As before, the probability of encountering a two-string H1 is given by pHq. The joint

probability distribution for strings of length N to have the value 〈R2〉 = Y and Nh = K hard

hinges is given by

P(Y,K) ≡
〈〈

δ(Y − 〈R2〉) δ(K − Nh)
〉〉

(2.9)

where the double angular brackets explicitly read as,

P(Y,K) =

∑N
Nh=0 CN

Nh
pNh(1 − p)N−Nh δ(Y − 〈R2〉) δ(K − Nh)
∑N

Nh=0 CN
Nh

pNh(1 − p)N−Nh
(2.10)

The denominator is easily seen to be unity. The numerator may be rewritten in terms of our

‘Markov unit’ as,

P(Y,K) =
N

∑

Nh=0

Nh
∑

h1=0

. . .

Nh
∑

hN′s=0

N′s
∏

i=1

phi(1 − p) δYδ(K − Nh)δNh (2.11)

where for convenience we have written N ′s = Ns + 1 ≡ N − Nh + 1 and δY and δNh are a

short-hand notation for the delta functions,

δY = δ
(

Y −
N′s
∑

j=1

(h j + 1)2
)

and δNh = δ
(

Nh −
N′s
∑

j=1

h j

)

(2.12)

impose the constraint. Note that (2.11) is automatically normalised. In Fourier representa-

tion,

P(Y,K) =
∫ ∫

dk1dk2

(2π)2
eik1Y eik2 K[F(k1, k2)]N′s (2.13)

where,

F(k1, k2) =
Nh
∑

h=0

ph(1 − p) e−ik1(h+1)2
e−ik2h (2.14)

Expanding the exponentials in (2.14) and separating the terms upto quadratic order from the

rest, F(k1, k2) can be rewritten as

[

1 − (ik1u + ik2w) − (
k1

2

2
u2 +

k2
2

2
w2 + k1k2uw)

]

+

[

(
k1

3

6
u3 +

k2
3

6
w3 +

k2k2
1

2
wu2 +

k1k2
2

2
uw2) + . . .

]

,



2.3. Sequence - distribution in a worm-like chain (WLC) model 27

where u = (h + 1)2, w = h and the averages are defined as

u =

Nh
∑

h=0

ph(1 − p)(h + 1)2

w =

Nh
∑

h=0

ph(1 − p)h

uw =

Nh
∑

h=0

ph(1 − p)h(h + 1)2 , (2.15)

and so on. The expression for ln [F(k1k2)]N′s may now be read out easily,

N′s ln

[

1 − (ik1u + ik2w) − (
k1

2

2
u2 +

k2
2

2
w2 + k1k2uw)

+i(
k1

3

6
u3 +

k2
3

6
w3 +

k2k1
2

2
wu2 +

k1k2
2

2
uw2) + . . .

]

.

We now expand the ln in a power series and re-arrange the resulting terms in cumulants of

powers of u and w,

ln [F(k1k2)]N′s = iN′s(ik1u + k2w) − N′s(
k1

2

2
u2 +

k2
2

2
w2 + k1k2uw)

+ N′s

[

i(
k1

3

6
u3 +

k2
3

6
w3 +

k2k1
2

2
wu2 +

k1k2
2

2
uw2) + . . .

]

, (2.16)

where the cumulants are defined in the usual way [18], e.g.,

u2 = u2 − u2

w2 = w2 − w2

uw = uw − u w

u3 = u3 − 3 u2 u + 2 u3

w3 = w3 − 3 w2 w + 2 w3

u2w = u2w − 2 uw u + u2 w − u2 w

uw2 = uw2 − 2 uw w + u w2 − u w2 . (2.17)

Re-exponentiating and after a little bit of algebra, we get,

[F(k1k2)]N′s = exp

[

iN′s(ik1u + k2w) − N′s(
k1

2

2
u2 +

k2
2

2
w2 + k1k2uw)

]

×
[

1 + iN′s(
k1

3

6
u3 +

k2
3

6
w3 +

k2k1
2

2
u2w +

k1k2
2

2
uw2) + . . .

]

. (2.18)
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Rescaling by q1 =
√

N′s k1, q2 =
√

N′s k2 we may now express the joint probability distribu-

tion function P(Y,K) (2.13) as a summation in powers of 1/
√

N′s,

P(Y,K) = N0















∫ ∞

−∞

∫ ∞

−∞
dq1dq2 exp















i(q1Y + q2K)
√

N′s















exp

(

−i
√

N′s(q1u + q2w) − 1
2

(u2q2
1 + 2q1q2uw + q2w2)

)















1 +
i

√

N′s

(

k1
3

6
u3 +

k2
3

6
w3 +

k2k1
2

2
u2w +

k1k2
2

2
uw2

)

+ . . .















, (2.19)

where,

N0 =
1

4π2N′s
(2.20)

So far the expression for the joint probability distribution is valid for arbitrary N. We now

study the asymptotic, Ns → ∞, form of (2.19), which gets contributions only from the first

term,

P(Y,K) = N0

∫ ∞

−∞

∫ ∞

−∞
dq1dq2 exp















i(q1Y + q2K)
√

N′s















×

exp

[

−i
√

N′s(q1u + q2w) − 1
2

(u2q2
1 + w2q2

2 + 2uwq1q2)

]

The integration is simply carried out after converting the integrand to diagonal form by an

appropriate similarity transformation; the final expression for the asymptotic form of P(Y,K)

is,

P(Y,K) =
e−(K−wNs)2/2Nsw2

2π2Ns

√
D

exp



























−
w2(Y − (uNs − uw

w2
(Nh − wNs))

2

2NsD



























(2.21)

where,D = u2 w2−uw uw. Given the joint probablity distribution, one may use the formula,

P(Y |K) =
P(Y,K)
P(K)

, (2.22)

to obtain the distribution function of Y for a given K, where P(K) is obtained by integrating

P(Y,K) over all possible values of Y —

P(Y |K) =

√

(1 − p)3

8πp2N
exp













− (1 − p)3

8p2N

(

Y − 1 + p
1 − p

N

)2










(2.23)

In the above expression, we have substituted the calculated values of the cumulants in the

asymptotic limit,

u =
1 + p

1 − p2
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w =
p

1 − p

u2 =
p(9 + 10p + p2)

(1 − p)4

w2 =
p

(1 − p)2

uw =
p(3 + p)

(1 − p)2
. (2.24)

Equation (2.23) is our final result; in the limit N → ∞, the probability distribution function

for the thermally averaged end-to-end distance for a fixed p = Nh/N is a gaussian with mean

value and variance given by

〈R2〉 = N
1 + p
1 − p

〈R2〉2 − 〈R2〉
2
= N

4p2

(1 − p)3
(2.25)

where the above overbars represent an average over the sequence distribution.

In principle, we can systematically calculate the subleading corrections in powers of

1/
√

N for a fixed value of p. We find it more instructive, however, to compute the proba-

bility distribution numerically. We numerically prepare our ensemble with fixed {Nh,N} as

discussed before; for each ‘sequence’ in the ensemble we compute the thermally averaged

〈R2〉 using (2.6). It is then a simple exercise to compute the probability distribution P(Y |Nh).

Fig. 2.3 shows the normalised distribution in scaled variables z = Y − Y/
√

N, for differ-

ent values of N and p. It is clear that the numerically computed distribution for increasing

N (keeping p fixed between 0 < p < 1) converges to the analytically computed gaussian

(2.23). However there are significant deviations from the gaussian for smaller N ; numerics

indicates that the distribution crosses over from roughly an exponential at smaller N (≈ 100)

to the gaussian (2.23) at large N, with a crossover that depends on p. Fitting the tail of

the distribution P(z|Nh) for arbitrary N to a form e−zα , we find that α is bounded between

1 (exponential) and 2 (gaussian) (Fig. 2.4). The exponential tail suggests that the distribu-

tion is broad, indicating that the most probable value is very different from the mean. This

is exemplified in Fig. 2.5, where ∆, the percentage deviation of the most probable from the

mean, plotted against N, shows a gradual drop from a value of O(1) to zero for large N (as

expected from the asymptotic gaussian). This indicates that single-molecule measurements

of elastic quantities such as 〈R2〉 (or force-extension characteristics) done on short DNA

strands with a given sequence realisation are not representative. Moreover, the skewness,

represented by the third cumulant C3, shows a non-monotonic behaviour as a function of N,
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Figure 2.3: Normalised distribution of the scaled variable z, for various chain lengths in
the ‘soft-hard’ model. The numerically obtained distribution agrees with (2.23) for large N.
Fraction of hard hinges, p = 0.5 (a) and p = 0.8 (b).

i.e., at very small N, the skewness shows a maximum before it gradually goes to zero for

large N (Fig. 2.6).

This qualitative behaviour of the distribution in this soft-hard hinge model is replicated

in the more general case when J1 and J2 are arbitrary positive numbers. Much of our results

for the distribution are numerical, made more accurate by the use of Kesten variables [19];

nevertheless we do calculate the asymptotic form of the lower moments exactly. Since the

results are qualitatively similar to the special case, we only present a few graphs. Our analysis

for the general case follows :

To determine the probability distribution of the thermally averaged end-to-end distance

for arbitrary J1 and J2, we prepare the ensemble of heteropolymers of length N as before

with a fixed number N1 = pN of J1 hinges. The probability of encountering a value J at the

ith hinge is given by the bimodal distribution, P(J) = p δ(J − J1) + (1 − p) δ(J − J2), where

q = 1− p. Having prepared our ‘natural’ ensemble, we first compute the thermally averaged

〈R2〉 for a typical member of the ensemble and then as before estimate its distribution over

realisations of sequence randomness.
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Figure 2.4: The tail of the normalised distribution of the scaled variable z, showing the
crossover from an exponential (slope = 1) for short chains to a gaussian (slope = 2) for
longer chains. Note the crossover depends on the value of p.
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Figure 2.5: Lack of self-averaging for short chains, as demonstrated by the percentage de-
viation of the most probable from the mean ∆. Self-averaging is restored for larger chains,
∆ = 0, in a p dependent manner.
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Figure 2.6: The skewness of the distribution, parametrised by its third cumulant C3, shows a
crossover from an exponential to a gaussian (C3 = 0) at large N.

Note that the expression (2.6) for 〈R2〉 for a given sequence realisation can be recast as

〈R2〉 = N + 2
N−1
∑

n=1

fn (2.26)

where f1 = x1 and sequence fn are the so-called Kesten variables [19] which satisfy the

recursion relation

fn = xn(1 + fn−1) , (2.27)

an observation that greatly simplifies the numerical computation of the desired probability

distribution.

Written explicitly for a given realisation,

〈R2〉 ≡ Y = N + 2















N−1
∑

i=1

xi +

N−2
∑

i=1

xixi+1 + . . . + x1 . . . xN−1















, (2.28)

while the mean over sequence randomness is given by

〈R2〉 = N + 2















N−1
∑

i=1

xi +

N−2
∑

i=1

xixi+1 + . . . + x1 . . . xN−1















. (2.29)

In the asymptotic N → ∞ limit, xi are independent random variables and so simplifies to,

〈R2〉 = N

(

1 + x
1 − x

)

(2.30)
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where,

x = pX1 + (1 − p)X2 (2.31)

with X1 = coth[βJ1 − 1
βJ1

] and X2 = coth[βJ2 − 1
βJ2

]. This expression for 〈R2〉 reduces to

(2.25) when J1 = 0, J2 = ∞. To obtain the second moment, note that

Y2 = N2 + 4NS 0 + 4S 0
2, (2.32)

where

S 0 =















N−1
∑

i=1

xi +

N−2
∑

i=1

xixi+1 + . . . + x1 . . . xN−1















. (2.33)

The second moment of the probability distribution of 〈R2〉 is easily worked out by computing

S 0 and S 0
2; as before, in the asymptotic N → ∞ limit, xi are independent random variables,

so

S 0 =

N
∑

i=1

(N − i)xi

S 0
2 = =

N−1
∑

r=1

N−1
∑

s=1

εrs.

The summand εrs is given by the expression,

εrs = f rxs−r















(s − r + 1)(N − s) + 2
r−1
∑

i=1

(N − s − i)x2i f −i















+ xr+s















(N − s)(N − s − 1) −
r−1
∑

i=1

(N − s − i)















when s > r. In the above formula, f ≡ x2 = pX2
1 + (1 − p)X2

2 . It is easy to perform the sums

in the large N limit, we find for the relative fluctuations of 〈R2〉,

Y2 − Y
2

N
= 4















2x2

(1 − x)3
+
−2x2 f + 4x f

(1 − f )(1 − x)2
+

3x f − 2x2 − x4

(1 − f )(1 − x2)
2

− 10x3
+ 4x4

+ 2x5

(1 − x)3(1 + x)2
+

4 f x3

(1 − f )(1 + x)(1 − x)2













+ O(1/N) (2.34)

In this way one may obtain all the disorder moments of 〈R2〉. To obtain the full probability

distribution in the limit N → ∞, we note that the integral representation of the distribution of

〈R2〉 can be written recursively using the recursion relations (2.27) for the Kesten variables.

Thus,

P(Y,N + 1) =
N

∏

i=1

∑

xi∈X1,X2

∫

d fi δ ( fi − xi(1 + fi−1)) p(xi) δ

















Y − N − 2
N−1
∑

j=1

f j − 1

















(2.35)
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Figure 2.7: Normalised distribution of the scaled variable z, for various chain lengths in
the J1 − J2 model. The numerically obtained distribution reduces to a gaussian for large N.
Fraction of J2 (hard) hinges, p = 0.5 (a) and p = 0.8 (b).

where we may define f0 = 0. While we have not been able to use this formula to show

that the asymptotic distribution is a gaussian, we have compelling numerical evidence that

this is so. Moreover the moments obtained from (2.28) in the limit N → ∞ reduces to the

appropriate form (2.23) in the soft-hard limit, when J1 = 0, J2 = ∞.

As before, to obtain the leading corrections to this asymptotic result, we compute the

probability distribution numerically. Fig. 2.7 shows the normalised distribution in scaled

variables z = Y − Y/
√

N, for different values of N and p. The qualitative trends are ex-

actly as reported earlier, the numerically computed distribution crosses over from roughly an

exponential at smaller N (≈ 100) to the gaussian at large N, with a crossover that depends

on p. We again display the three measures describing the nature of the distribution and the

crossover : tail of the distribution (Fig. 2.8), deviation from self-averaging (Fig. 2.9) and the

skewness of the distribution (Fig. 2.10). To give numerical estimates of this crossover, we

consider a ds-DNA which has quenched random stretches of single-stranded bubbles. Taking

κ1/kBT = 2, κ2/kBT = 150 (in units of bp) corresponding to stretches of ss-DNA and ds-DNA

respectively, Fig. 2.11 shows the crossover for different p and N — the strong deviation from

a gaussian distribution should be comfortably observable.



2.3. Sequence - distribution in a worm-like chain (WLC) model 35

1 1.5 2
-0.5

0

0.5

1

1.5

2

N = 100

N = 400

N = 900

N =  2500 

 N = 40000

0 0.5 1

-1

0

1

2 N = 100

N = 400

N = 900

N = 2500

N = 40000

p = 0.5 p = 0.8

ln[-ln P(x)]

ln (x)

Figure 2.8: The tail of the normalised distribution of the scaled variable z, showing the
crossover from an exponential (slope = 1) for short chains to a gaussian (slope = 2) for
longer chains. Note the crossover depends on the value of p.

1000 2000
0

2

4

6

(N)

N

p = 0.5

p = 0.8

∆
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The results obtained in this section are new and exact. They differ from the conclusions

of earlier authors [12, 13, 20] qualitatively. These authors study slight variants of our 1-

dimensional lattice model (2.2) and compute the lowest moments of the distribution of the

thermally averaged end-to-end distance within a mean-field approximation; they conclude

that the effects of randomness on the measured 〈R2〉 are weak. From our exact analysis, we

see that while their conclusions are valid asymptotically, there are significant and observable

differences at smaller values of N.

2.3.2 Distribution of local elastic variables

Force microscopy, such as AFM, probes the local stiffness of the heteropolymer, and so

would be sensitive to sequence heterogeneity. In this section, we calculate the distribution of

local quantities evaluated primarily from the tangent-tangent correlation function.

Recall that the persistance length Lp for a homopolymer is defined as the distance over

which the local tangents are decorrelated, i.e., 〈ti · ti+R〉 ∼ exp(−R/Lp), when R � Lp. The

tangent-tangent correlator is however difficult to measure directly; an operational measure

of the persistance length is obtained via a fit of the measured force-extension (F − x) curve

of a DNA tethered at one end and pulled by means of an optical tweezer at the other, to the

expression derived from the worm-like chain model using a single fit parameter L/Lp, where

L is the contour length of the DNA [10],

F =
kB T
Lp

[

1
4

(1 − x/L)−2 − 1
4
+

x
L

]

(2.36)

For a homopolymer this operational definition coincides with the expression derived from

the tangent correlator. We will see that such a connection is less obvious for a random

heteropolymer.

We define a sequence dependent persistance length for a random heteropolymer via the

mapping onto the random Heisenberg spin-chain; the ‘local’ persistence length over a scale

R (R � ξ),
ξ(i, i + R) =

−R

ln
(

∏i+R
l=i xl

) (2.37)

with the Jl taken from the distribution (2.4). Note that ξN ≡ ξ(i, i+N), the ‘global’ persistance

length has a unique value (independent of the realisation) as long as N1 and N2 are fixed.

However the force-extension curves, a graph of F versus
√

〈R2〉, is, as we saw in the previous

section, very sensitive to the sequence realisation (especially for smaller values of N). Thus

a persistance length, extracted by fitting the force-extension curves to a theoretical formula,
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would have broad distribution. The two ‘definitions’ in the case of heteropolymers are not

compatible.

We next study the probability distribution of three thermally averaged quantities derived

from the tangent-tangent correlator; these are the (i) distribution of the space averaged cor-

relation function for a given R, (ii) distribution of the correlation function for specific sites i

and j site separated by distance R, and (iii) limiting distribution for 0 << R << N. We first

note that it is easy to obtain the distribution of

Y ≡ ln Ci(R) =
i+R
∑

l=i

ln xl (2.38)

in the limit 0 << R << N; since Ci(R) is the product and therefore Y , the sum of R in-

dependent random variables, the result follows simply from the central limit theorem. The

probability distribution of Ci(R) is thus a log-normal distribution, with the property that its

most probable value is equal to the mean of the distribution of Y , a quantity which is easily

calculable. We may thus calculate the deviation of the mean of the distribution of C i(R) from

its most probable value, a measure of its lack of self-averaging.

The mean value of Y is easily seen to be,

ln Ci(R) = R ln

(

coth(βJ) − 1
βJ

)

= R (p ln X1 + (1 − p) ln X2) (2.39)

for J taken from the bimodal distribution (2.4). As just mentioned, this is identical to the

most probable value of Ci(R). The mean value of Ci(R) is given by

Ci(R) = coth(βJ) − 1
βJ

= pX1 + (1 − p)X2 . (2.40)

The difference between the mean value and the most probable values of the correlation

function Ci(R) can be a large factor, indicating that its distribution is broad, Fig. 2.12, even in

the asymptotic limit. Explicit simulation for finite chains reinforces this feature — Fig. 2.12

shows the distribution of Y for N = 3000 and N = 20, 000 with p = 0.8. The mean value of

Ci(R) indicated by the arrow is the same for the different values of N, and is very different

from its most probable value given by the mean of ln Ci(R) (peak of the graph), showing a

strong violation of self-averaging even in the asymptotic limit.

Inset shows the distribution of the space averaged, (N − R + 1)−1 ∑

i ln Ci(R) ≡ ln C(R),

for N = 20, 000 and R = 2000, which is a gaussian when 0 << R << N. However even
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Figure 2.12: Distribution of ln Ci(R) (i = 500,R = 2000), for x1 = 0.9 and x2 = 0.4 chosen
from a bimodal distribution with p = 0.8. Arrow indicates value of the mean correlator
Ci(R), distinct from its most probable value given by the mean of ln Ci(R) (peak of graph),
showing a violation of self-averaging even for the largest chains. Inset : distribution of space
averaged ln C(R) (see text).

after space averaging, the distribution of the correlator Ci(R) remains broad in the asymptotic

limit. As discussed in [15], the space averaged correlation function remains broad as long as

the inequality

R ≤ ln N
ln b2/a2

(2.41)

is satisfied, where a2 =

(

coth βJ − 1
βJ

)2

and b2 =
(

coth βJ − 1
βJ

)2
.

2.4 Implications for DNA-protein binding

We have seen that both global and local elastic quantities are strongly sequence dependent

for short chains; it is thus reasonable to expect that the binding/unbinding characteristics

of DNA-proteins is sensitive to sequence. For as we discussed in the Introduction, DNA-

binding proteins may be viewed as molecular probes which “measure” the local deforma-

bility or stiffness of the double-stranded DNA. As an example, RNA-polymerase, a 20 kD

protein, locally distorts the DNA substrate in order to bind over a scale of 12 bp. An imme-

diate consequence of the sequence dependent stiffness of the DNA over the scale ξ, would

be seen in the rates of binding/unbinding (measured by the reaction constants kd) of DNA-

binding proteins.
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Figure 2.13: Sketch of a DNA-binding protein, binding and distorting the DNA substrate
over scales ξ‖ and ξ⊥. One end of the DNA is grafted to a substrate and the other end held in
an optical trap. The binding/unbinding rates k+, k− depend on the distortion energy over this
scale and hence on the sequence.

Consider a protein P which binds to a stretch of length ξ of the DNA heteropolymer of a

given sequence with rate k+ and unbinds with rate k− (Fig. 2.1). The two states of the protein

are denoted as bound (b) or unbound (u); on complexing with the DNA, the protein distorts

the DNA over a scale ξ (denoted by a prime),

Pu + DNA� Pb + DNA′ (2.42)

Alternatively consider an enzyme E which binds to DNA, forms an intermediate complex

(E − DNA), resulting in a product DNA′ via a Michaelis-Menten reaction scheme [21],

E + DNA� (E − DNA)→ E + DNA′ (2.43)

To address the issues raised in the beginning of this section, we envisage a single-

molecule chemical kinetics experiment such as in Ref. [22]. For our purposes, we may think

of a ds-DNA with one end attached to a substrate while the other held in a steep optical

trap (Fig. 2.13), immersed in a buffer containing titrated amounts of the fluorescently labeled

protein P. In this setup the end-to-end distance R of the heteropolymer is held fixed. Mea-

surement of the time series of fluorescence anisotropy within a confocal volume, will provide

information about the statistics of bound and unbound concentrations of the protein.
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Et

uE

bE

| u >

b >|

Figure 2.14: Sketch of the free energy landscape of the DNA , with the two minima corre-
sponding to the unbound and the bound state of the DNA

Focussing on (2.42), we construct a free-energy profile (Fig. 2.14) with two minima de-

noting the bound (|Pb,DNA′ >≡ |b >) and unbound (|Pu,DNA >≡ |u >) states with energies

Eb and Eu respectively, and a maxima Et corresponding to the intermediate (transition) state

(|t >). The transition rate for the forward reaction, k+ is given by A(ωu) exp−(Et − Eu)/kBT ,

where the prefactor A depends on the curvature (or oscillator frequency, ωu) at |u >. This

is akin to a Fermi golden rule, where the prefactor A is a measure of the density of states,

reflecting the number of low energy configurations sampled at |u >. This molecular flexibil-

ity has been shown to be a key factor in determining binding probabilities in ligand-receptor

chemical reactions [23, 24, 25]. In Ref. [26], it has been shown that the breathing modes of

the ds-DNA, related to the flexibility of the separation between the complementary strands,

is sequence dependent.

Here we will only consider the dominant exponential factor — the task is therefore to

compute the energy barrier for distorting the DNA and protein to effect successful binding.

We shall make the further simplification of ignoring the distortion of the protein — indeed

the example of the DNA-repair protein that we consider is one where the protein distortion

upon binding is insignificant.

To describe local deformations of the DNA over the scale ξ (' 10bp), one needs to go

beyond the conventional WLC model, equation (2.1). A mesoscale description of the double

stranded DNA [27], includes the energies due to base pair interactions and stacking inter-

actions. Since we are interested in those stacking deformations that are strongly sequence
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dependent, we will restrict ourselves to roll, tilt and twist [27].

In a further simplification, we will model the above mesoscale distortions by an ex-

tension of the WLC model; which in principle includes bend, twist, stretch and base-pair

distortions. The energy barrier to be overcome in a typical DNA-protein binding is propor-

tional to the local elastic stiffness, ∆E ' Kξ, of the DNA heteropolymer. The binding rate

k+ ∝ exp(∆E/kBT ), while the ratio Pu

Pb
= k+

k− ' exp(Eb − Eu)/kBT .

We consider a simple modification of the ‘railway-track’ model [28, 29] for a double-

stranded DNA heteropolymer. The two strands of the DNA, represented by R1(s) and R2(s)

with a common arc-length coordinate which runs from 0 to L, can be used to define two

local tangent vectors, tα ≡ ∂sRα, where α = 1, 2. The physical length of the two strands of

the ds-DNA is given by Lα =
∫ L

0
ds(1 + εα(s)) with εα(s) being the extensional strain in the

two strands, defined by εα(s) ≡ ∂suα(s), where uα(s) ≡ Rα(s) − R0(s) (and R0(s) the undis-

torted position at monomer index s). The hamiltonian for the chains has a bend (Ebend) and a

stretch (Estr) energy; we ignore for simplicity the twist and a symmetry allowed bend-stretch

coupling [30],

F = 1
2

∫

ds















2
∑

α=1













κ(s)

(

∂ tα
∂s

)2

+ λ(s) ε2α(s)













+ V(R1(s) − R2(s))















(2.44)

The force constants κ(s), λ(s) correspond to the local bend and stretch moduli respectively,

which includes the effects of steric interaction between neighbouring base-pairs. In addition

we include a base-pair energy (Ebp) via a short-range potential V between the two strands,

having a parabolic-well form,

V(R−(s)) =



























∞ if R−(s) < a

−V0(s)
[

1 −
(

R−(s)−R0

a−R0

)2
]

if a < R−(s) < d

0 if R−(s) > d

(2.45)

where V is a function of the relative separation |R−(s)| ≡ |R1(s)−R2(s)| ≡ R−(s) alone and d =

2R0 + a. This potential mimics the short-range hydrogen bonding between complementary

base pairs. The well depths V0(s) are random, reflecting the random occurrence of A = T and

G ≡ C pairs. Writing R−(s) = 2Rb(s), we note that in the usual formulation of the elasticity

of the B-form of DNA, where the distance between the strands is held fixed, one imposes the

constraint that b · tα = 0; here we allow the sugar-phosphate backbone to be flexible and so

do not impose this constraint.

Consider a protein which locally binds to the ds-DNA by distorting it over a scale ξ⊥

normal to and ξ‖ along the DNA axis. This distortion has contributions from the bend, stretch
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Figure 2.15: Geometric construction, illustrating the relation (2.48)

and V terms; the binding rate depends on the free-energy barrier between the unbound and

bound states. A simple way to calculate this barrier is to determine the free-energy for a

fixed ξ‖, ξ⊥,R from (2.44). For a homopolymer, this has a simple scaling behaviour,

∆E(ξ‖, ξ⊥; R) ∼ κ














ξ⊥

ξ2
‖















2

ξ‖ + V(ξ⊥) ξ‖ + k ξ2
⊥ ξ‖ . (2.46)

For the heteropolymeric ds-DNA, it is more convenient to work with the discrete spin repre-

sentation of (2.44), namely,

H =
N

∑

i=1















V(R−i ) +
2

∑

α=1

(

κi tα i · tα i+1 + λiε
2
α i

)















(2.47)

The number of segments that are deformed over the scale ξ‖ is M = ξ‖/d, where d is

the undistorted distance between neighbouring base pairs. Each of the segment has suffered

a length extension of `i = R0/ cos θi ≈ R0(1 + θ2i /2), where θi is the slope of the distorted

segment i (going from 1 . . .M) with respect to the undistorted axis. The local slope (θi)

and transverse separation between the two strands can be easily computed from the relation,

(Fig. 2.15)

(σ − i∆)2 + (H + hi)
2 = R2 (2.48)

where R = (σ2 + ξ2)/2ξ and H = (σ2 − ξ2)/2ξ are defined in terms of ξ ≡ ξ⊥ − R0 and

σ ≡ ξ‖/2.
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We explicitly compute this energy scale, for the DNA binding protein Human OGG1

(HOGG1) enzyme, involved in DNA-damage repair [31]. The presence of reactive oxygen

species in the cell can lead to DNA-damage via the formation of an oxidised guanine (8-

oxoG); the resulting structural distortion of the DNA is found to be negligible. However this

oxidised purine is highly mutagenic, since it mispairs with adenine during replication. Cells

have evolved repair enzymes such as HOGG1, which recognise the damaged site and bind

to it. The subsequent repair of the damaged nucleotide is a subject of major study.

The binding of HOGG1 to the damaged site is accompanied by a major distortion of

the DNA. Since the crystal structure of the DNA-HOGG1 complex is unavailable, we do

not know whether the enzyme undergoes a concomitant distortion; however crystal structure

studies on a related enzyme FOGG reveal that the structure of this enzyme is not appreciably

distorted on DNA binding. We will therefore assume that the energy scale for distortion only

comes from the distortion of the DNA over the scale of HOGG1-DNA binding. From the

Protein Data Bank, we find that the the DNA distorts by opening a bubble of size, ξ‖ ' 8bp =

2.72 nm and ξ⊥ = 1.78 nm. Taking the undistorted DNA structural parameters to be R0 =

1.08 nm, 4 = 0.34 nm and a = 0.79 nm, it is easy to read out the rest of the parameters from

(2.48), thus computing the local slope changes and longitudinal and transverse extensions.

We can now readily compute the energies for these distortions. Thus the bend energy is

simply

δEbend

kBT
=

ξ‖
∑

i=1

κi

24 (ti+1 − ti)
2 = 1.296

κ̄

4 (2.49)

where κ̄ is the average sequence dependent bending stiffness over the scale ξ‖ = 8. Thus,

if the base sequence over the scale ξ‖, is chosen from a uncorrelated random sequence, then

κ̄ = 1754 [4] so that the bend energy in units of kBT is ' 228.5. On the other hand, if the

sequence over which HOGG1 binds is GC rich, then , κ̄ = 3504, so that, the bend energy in

units of kBT is ' 457.

The stretch deformation energy can be calculated from,

δEstr

kBT
=

ξ‖
∑

i=1

ω2
0iλ4
2
ε2i (2.50)

where, εi = 1 − 1
cos θi

. The undeformed stretch moduli for the homopolymer are given by the

following parameters, ωo = 1.85nm−1, λ = 78nm. We have found that there is not much

sequence dependent variation in λ.

Next we consider the energy cost δV, the change in the base-pair energy Ebp, associated
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with breaking the hydrogen bonds. For distortions greater than d = 2R0 − a, the energy

cost due to breakage of the hydrogen bonds is V0. For the parameter values appropriate to

HOGG1, all the bonds suffer the breakage. Therefore,

δV
kBT
= 8V0 ≈ 24 (2.51)

Although in principle, the base-pair energy is sequence dependent, its contribution relative

to bend distortion, δEbend is negligible in the case of HOGG1 binding.

The chemical reactivities, k±, are related to the exponential of the thermally averaged en-

ergy of distortion of a ds-DNA over a scale ξ‖, ξ⊥, valid when the chemical reaction rates are

slower than the thermal relaxation rates of ds-DNA over the scale ξ‖. Note that we have not

included an excess polymeric entropy which may be associated with the opening of a bubble

of size ξ⊥. Our analysis shows that the binding kinetics for HOGG1 depends sensitively on

sequence primarily through the bend distortion. Thus for a given DNA heteropolymer chain

of length L > ξ⊥, the binding kinetics will depend on the position along the polymer.

2.5 Conclusions

In this chapter, we have attempted to study simple physical situations wherein sequence ran-

domness along a DNA heteropolymer plays an important role. We have defined sequence

randomness in very broad terms; for instance randomness could arise as a result of the dif-

fering chemistry (both the nature of monomers and chemical bonds) along the polymer or as

a result of random denaturation of a DNA heteropolymer in a thermal bath. In either case,

we model the random heteropolymer at large scales by an elastic (worm-like) chain model

with position dependent bending modulus κ; the randomness in κ is quenched.

We explicitly compute the distribution of thermally averaged elastic quantities such as the

end-to-end distance, as a function of the realisation of randomness and show that while this

distribution is indeed a gaussian in the asymptotic (L → ∞) limit, it crosses over to roughly

an exponential for shorter chains. Thus while the end-to-end distance self averages for longer

chains, the effect of quenched sequence randomness is significant for shorter chains. In

addition, we find that the distribution of physical quantities related to the tangent-tangent

correlator are very broad even in the thermodynamic limit.

We have argued that this broad distribution manifests in a sequence sensitivity of the

cyclisation time and probability of loop formation in single/double -stranded DNA mea-

sured via fluorescence quenching [16] and cyclisation assays using biochemical ligation [33]
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respectively. While we have not calculated it explicitly, our analysis may be modified to

compute the mean cyclisation time or the propensity for looping. The former is a first-

passage-time calculation, related to the exponential of the energy barrier to be traversed

from an open to a closed configuration. One would expect therefore that the distribution of

first passage times would be very broad [34]. The latter is related to the question : what is

the probability for the end-to-end distance R = 0 for a given realisation of randomness, and

how sensitive is this to the distribution of randomness [35]. However our main message,

with clear biological implications, is in the kinetics of binding of proteins onto substrates

such as ds-DNA. Since molecular binding to specific or non-specific regions of the DNA

is accompanied by a local distortion of the DNA substrate, an immediate manifestation of

the sequence dependent stiffness of the DNA over the scale ξ, is in the measurable rates of

binding/unbinding of DNA-binding proteins. We have argued that the binding/unbinding

reaction rates of DNA-binding proteins will depend on the local conformational stiffness of

the DNA.
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