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4.1 Introduction

The network of actin and microtubule filaments serve as tracks for motor protein assisted

transport of cargo vesicles and organelles from one specific location to another [1, 2, 3].

This transport process is active: multiple motor proteins bind to the filaments and the vesi-

cles, and utilize ATP hydrolysis to convert the stored chemical energy into mechanical work

[2, 4]. A certain class of motors, such as dyenin and kinesin, are processive, meaning that

after attaching to the filament they hydrolyse multiple ATPs before detaching from the fil-

ament. The motors undergo a series of mechanochemical cycles, during which they attach

to the filament track and undergo conformational changes driven by ATP hydrolysis. This

propels the motor along specific directions along the filament, in the process dragging the

attached cargo along with it [5]. The filaments are polar, with one end of the filament chem-

ically and morphologically different from the other [5, 6]. The motors recognize the polarity

of the filament to which they bind and move in a directional way. Kinesin and dyenin family

of motors translate along microtubule filaments, with the kinesin moving towards the plus

end of the track [7] and dyenin exhibiting minus-end directed motion [8]. Myosin family of

motors move exclusively on actin filaments [9, 10]. Usually the transport of a single vesicle

is not only performed by many motors together, but different types of motors attach to the

cargo simultaneously [2, 3, 11, 12, 13].

In this chapter, we will focus on vesicle transport along microtubules. Biochemical and

biophysical experiments using optical traps [14] and single-molecule fluorescence imaging

[15, 16] have been able to shed light on the key players, the regulatory mechanism and the

dynamics of this elaborate transport system.

Most long range directed transport of vesicles and organelles is done on microtubules

[17, 18]. Typically the microtubules are radially organized in a cell, such that their minus

ends are clustered around the microtubule organizing center (MTOC) in the vicinity of the

cellular nucleus and the plus ends pointing towards the periphery of the cell [2, 6, 18].

Recent single particle tracking experiments reveal that transport of vesicles is done bidi-

rectionally along the microtubules [11, 18, 19]. Bidirectional motion of the vesicle, as op-

posed to unidirectional motion, is ‘saltatory’, characterized by the fact that the vesicles move

in a specific direction, then halt and change their direction [2]. In this chapter, we develop

a model for bidirectional transport of vesicles driven by multiple, processive motors of dif-

ferent types. In this model, the state of the vesicle is described by the number of plus-end

directed motors (kinesin) and minus-end directed motors (dyenin) carried by the vesicle
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cargo that are attached to the filament. We write down the general master equation govern-

ing the time evolution of the state of the vesicle. Next we consider microscopic models for

the form of the velocity of the vesicle and the (un)binding rates of the motors in a given

state. With these inputs we determine the steady state solutions of the master equation and

subsequently determine various macroscopic transport properties such as the (i) distribution

of the velocity of the vesicles, (ii) distribution of reversal times of the vesicles, (iii) first pas-

sage time of unbinding of the vesicle from the microtubule and (iv) average number of the

motors attached to the microtubule. This allows us to predict the statistics of trajectories of

the vesicles which can be compared to single particle tracking experiments. The hope is that

this model in conjunction with vesicle tracking experiments would be able to shed light on

the microscopic mechanisms of (un)binding and movement of transport vesicles by multiple

motor activity.

4.2 Bidirectional transport

Bidirectional transport is common and has been observed in various cellular contexts, e.g.,

mitochondria [19, 20, 21], endosomes [22], pigment vesicles [11, 18, 23, 24] and secretory

vesicles [25]. We take a closer look at two such examples of bidirectional transport.

(A) Transport of mitochondria along axons

An axon is a long slender projection of a nerve cell, or neuron, that conducts electrical

impulses away from the neuron’s cell body. Axonal transport, is responsible for movement

of mitochondria, lipids, synaptic vesicles and proteins to and from a neuron’s cell body,

through the cytoplasm of its axon [2]. In the neuron, mitochondria are present throughout

the axon, but they move towards regions in the cell which require high ATP production. In

axons, microtubules are arranged with their plus ends towards the growth cones situated in

the synapse, and their minus ends towards the cell body. Mitochondria travel bidirectionally

along these microtubules. Dyenin and kinesin motors move along the microtubules carrying

the mitochondria. When the growth cones are active due to stimulation by nerve growth

factor (NGF), then a net transport of mitochondria towards the active growth cone is seen

[2, 19]. If the growth cones are arrested by stopping NGF signalling, there is a net trans-

port back to the cell body (Fig. 4.1). In experiments with cultured neuron cell [19], it was

seen that the distribution of mitochondria in actively growing axons was highly skewed to-

wards the growth cone, with seven fold higher density in the region immediately adjacent
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Figure 4.1: Transport of mitochondria in axons: Showing a net aggregation of mitochondria
near the growth cone in the growing phase of the axon and the transition to even distribution
in the absence of NGF signalling [2]

to the growth cone, than in the region 100 µm away. When axonal outgrowth was blocked,

then within an hour the mitochondria distribution became uniformly distributed. Analysis of

individual mitochondrial behaviour revealed that mitochondrial movement everywhere was

bidirectional. Further, it was seen from individual trajectories of the mitochondria that the

fraction of time spent moving anterogradely (towards the axon tip) was sharply reduced for

non growing axons. The data indicated that mitochondria possess distinct motor activities

for both directions of movement which was regulated for the growing and the stationary state

of the axon [19].

(B) Transport of melanosomes

In melanophores (pigment cells), melanosomes are organelles containing melanin, the

most common light-absorbing pigment found in the animal kingdom. In many species of

fish, amphibians, crustaceans and reptiles, melanosomes can be highly mobile within the

cell. In response to hormonal control, the mobility of melanosomes is regulated to attain
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Figure 4.2: Aggregation and dispersion of pigment granules in fish melanophores: In the
presence of actin, pigment granules aggregate near the cell centre or disperse throughout the
cell. In the absence of actin ( Latrunculin treated), the granules either aggregate near the cell
centre or at the periphery in response to specific hormonal stimulus [18].

visible changes in colour. Melanophores rely on microtubule and actin based network to

transport these pigment organelles. Experiments done with Xenopus (frog) melanophores

and fish melanophores throw light on the complete transport machinery and the mechanism

of organelle transport. These experiments [18] revealed that pigment granules either aggre-

gated near the the cell centre or dispersed throughout the cell, in response to specific neural

or hormonal stimulus. Depolymerisation of actin by Latrunculin resulted in aggregation

of granules either near the cell centre or at the periphery, and the cell did not exhibit the

dispersed state. This, combined with analysis of the individual trajectories of the pigment

granules, revealed the role of actin and myosin, along with microtubule, dyenin and kinesin

in regulating the transport of the pigment granules [18] (Fig. 4.2). In the absence of actin,

it was seen that the velocity distribution of the melanosomes transported by cytoplasmic

dyenin or kinesin-2, under conditions of aggregation or dispersion (Fig. 4.2), had several
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peaks and could not be fitted to a single gaussian [11]. It further revealed two crucial aspects

about transport and regulation of pigment granules. First, the transport of granules was per-

formed by multiple motors of opposite kinds, i.e., plus and minus-end directed motors, and

second, that hormonal signals, leading to change in the spatial distribution of granules, can

be attributed to the regulation of the motor binding rates.

4.3 Single-particle model for bidirectional transport with
multiple processive motors

Bidirectional transport involves vesicle transport by both types of motors, i.e., the plus-end

directed motors and the minus-end directed motors. Inspite of the tendency of these motors

to carry the vesicles in opposite directions, one observes long distance transport of cargoe

on microtubule filaments and polarized distribution of these cellular cargo. Further, there

is a robust regulatory mechanism involving the interplay of hormonal or neural stimulus

with the motor binding rates. Though vesicle cargo change their direction of motion dur-

ing bidirectional transport, it is able to achieve directed transport and a polarized steady

state distribution by suitable regulation of the different motor’s unbinding/binding rates to

the microtubule [3, 11]. This control mechanism again reaffirms the theme, that the effect

of specific chemical degrees of freedom associated with motor binding rates, result in the

regulation of emergent macroscopic transport. The regulation mechanism for intra-cellular

transport has three potential control points [2].

• Docking of motors to their cargo vesicles.

• Attachment of motors to the microtubule.

• The rate of mechanochemical cycle of the motors.

We will incorporate these mechanisms within a single-particle transition rate model. This

model is a generalization of the model proposed by [26], to bidirectional transport, involving

different types of motors (kinesin and dyenin). The inputs of the model involve microscopic

models for the velocity and the (un)binding rates of the motors to the microtubule. We make

specific qualitative and quantitative predictions of various macroscopic transport properties

and statistics of vesicle trajectories, which in principle can be tested in controlled in-vitro

experiments. Such a single-particle description of cellular cargo is appropriate only in the

dilute limit, i.e., low concentration of vesicles or organelles as it does not include the effects
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of loading or off-loading at the boundaries, or interaction between vesicles. In the next

chapter we develop a model for vesicle transport, which incorporates the effects of interaction

and finite boundaries.

4.3.1 The model

Consider a cargo vesicle transported by n dyenin motors and m kinesin motors on a single

microtubule filament. These motors are irreversibly bound to the cargo vesicle but bind and

unbind onto the microtubule filament along which they move. The number of dyenin motors,

attached to the microtubule can vary between n = 0 to a maximum of n = N. Similarly

the number of kinesin motors, attached to the microtubule can vary between m = 0 to a

maximum of m = M. We will denote the state of the vesicle as | n,m〉. There are clearly

(N + 1) × (M + 1) different states of the vesicle. If the cargo vesicle is in state | n,m〉 then it

moves with a velocity Vn,m. Binding of a kinesin and dyenin motor to the microtubule occur

with rates αk
n,m and αd

n,m respectively, while unbinding of kinesin and dyenin motors occur

with rates βk
n,m and βd

n,m.

First, we write the general master equation for the time evolution of the state of the cargo

vesicle with a general expression for rates of binding and unbinding of the dyenin and kinesin

motors. We will assume that there is no spatial dependence of the state of the vesicle cargo.

Further, we will consider that the probability of simultaneous (un)binding of more than one

motor to the microtubule is negligibly small.

We define,

Pnm = Probability of the vesicle to be in state |n,m〉
αk

nm= Kinesin binding rate in state | n,m〉
αd

nm= Dyenin binding rate in state | n,m〉
βk

nm= Kinesin unbinding rate in state | n,m〉
βd

nm= Dyenin unbinding rate in state | n,m〉

The dynamics of the unbound state of the vesicle is given by,

∂tP00 = β
k
01P01 + β

d
10P10 −

(

αk
00 + α

d
00

)

P00, (4.1)

While the general evolution equation for state | n,m〉 is given by,

∂tPnm = βd
n+1,mPn+1,m + β

k
n,m+1Pn,m+1 + α

d
n−1,mPn−1,m + α

k
n,m−1Pn,m−1

−
(

αk
nm + α

d
nm + β

k
nm + β

d
nm

)

Pnm (4.2)
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Figure 4.3: A vesicle cargo carrying 4 dyenin (N = 4) and 3 kinesin(M = 3). The cargo
vesicle with 2 attached dyenin (n=2) and 1 attached kinesin (m = 1), corresponding to the
state | 2, 1〉 can reversibly transform to a state with 3 attached dyenin and 1 attached kinesin,
corresponding to state | 3, 1〉. Dyenin (kinesin) motors are depicted in blue (pink).

In the equation above, the first four terms on the right are the gain terms due to the fact

that states | n,m + 1〉, | n,m − 1〉, | n + 1,m〉, | n − 1,m〉 can transform into | n,m〉, with rates

specified by the respective (un)binding rates of kinesin and dyenin in those states from which

it transforms. The next four terms are the loss terms due to the fact that | n,m〉 can transform

to states, | n,m + 1〉, | n,m − 1〉, | n + 1,m〉, | n − 1,m〉 with (un)binding rates of dyenin and

kinesin in state | n,m〉. (Fig. 4.3) shows an example of how a particular state of the vesicle

can change into another.

4.3.2 Steady state

To determine the transport properties of the bound vesicle cargo in its steady state we look at

the stationary solution of the master equation, i.e., ∂tPn,m = 0 for all n, m. We are interested

in those steady states that satisfy detailed balance. It is simple to realize the condition of

detailed balance in the case when the binding sites of two different kinds of the motors are

well separated so that binding/unbinding rates of dyenin and kinesin are decoupled from one

another. The detailed balance condition for each state | n,m〉 implies (Fig. 4.4):

Pnm =

n
∏

i=0

m
∏

j=0

DiK jP00 (4.3)

where D0 = 1,K0 = 1, and

αd
i−1,0

βd
i,0

=
αd

i−1,1

βd
i,1

· · · =
αd

i−1,m

βd
i,m

= · · · =
αd

i−1,M

βd
i,M

≡ Di

αk
0, j−1

βk
0, j

=
αk

1, j−1

βk
1, j

· · · =
αk

n, j−1

βk
n, j

= · · · =
αk

N, j−1

βk
N, j

≡ K j (4.4)
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Figure 4.4: Shows the structure of how the distribution function of the states are related with
each other in terms of rate constants Di,K j when the dyenin binding/unbinding rates are
decoupled from kinesin.

Equation (4.4) is the formal way of stating that the dyenin (un)binding rates, are independent

of kinesin (un)binding rates, so that the rate constants Di,K j are independent of each other.

With the normalization condition,

N
∑

i=0

M
∑

j=0

P00 = 1, (4.5)

we find that,

P00 =

















N
∑

n=0

M
∑

m=0

n
∏

i=0

m
∏

j=0

DiK j

















−1

(4.6)

Thus given the rate constants of dyenin and kinesin in different states, one can completely

obtain the steady state distribution of the various states of the vesicle, Pnm using equation

(4.3).
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4.3.3 Modeling velocity and (un)binding rates

In order to evaluate various transport properties, we need to specify the dependences of the

(un)binding rates and the velocity of the vesicle on the number of attached dyenin and ki-

nesin motors.

(i) (Un)binding rates: dilute motor coverage [26]

The condition of detailed balance stated above is valid when the (un)binding rates of

dyenin and kinesin motors are taken to be independent of one another. We now make a fur-

ther simplifying assumption of dilute motor coverage, i.e., for every motor, the binding sites

on the vesicle surface are well separated and non-interacting. Then,

αnx = (N − n)αd βnx = nβd

αxm = (N − m)αk βnx = mβk (4.7)

where αd, βd are the binding and unbinding rates for a single dyenin motor and αk, βk are the

binding and unbinding rates for a single kinesin motor [26]. This additional simplification

leads to the following rate constants,

Di =
(N − i + 1)

i

(

αd

βd

)

K j =
(M − j + 1)

j

(

αk

βk

)

(4.8)

Specifying these parameters enables us to find the expression for the steady state probability

distribution function, Pnm.

(ii) Velocity of vesicle

The state of the vesicle depends on the number of attached dyenin and kinesin, (n,m). In

order to make connection with experiments studying vesicle trajectories, we have to assume

a microscopic model for the velocity of the vesicle. We propose three models for the velocity

of the vesicle

Model A: The velocity of the vesicle is proportional to the difference in the number of

attached dyenin and kinesin motors, thus,

Vnm = Vo (m − n) (4.9)
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This ansatz leads to a ‘tug-of-war’, where the direction of transport of the vesicle is de-

termined by the difference between the number of the two types of motors, each type trying

to pull in a specific direction. This model also implies that when the difference in number

of each type of motors is zero, the vesicle does not move at all. Thus we inherently assume

that the pulling strength and velocity of single dyenin is the same as that of a single kinesin.

This is consistent with the results of certain in-vitro experiments on vesicle transport [18].

Our subsequent results and plots are obtained with this model.

The other two models that we consider, invoke a self regulatory mechanism, wherein the

regulatory switch activating only one class of motors, depends on the number of attached

motors. It is worthwhile mentioning that apart from these self-regulatory mechanism there

might exist many external regulatory mechanisms to ensure the active engagement of one

type of motor to the filament, while turning off the other motor [2, 3]. Models which incor-

porate self regulation are,

Model B [26]:

Vnm = V1 i f n > m

Vnm = V2 i f n < m (4.10)

where, V1 and V2 are constants.

Model C: There is a linear dependence of the velocity on the number of attached motors

of one type,

Vnm = nV1 i f n > m

Vnm = mV2 i f n < m (4.11)

where, V1 and V2 are constant with opposite signs.

Once we have specified these microscopic transport mechanisms, we can make specific

predictions about the macroscopic trajectories of the vesicles based on our model. We will

see later in this section, how analysing the macroscopic trajectories of the vesicles can pro-

vide some information about the underlying microscopic transport mechanisms.

Our model has five independent parameters; αk, βk, αd, βd and Vo which can be estimated

from the study of single motor dynamics. From studies of single kinesin motors, we take



82 Chapter 4. Active bidirectional transport of vesicles on microtubules

αk = 5 s−1 [27] and βk = 1 s−1 [28, 29]. We also look at perturbations of these parameters

by specific hormonal signalling [19]. Further, within each family of motors, there are differ-

ent variants with different (un)binding rates. From studies of single dyenin motors, we take

βd = 0.2 s−1 [30] and αd = 0.04 s−1 [31]. The parameter Vo , the speed of the vesicle carried

by a single dyenin or a single kinesin is taken to be 1µm/s [18]. Apart from making compar-

isons with in-vitro experiments on vesicle trajectories, we will highlight certain qualitative

features that emerge from the model.

We will now focus on evaluating expressions for various transport properties which can

be measured in controlled in-vitro experiments on cellular extracts containing pigment vesi-

cles, dyenin and kinesin motors and microtubules. Statistical analysis of individual vesicle

trajectories can be used to determine the distribution of velocities, distribution of plus-end

directed, minus-end directed and stationary trajectories, the statistics of detaching and the

distribution of reversal times.

4.4 Results

4.4.1 Steady state distribution of vesicles

The expression for the probability distribution function for the unbound state of the vesicle

can obtained using the forms of Di and K j in equation (4.4),

P00 =













(

1 +
αd

βd

)N (

1 +
αk

βk

)M











−1

(4.12)

From this relation and using equation (4.3), the probability distribution for any |n,m〉 state of

the vesicle can be determined numerically.

4.4.2 Average number of bound motors

The average number of dyenin motors attached to the microtubule when the vesicle is in the

bound state can be obtained from,

Nd =

N
∑

n=0

M
∑

m=0

nPnm

1 − P00
(4.13)

Equation (4.15) leads to,

Nd = N

(

αd

βd

) (

1 + αd

βd

)N−1 (

1 + αk

βk

)M

(

1 + αd

βd

)N (

1 + αk

βk

)M
− 1
. (4.14)



4.4. Results 83

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

P( v ) 

velocity µ m  s( )/

Figure 4.5: Probability distribution of the velocity of the cargo vesicles with discrete peaks at
integer multiples of Vo = 1µm/s. This plot corresponds to a high duty cycle ratio for kinesin
with αk

βk
= 5 and a low duty cycle ratio for dyenin with αd

βd
= 0.2. In this plot, N = M = 4.

In the limit N � 1, this expression reduces to,

Nd = N

(

αd

βd

)

(

1 + αd

βd

) = NQd , (4.15)

where Qd is the duty ratio of a single dyenin attaching to the microtubule. Thus we see that

multiple motors effectively increase the duty ratio for binding. Similarly the average number

of bound kinesin motors or total number of bound motors can be evaluated.

4.4.3 Velocity distribution

The distribution of the velocity of vesicles can be obtained by summing weights of those

states for which n − m is the same. We do it numerically using the models of velocity de-

scribed in section (4.3.3). When the binding rate constant for kinesin is very large compared

to dyenin, then the distribution of the velocity is heavily skewed towards the positive values

(Fig. 4.5). When the binding rate constants for both dyenin and kinesin motors are the same,

then we have a symmetric distribution of the velocity of the vesicle, with no net transport in

either direction (Fig. 4.6). We predict that the fraction of trajectories which are stationary,

decreases with the relative increase of binding rate constant for one type of motor compared

to the other. Fig. 4.7 shows the distribution of the velocity of vesicles obtained in in-vitro

studies [11]. These authors [11] study the distribution of vesicle trajectories, by separating
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Figure 4.6: Probability distribution of the velocity of the cargo vesicles with discrete peaks
at integer multiples of Vo = 1µm/s. This plot corresponds to equal duty cycle ratio for both
kinesin and dyenin with αk

βk
=
αk

βk
= 0.2. In this plot N = M = 4.

Figure 4.7: Velocity distribution of melanosomes from experiments [11]. (A) The distri-
bution obtained from the minus end directed trajectory. (B) The distribution obtained from
plus end directed trajectory. Note the discrete peaks occuring at integer multiple of Vo = 0.25
µm/s.
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Figure 4.8: Variation of the average velocity of the vesicle cargo with increasing number of
kinesin motors carried by the vesicle (M), keeping the maximum number of dyenin, (N = 4)
the same. Increasing the duty ratio of kinesin relative to dyenin leads to more plus directed
run and hence an increase in average velocity of the vesicle. D = αd

βd
= 0.2 is fixed. As

K = αk

βk
, the binding rate constant for a single kinesin is increased, the average velocity also

increases.

out the plus-ended and the minus-ended runs of the vesicles and hence is not suitable for di-

rect quantitative comparison with our model. The distribution of velocities obtained from the

experiments, exhibits discrete peaks corresponding to integer multiples of Vo = 0.25µm/s.

This would suggest that Model B for the vesicle velocity (section 4.3.3), is ruled out, as this

would have lead to only two discrete peaks in the velocity distribution. Our Model A does

reproduce the qualitative features of the distribution function,i.e., multiple discrete peaks.

This model also exhibits the qualitative feature pertaining to trajectories of mitochondria in

axonal transport. In these experiments [19], the percentage of plus-end directed trajectories

is more than minus-end directed trajectories in growing axons in region far from growth

cone. In non-growing axons the percentage is roughly the same for both kind of trajectories

[19]. In our model we obtain similar regulatory behaviour on changing the binding rate con-

stants for dyenin and kinesin, a feature illustrated in Fig. 4.5 and Fig. 4.6.
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In our model, the expression for average velocity of the bound vesicle is given by,

V = V0

N
∑

n=0

M
∑

m=0

(m − n)Pnm

1 − P00
(4.16)

which can be evaluated to give,

V = V0





















M

(

αk

βk

) (

1 + αk

βk

)M−1 (

1 + αd

βd

)N

(

1 + αk

βk

)M (

1 + αd

βd

)N
− 1

− N

(

αd

βd

) (

1 + αd

βd

)N−1 (

1 + αk

βk

)M

(

1 + αd

βd

)N (

1 + αk

βk

)M
− 1





















(4.17)

In the limit of N,M � 1, this expression reduces to

V = V0



















M

(

αk

βk

)

(

1 + αk

βk

) − N

(

αd

βd

)

(

1 + αd

βd

)



















, (4.18)

which in terms of the duty ratio of single kinesin Qk and single dyenin Qd is simply

V = V0 [MQk − NQd] (4.19)

Fig. 4.8 shows the variation of the average velocity of the bound vesicle with changes

in the number of kinesin motors carried by the vesicle for different binding rate constants.

Changing the relative rate of binding of each type of motor leads to a crossover from a net

minus (-) end directed run of the vesicle to a (+) end directed run.

4.4.4 Mean first passage time

Mean first passage time is the typical time in which a bound vesicle detaches from the fila-

ment. In the steady state, the effective binding rate and unbinding rate are related by,

βe f f (1 − P00) = αe f f P00 (4.20)

Since the effective binding rate of the motors is simply α01 + α10, we have

βe f f =
P00(α01 + α10)

1 − P00
(4.21)

The mean first passage time (Tm) to be detached from a bound state of the motor is simply
1
βe f f

[26]. thus,
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(4.22)
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For the limit of N,M � 1 and α
β
� 1 we have,

Tm =

(

1 + αd

βd

)N (

1 + αk

βk

)M

MN(αd + αk)
=

(1 − Qd)−N (1 − Qk)−M

MN(αd + αk)
(4.23)

So the first passage time for the detachment of the vesicle from the microtubule track

increases rapidly with number of dyenin (N) and kinesin (M) bound to the vesicles.

4.4.5 Reversal time of vesicles

Transport quantity which can be easily measured in tracking experiments is the distribution

of reversal times of the vesicle. By reversal time we mean the time in which a bound vesicle,

moving in a specific direction(i.e., towards the plus-end or minus-end) reverses its direction.

Solving the master equation using a Monte-Carlo simulation, two features emerge:

1. Increasing the number of docking sites of motors, i.e., N, M, leads to a increase in

the reversal time. This means that one can achieve long distance directed walks by

increasing N, M.

2. Regulating the binding rates affects the reversal time of the vesicle, such that when the

relative difference between the binding rate constants of dyenin and kinesin motors in-

creases, it leads to increase in the typical reversal time of the vesicle cargo. Conversely

when the rate constants are roughly the same, the frequency of reversal increases and

no net transport of vesicles is achieved.

Fig. 4.9 shows the distribution of the reversal time of the vesicle, when the rate constant

of kinesin is very high (αk

βk
= 5) compared to dyenin (αd

βd
= 0.2). The plots are obtained for

different number of motors attached to the vesicle cargo. Fig. 4.10 shows the semi-log plot

of the same distributions. From it we infer that beyond N = 3,M = 3 , the typical reversal

time increases sharply. Correspondingly the mean reversal time also progressively increases.

It is 1.9s, 3.8s, 9.0s, 17s, 29.8s for (N = 2,M = 2), (N = 3,M = 3), (N = 4,M = 4),

(N = 5,M = 5) and (N = 6,M = 6) respectively. Increasing the binding rate constant of

dyenin from (αd

βd
= 0.2) to (αd

βd
= 0.5) and keeping the kinesin binding rate constant the same

results in a sharp fall in the mean reversal time, (Fig. 4.11, 4.12). For instance the mean

reversal time reduces more than 6 fold to 4.7 s.
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Figure 4.9: (a) Probability distribution of reversal times for vesicles pulled by dyenin and ki-
nesin motors with different number of motors bound to the vesicles. αd

βd
= 0.2 and αk

βk
= 5 The

values of N,M are respectively (2, 2), (3, 3), (4, 4), (5, 5), (6, 6). (b) Probability distribution of
reversal times in semi logscale for same parameter values as (a). Note that for N ≥ 4,M ≥ 4,
the weight remains nearly constant, implying long directed runs.
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Figure 4.10: (a) Probability distribution of reversal times for vesicles pulled by dyenin and
kinesin motors with different number of motors bound to the vesicles. αd

βd
= 0.5 and αk

βk
= 5.

The values of (N,M) are respectively (2, 2), (3, 3), (4, 4), (6, 6). (b) Probability distribution of
reversal times in semi logscale for same parameter values as in (a). Note that increasing the
binding rate constant of dyenin from 0.2 to 0.5 reduces the mean reversal time of the vesicle.
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4.5 Conclusions

We have seen how long distance directed transport and regulation of cellular cargo transport

is explained naturally within this simple transport model. Further various transport properties

like distribution of bound motors, distribution of the velocity of the vesicle cargoes, the

statistics of direction reversals of the cargoes are obtained within this framework. These

quantities can be compared to statistical analysis of vesicle trajectories in melanophore cell

or cell extracts. By making detailed comparison with various microscopic models of velocity

and regulation, we hope to be able to fix the microscopic models.

In future we would like to study the distortion of the membrane bound organelles under

the influence of the two oppositely directed motors.
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