CHAPTER |

INTRODUCTION

11 Nematic Liquid Crystals

Many organic compounds whose molecules are rod-like or disc-like, i.e., have shape
anisotropy, exhibit mesomorphicor liquid crystalline phases (seefor e.g., de Gennes,
1975; Chandrasekhar, 1977; de Jeu, 1980). They exhibit some properties of crystals
and some others of liquids. All o our studies have been made on the simplest
type of liquid crystal, viz., the nematic phase. The nematic liquid crystal (NLC) is
characterised by an orientational order d the anisotropic molecules about adirection
which isdenoted by a unit vector n caled the director (Fig.1.1). Thecentres of mass
o the molecules have a liquid-like random distribution. The orientation of n can
be controlled by external forces like those imposed by the cell walls. The director
n is apolar with +7 and -6 being indistinguishable. Therefore nematics are not
ferroelectric. There is a two-fold rotational symmetry about any axis normal to n
and reflection symmetry in planes parallel and perpendicular to n. The nematic

phase is optically uniaxial with the optic axis along 6.






1.2 The Orientational Order Parameter

In view of the apolar nature o the director, the orientational order parameter Sis a
second rank tensor. For cylindrically symmetric molecules it is defined as (Tsvetkov,

1942)

S==-<3cos’f — 1> (1.1)

SR

where @ is the angle between the molecular long axis of a rod-like molecule and the
director n. The brackets <> indicate an ensemble average. From this expression,
it is clear that for a perfect ordering S=I and in the isotropic phase S=0. Usually
the maximum valued Sin atypical NLC ranges from 0.6 to 0.8. The value of Sat
the nematic-isotropic transition is usualy about 0.3 to 0.5 and the nematic-isotropic

phase transition has afirst order character (de Gennes, 1975).

1.3 Curvature Elasticity

In nematic liquid crystals there is no translational order of the molecules. The
director orientation o a nematic can gradually vary in space, with the magnitude
of the order parameter remaining constant. Hence the fundamental elasticity of the
NLC is associated with the curvature in the director field. The continuum theory of
curvature elasticity was developed by Oseen (1933), Frank (1958) and Nehring and
Saupe (1971). Taking into account the symmetry of the nematic phase there can be
three elementary deformations, i.e., splay, twist and bend (Fig.l.2). Theelastic free
energy density, which is a scalar quantity can be expanded in terms of the director

n and its gradients as,
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Fig.l.2: The three principal types of deformations

in a nematic (after Chandrasekhar 1977).



where K, K, and K3 are elastic constants corresponding to splay, twist and bend
deformations respectively. Usualy K; > K; > K,. These constants are positive and
are ~ 107! newton (N). These elastic constants are highly temperature dependent

and vary approximately as the square o the order parameter S.

In the absence of external fields, the condition for equilibrium can be obtained
by minimising the energy given by equation (1.2) with respect to all variations of

the director field 2(r) and is given by (de Gennes, 1975)
af? afd
d _ _ S —=— | = — , .
B = ( am) + 0, ( 55, ) = ~Cm (1.3)

where §; = 5%1 , gji = O;n;, C(F) is an arbitrary function of 7 and f is called the
molecular field. In equilibrium the director will be parallel to the molecular field
at each point. Otherwise, when » and h are not parallel, the director experiences
a torque which tends to make them collinear. The torque density is given by I'* =
A x h%. Inthe presence o an external field acting on the nematic, in addition to Ed,

the molecular field arising from the external field should also be considered.

Nematics have anisotropic physical properties. In the following we give a brief

description of some of the physical properties of NLC, which will be relevant to our

experiments.

1.4 Dielectric Anisotropy Ae

The dielectric displacement D induced in a nematic liquid crystal by an electric field
Eis given by (de Gennes, 1975)

—

D=eE+(g—e)(nE) (1.4)

where ¢ and ¢, are the principal dielectric constants parallel and perpendicular to

the director respectively. The dielectric anisotropy Ae¢(= ¢y — e,) may be positive



or negative depending on the molecular structure. Ae is positive for molecules with
permanent dipole moments parallel to their long axes. It is negative (¢ < €. ) for
molecules having permanent dipole moments at large angles to the long axes. The

dielectric anisotropy is temperature as wel as frequency dependent.

The free energy density of a nematic in an electric field is given by (de Gennes,

1975)

€ _ _ — i 1.5
/ 87 8w (15)
The corresponding molecular field which is got by minimising f¢is given by
Re = Ae(n - E)E (1.6)
4T :

Most of the nematic liquid crystals have diamagnetic anisotropy (AX), which is
defined in a similar fashion. This property is useful to align NLCs using magnetic
fields.

1.5 Electrical Conductivity

In nematic liquid crystals impurity ionsgive rise to a weak electrical conductivity of
the medium. The anisotropy o conductivity Aa= o) —o, whereo and o, arethe
principal components of conductivity parallel and perpendicular to 6. Usually for
nematics Ao is positive as the ions can move more freely along n than perpendicul ar
toit. For an electric field E applied in an arbitrary direction, the current density is
given by

J=0,E+ Ac(n - E)a. (1.7)

The electrical conductivity is a function of frequency of the applied AC field and

also of the temperature of the nematic medium. Conductivity anisotropy plays



an important role in the formation o electrohydrodynamic instabilities in NLC

(Chapters IT and III).

1.6 Alignment of Liquid Crystals

In an unaligned nematic medium the director n varies gradually from point to point.
However in experimental situations it is desirable to have a monodomain sample of
a nematic, in which 7 is uniformly aligned. In a planar or homogeneously aligned
sample, the director n is parallel to the bounding plates and hence the optic axis is
parallel to the surfaces (Fig.1.3a). Thisalignment can be obtained by unidirectional
rubbing of the glass plates (Chatelain, 1955; Guyon and Urbach, 1976) coated with
a polyimide solution or by avacuum coating d the plates with silicon monoxide at
an oblique angle (Janning, 1972). The molecules sit in the grooves created by the
rubbing action in polyimide coated plates, or in the groovesformed by the shadowing

effect in S10 coated plates, to give rise to the planar alignment.

In the homeotropic alignment the director is aligned perpendicular to the bound-
ing plates and hence the optic axis is normal to them (Fig.1.3b). This is obtained
by treating the glass plates with certain polymers such as octadecyl triethoxy silane
(ODSE), which have chemical groups that can attach themselves to the surface and

have long chains which stick out of the surface.

Treating onedf the platesfor homogeneous alignment and the other for homeotropic
alignment, weget a hybrid aligned nematic (HAN) cell. The director pattern in such
a cell has a splay-bend distortion as shown in figure 1.3c. We make use of such a

geometry in some of our experiments (Chapters IV and V).
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Fig.l.3: Orientation d the director (7) in cells with (a) homogeneous alignment,

(b) homeotropic alignment and (c) hybrid alignment.



1.7 Anchoring Energy

The anchoring energy measures the strength of anchoring of the director along a
well defined direction, known as easy azis at the surface. It depends on the chemical
nature of the NLC and that o the surface. The anisotropic part of the surface free

energy density is written as (Rapini and Papoular, 1969)

Fy(0) = %Wg sin2(9 -06,)

where 8, and 8 are the polar angles made by the easy axis (n,) and the actual
orientation of the director () respectively with the surface normal. W, is the
anchoring energy for tilt orientation d the director. In chapter V we will describe a

method of estimating Wj.

The anchoring energy (W,) for azimuthal orientation can also be defined in a

similar way. A method of measuring W, will be described in Chapter VI.

In many experiments (see chapter III) external fields are used to induce distor-
tions in surface-aligned monodomain samples. If the surface anchoring is weak, the
orientation of n at the surface is affected by the bulk distortion. Then to determine
the equilibrium configuration of the system the surface termsin the free energy will
have to be considered. On the other hand, the surface terms can be neglected in

the case of strong anchoring at the surface (see Chapters V and VI).

1.8 Hydrodynamics of Nematics

The hydrodynamic properties of NLCs are complex due to the orientational ordering
of the molecules. Thisis because the translational motion of a molecule gets coupled
to its rotational motion in the nematic phase. Flow can disturb the alignment of

the director. Ericksen (1960, 1961, 1962) and Leslie (1966,1968) have developed a



continuum theory of the hydrodynamics of nematics. In an ideal liquid with zero
viscosity (Landau and Lifshitz, 1953; Feynmann et al., 1964), the Euler equation is
given by B .

g—f+(17v)6= —YPE+§+£ . (1.8)
In this equation v is the velocity at a point (x,y,z), P isthe pressure at this point. p
the density o the liquid, g the acceleration due to gravity and f the external force.
The equation of continuity is given by

%’tf+v-(p6)=o (1.9)

The compressibility is quite small for liquids, and in the problems that we will dis-
cuss, they can be considered to beincompressible and hence % = 0 and p =constant.
Hence equation (1.9) reduces to

V-9=0 (1.10)

For a viscous liquid, an additional term to account for frictional force ( f,:s.) should

be added to the Euler equation (1.8). Then

o7 . VP Fuisc
a—‘t’+(z7v)v={——+g+q+f (1.11)
P P P

The viscous stress tensor (o7};) is defined in terms of the gradients of velocity, as
’ 6v,~ ij
= —L 4 = 1.12
%ij ”(axj t axi> (1.12)
wherei, j = x,y,z and 7 is the viscosity d the liquid. By considering a cubic volume
element of moving liquid and using the spatial derivatives of the stress tensor, the
viscous force may be calculated as V25, Then the resulting equation of motion for

an isotropic liquid can be written as,

0v -
E-*-(W)v—

VP V2§
———+g+q+n——v. (1.13)
p p P



Thisis the well known Navier-Stokes equation. This has been extended to NLCs by

different groups and here we follow Ledlie's approach (Leslie, 1966 and 1968).

Ledlie took into account the dependence of shear stress not only on the velocity
gradients but also on the orientation and the rate of rotation of the director. The
Viscous stress tensor in its most general form, obtained from symmetry arguments,

is written as (de Gennes, 1975)

oy = oagmmAyning + agniN; + agn; N; + agAy;

tasnng Ay + agnng Ay (1.14)

where «(;_¢) are called the Ledlie viscosity coefficients and they are of the order of
. 1 av] + 01),’
v 2 6.’1‘,‘ (?xj

The rate of motion of the director relative to the background liquid is given by

0.01to0.1 Kgm~!s7'. A ] = A;; is the shear rate tensor.

—WXn (1.15)

S

N =

- 1 —y e .
where & = E(V X ) is an angular velocity.

I'yisc IS the torque per unit volume on the director due to viscous forces and can

be written as (de Gennes, 1975)
ﬁvisc = —n X ’-;visc (116)

where l_iui,c = (711V + Yo :1 ‘). 1 = az — ay and v, = ag — as. Parodi (1970)
using Onsager’s reciprocity relations showed that a; + a3 = ag — as. The a4 term
is independent of the director and corresponds to the viscosity (n) of an isotropic
fluid. Now the equation o motion for the moving fluid can be written as

p(‘fi—t) - F(95) (117)

Theinertial term p(d#/dt) can be neglected in most problems. f istheexternal force

acting on the fluid, for example due to the applied field E acting on a field-induced



space charge density Q (i.e., f: QE). (V.0) is the force due to the total stress in
the medium. Since small deformations are involved in the problems considered, we

simplify equation (1.17) by retaining only the linear terms. Then we get

_VP4V.5 +QE =0 (1.18)

The simplified coupled equations for tlie director and fluid velocity (Eqn.1.18) along
with equation (1.10) are used in the study of EHD problemsin later chapters of this

thesis.

1.9 Flexoelectricity

A macroscopic polarisation can be induced in a nematic liquid crystal by splay arid
bend distortions of the director field, as was first shown by Meyer (1969). This

flexoelectric polarisation is given by

P

e,ﬁ(V . fl) + e;;(V X fl) X N (119)

where e; and e; are the two flexoelectric coeflicients corresponding to splay and bend
deformations respectively. According to Meyer’s model only nematics made up of po-
lar molecules with shape assymmetry can be expected to exhibit flexoelectricity. IFor
instance (Fig.l.4) a nematic consisting of pear shaped molecules with longitudinal
dipole moments becomes polarised under a splay distortion and a nematic made of
banana shaped molecules with transverse dipole moments becomes polarised under
a bend distortion. However, in the undistorted state, because of equal probability of
opposite orientations the dipole moments of tlie molecules cancel one another and
the net dipole density is zero. For weak distortions the flexoelectric polarisation is

given by tlie equation (1.19). This expression is the most general polar vector that



can be constructed from the apolar director field n, arid its first order derivatives.

e; and e3 have the dimensions o charge/length.

Another microscopic model was presented by Prost and Marcerou (1977) in which
the contributions to flexoelectric effect from quadrupole moments of the molecules
are considered. In the undistorted state (Fig.1.5a), there is no net dipole moment
due to the symmetry of the arrangement of the quadrupoles. But when there is
splay deformation, thereis a net dipole moment (Fig.1.5b) and hence the medium is
polarised. Though this quadrupolar contribution to flexoelectric effect isof the same
magnitude as due to dipolar contribution, the former is independent of the shape
of the molecules. Since all nematogenic molecules have finite quadrupole moments,

flexoelectric effect is an universal property o nematics.

In the presence of an external electric field F, the polarisation P couples lincarly

with E leading to a free energy density
= _pP.E (1.20)
This is minimiscd to get the corresponding molecular field
W' = ex{ E(diva) — grad(E - h)} ea{ £ x (curlh)— curl(E x h)) (127

The linear dependence of the flexoelectric energy on the gradient in the director
field has some interesting consequences. For instance if the distortiori is planar rep-

resented by theangle 6(z), then f /! identically satisfies the Euler-Lagrange equation

afrt af’! o
(8—0 - d, a0, ) = 0 (1.22)
9, a0 o
where 0, = P and 0, = 7 | and therefore does not give risc to any volume
z 2

torque. When there is weak anchoring at the surface the flexoelectric effect results

in a surface torque. This effect is used in the estimation of tlie anchoring strengths
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Fig.l.4: Meyer’s model o flexoelectricity. The nematic cornposed of asyminetric
polar molecules has no net polarization in the undeformed state (a and c), but
develops a polarization under splay (b) and bend (d) deformation. (after Mcycr

1969).

{a)

Fig.l.5: (a) A regular stacking of quadrupoles. Because of the symmetry of the
arrangement of the quadrupoles there is no bulk polarisation. (b) The structure
becomes polarised when subjected to asplay distortion. (after Prost and

Marcerou, 1977).



ina HAN cell (Chapter V). However if the distortion is non-planar, and is described
by the angles 6(z) and ¢(z), then f/' gives rise to a bulk torque. This is made use

of in the determination of flexoelectric coefficients of NLC (Chapter V).

1.10 Electrohydrodynamic Instabilities in Nematics

Convective hydrodynamic instabilities are well known in isotropic liquids. For ex-
ample, in Rayleigh-Benard instability (seefor example Dubois-Violette et al., 1978)
a regular convective flow of liquids sets in when an adverse temperature gradient
exceeds a certain value. In this case the convection sets in due to the action of the

gravitational field on a vertical density gradient.

Hydrodynamic instabilities are also observed in weakly conducting isotropic lig-
uids under the action of DC or AC fields (Blinov, 1983). lelici (1969) proposed a
mechanism in which unipolar charge injection by one of the electrodes results in a
lion-uniform distribution of space charges (Fig.1.6). The interactiori of the external
field with these charges gives rise to a force which destabilises tlie medium result-
ing in a cellular flow in the medium. However this instability disappears above a

frequency 7=, where 7 is the transit time for injected charge carriers.

Convective instabilities are all the more interesting in tlie case of nematic liquid
crystalswith negativeor slightly positive Ae and positive Ao (seefor e.g., de Gennes,
1975). Under tlie action of an external electric field such NLC exhibit convective in-
stabilities, called electrohydrodyamic (EHD) instabilities, which were first observed
during 1930s (Freedericksz and Zolina, 1933 and Freedericksz and Tsvetkov, 1934).
But detailed studies were made only in the late 60s by which time the possibility
of using EINID instabilities in display devices was recognised. A typical experimen-

tal set up (Fig.l.7) to study EHD instabilities in NLCs consists of two transparent



E
+ M
+ + + +
+

+
+ + 4+ + + + + + + + + +

Fig.l.6: Schematic diagram showing unipolar charge injection from one of the

electrodes illustrating Felici mechanism.
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Fig.l.7: Experimental arrangement for observing Williams Domain Mode

(WDM).



conducting glass plates, which are treated to get a homogeneous alignment of the
nematic director along the X-axis, say. These are used in the construction of a
cell of thickness ~ 20um. The cell is filled with an appropriate NLC. Now with
the application of a voltage above a threshold value between the glass plates, i.e.,
along the Z axis, the medium gives rise to an optical pattern (Fig.l.8) consisting of
regular, parallel striations, perpendicular to the undistorted director, i.e., along the
Y axis. This is called the Williams Domain Mode (WDM) (Williams, 1963). The

important observations on this instability may be summarised as follows:

a. WDM is characterised by a threshold voltage which is independent of cell

thickness.
b. WDM is observable under DC fields or low frequency AC fields.

c. The width of these domainsis d the order of the cell thickness.

d. There iscellular fluid motion within the domains which is clearly seen by the
movement of tracer dust particles. Further, fluid motion has opposite vorticity

in adjacent domains (Fig.l.9).

1.10.1 The Carr-Helfrich Mechanism

Carr (1963) suggested that anisotropy o conductivity may give rise to space charge
formation due to ion segregation under the action of an external electric field in the
liguid crystal. This was made use of by Helfrich (1969) while proposing a mechanism

for Williams domain instability.

Consider an infinitesimal bend deformation in a homogeneously aligned nematic

film with negative dielectric anisotropy (Ac) arid positive conductivity anisotropy
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FHgl.9 Schematic diagram of Williams domains indicating (a) flow and (b)

tlirector orientation. + — indicate bright foci.

Fig.1.10: Space charge formation in an applied field £, caused by a bend
fluctuation o the director in a NLC with positive Aa. [, is the resulting

transverse field.



(Au). If it is subjected to a DC electric field (E) between the glass plates, i.e.,

along the Z-axis (Fig.1.10), the ions move more easily along the director than in a
perpendicular direction, sinceay; > o. This resultsin space charge formation giving
rise to an internal transverse electric field (£,) along the X axis. Tlie external field
E acting on these space charges (Q) produces a force, which tends to set them in
motion resulting in a bulk flow of the medium, when the field F issufficiently large.
This hydrodynamic torque along with the dielectric torque due to internal electric
field E, produces a destabilising effect on the orientation of the dircctor, while the
dielectric torque due to the external field £ and the elastic torque have stabilising
effects on the director orientation. Hence if E is sufficiently large, an infinitesimal
bend distortion in the director field grows and the system becomes unstable. This
results in a breaking up of the medium into a number of hydrodynamic rolls or
domains. This cellular flow of the medium produces a static periodic deformation

of the director field and gives rise to the optical pattern as described before.

A linear one dimensional theory of EHD instabilities in which the boundary
conditions are ignored was worked out by Helfrich (1969). The medium is assumed
to beof an infinite extent in the XY plane so that the lateral boundary conditions
may be neglected. An infinitesimal bend fluctuation of tliedirector ficld is considered
in the XZ plane with the director 7 making a small angle # with the X-axis. Let
Q be tlie space charge density created in tlie medium. As long as tlie boundary
conditions are neglected, 0 and all other quantities depend only on X. Because
of this simplification, only the Z-component o velocity appears in the equations.

Retaining only the linear terms, the director in the distorted state is given by
n=(cosd, 0,sin0) ~ (1,0,0)

The system is described by the following equations:



1. The Poisson equation div D= 4@, where D, the displacement vector isgiven
by
D= eJ_E"'l'(e” —e )R- E) A,

substituting for D in the Poisson equation and simplifying, we get
dE, dé
€| ( T ) + AeE (%) =47Q (1.23)

2. As we are considering a DC applied field the charge conservation equation is

given by

-

div(J) = 0

where J is the current density given by J = o, E + Ao(n - E)ﬁ . From these

dE, do
o) ( Iz ) + Aok (—(2;) =0 (1.24)

3. Using equation( 1. 18) the equation of motion in the linear regime is given by

two equations we get

_"(i?):QE | (1.25)

1 . . -
where n = E(a" + as — az) and ds are viscosity coefficients.

4. The torque balance equation is given by
[ 4 e = [

where I is the hydrodynamic torque, [ the elastic torque and I the dielec-

tric torque. This reduces to

d*0 Aeoy dv
Ioa [ 2= 20 z) _ 926
i3 (d$2> 4 (47{‘0’” ) E<0 (69 (daj) 0 (1 2())

14




Eliminating E., v, and Q in terms of 6 from equations (1.23) to (1.26) we get

2
i (0} () (B2 8¢ pagy (B9 g = g (1.27)
\ dz? 47y o € 4oy
In this model, the rolls are assumed to be formed with their wavevector along 7.

Taking the solution of theform 0 =8, cos(¢X ), we get for the threshold field

21'
£ = Ang Ra (1.28)
[Aeu _ e (91 _ 9.)]
) n 7Y N

Thus the threshold field is a function of the wavevector (q) of the distortion. The
value of g cannot be predicted correctly by thismodel since the boundary conditions
are not taken into account. Since the distortion energy is larger for larger g, while
the dissipation due to the transverse flow is larger for smaller g, physically we can
assume that the width of the domains must be comparable to the thickness of the

nematic layer d. Hence putting q= (#/d) in equation (1.28), a voltage threshold is

obtained:
3
Vi = i s (1.29)
[Aeu _ e (éz _ é_)]
! n 7y N

This expression is found to be in qualitative agreement with experiments (Blinov,
1983). An extension of lelfrich model including tlie boundary conditions was de-

veloped by Penz and Ford (1972). The results broadly support the Helfrich model.

1.10.2 Excitation with AC Electric Fields

Depending on the frequency o the applied AC field the GIID instabilities can be

classified into (a) conduction and (b) dielectric regimes.



The conduction regime is observed at frequencies below a certain cut of fre-
quency (f.) (Fig.1.11). The pattern observed in this regime is similar to WDM
having a voltage threshold.

The dielectric regime or fast turn off mode is observed at frequencies above the
cut off frequency ( f.) (Heilmeier and Helfrich, 1970 and Orsay Liquid Crystal Group,
1970, 1971). Unlikein the case of WDM, here the domain width is considerably less
than the thickness of the nematic film. On increasing the applied voltage above
the threshold value, these domains bend and niove giving rise to what arc called
Chevron Patterns (Fig.1.12). This regime has a field threshold E,, in contrast to
the voltage threshold V;, observed in the conduction regime. The threshold field
varies with frequency of the applied field. Further the cut-off frequency f. increases
with the conductivity of the sample.

Dubois-Violette et al. (1971) and Smith et al. (1975) extended the Carr-Helfrich

model toexplain EHD instabilities under AC field excitation. T'wo coupled linearised

equations for the space charge density Q and curvature ¥ = ? are obtained:

xr
. 1
and
. 1 E
¢+(_)¢+_Q:0 (1.31)
T n
where
1 0’” . .
- = 4w | =] istherelaxation ratedf thespacecharges
€l
1 AeE?
= = L[ o uoe is therelaxation rate of the director
T Y1772 47T6||
1 m [Ae az] (q_ 0L>
_:________~_+_; opg=oy|— - —
n Mn2 | € M €| gy
1 1 Qg

-
-~
—

E(a4+a5—a2) ,and = 5(03+a4+0’6) i
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Fig.1.11: The threshold voltage of the AC instabilities in MBBA as a function of
the frequency of the applied field. Regions | and II correspond to the conduction
regime and the dielectric regime respectively. (Orsay Liquid Crystal Group, 1970).
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in the dielectric regime. (from Blinov 1983).



Here v; = (a3 — a2), and the a's are Ledlie viscosity coefficients.

From equations (1.30) and (1.31) it is clear that as E changes sign after every
half acycle, either Q or 1 should reverseits sign. In the first instance Q oscillates

with the field, while 1 does not oscillate, 1.e.,

2f

This regime is called the conduction regime. On the other hand if 1 oscillates with

1 1
Q(t+ﬁ> = —@(¢) and ¢(t+ ):w(t)

the field while Q docs not, i.e.,

v (t+ -21—f) _ (1) and Q (t+ -;f-) 0

we get the dielectric regime.

A simplified one dimensional linear analysis was developed by Srriitli et al. (1975)
for square wave excitation. Figure 1.13 gives the variation of threshold field for EIID
instability with tlie frequency of the applied field. The essential requirement for the
occurrence of the EHD instabilities in the conduction regime is that the director
relaxation time (T)must be longer than the charge relaxation time (7) (i.e., T > 7)
so that tlie space charges can develop in the medium. Further in this regime r < V%
where w is the frequency of the applied field, and hence charges follow the field I
(curvea). Thisissimilar to the DC field case. Since E =_ fes — M)

7172 dme
and Ae is negative, an increase in E results in a decrease o T. When T becoines
comparable to r weget arestabilisation branch (curveb). At frequencies higher than
1/7, the charges cannot follow the field. In this case the curvature of the director
can follow the field E if T is sufficiently small. This can be realised by increasing
both the wave vector g and the field E. For T less than 1/w and hence also less

than 7, tlie dielectric instability can set-in. Bodenscliatz'et al. (1988) have made

detailed calculatioris for the AC case taking into accourit rigid boundary conditions.

17
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In Chapter 111 wediscuss EHD instabilitiesin a different geometry. Here thefield
is applied in the plane o a homogeneously aligned NLC film, such that it actsin a
direction perpendicular to the director. We discuss an extension of the theoretical

model to this geometry and also report some experimental results.

1.10.3 Oblique-Roll Instability

It is observed in experiments under a low frequency AC or DC excitation that
EHD rolls are not normal to the undistorted director 7, but make an angle a with n
(Hilsum and Saunders, 1980; Hirata and Tako, 1981 and Ribotta et al., 1986). These
are referred to as oblique rolls and the angle « is the angle between the wavevector
of the oblique rolls and i (Fig.1.14). The following observations have been made on

the oblique ralls:

1. The oblique rolls are formed right at the threshold of instability at low fre-

guencies, up to a certain critical frequency f,.

2. The obliquity of the rolls decreases as the ternperature increases. After a

certain temperature they become normal rolls.
3. f, increases with the conductivity of the sample.

4. Beyond f, normal rolls are obtained at the threshold in the conduction regime.
But as the field is further increased the normal rolls first become undulatory

and then oblique.

The oblique rolls are now understood as arising from the flexoelectric effect (Mad-

husudana et al., 1987).



Fig.1.14: A photograph o oblique rolls. (from Hilsum and Saunders, 1980).



1.10.4 Traveling Wave I nstability

A travelling waveinstability has been observed in the conduction regime, especially
in thin samples (Rehberg et al., 1988). In this type of instability, the EHD pattern
moves parallel to the wavevector with equal probability of motion in either of the
two possible directions. However the theoretical models developed until now do
not give solutions corresponding to this type o instability. We have found that by
changing thesymmetry of the nematic cell by introducing asmall pretilt angle at the
bounding surfaces a propagating EHD instability under a DC field can be obtained.
The direction of propagation depends on the direction of the applied field. This
type of propagating EHD mode is due to additional flexoelectric torques which are
7/2 radians out of phase with the main torques responsible for EHD instabilities.

We describe this mode in Chapter II.
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