
CHAPTER I 

INTRODUCTION 

1.1 Nematic Liquid Crystals 

Many organic compounds whose molecules are rod-like or disc-like, i.e., have shape 

anisotropy, exhibit mesomorphic or liquid crystalline phases (see for e.g., de  Gennes, 

1975; Chandrasekhar, 1977; de Jeu, 1980). They exhibit some properties of crystals 

and some others of liquids. All of our studies have been made on the simplest 

type of liquid crystal, viz., the nematic phase. The nematic liquid crystal (NLC) is 

characterised by an orientational order of the anisotropic molecules about a direction 

which is denoted by a unit vector 6 called the director (Fig.l.1). The centres of mass 

of the molecules have a liquid-like random distribution. The orientation of 6 can 

be controlled by external forces like those imposed by the cell walls. The  director 

ii is apolar with +G and -6 being indistinguishable. Therefore nematics are not 

ferroelectric. There is a two-fold rotational symmetry about any axis normal to ii 

and reflection symmetry in planes parallel and perpendicular to  6. The  nematic 

phase is optically uniaxial with the optic axis along 6. 



Fig. 1.1: Schematic diagram showing the molecular arrangement in 
nematic liquid crystals. 



1.2 The Orientational Order Parameter 

In view of the apolar nature of the director, the orientational order parameter S is a 

second rank tensor. For cylindrically symmetric molecules it is defined as (Tsvetkov, 

1942) 

where 8 is the angle between the molecular long axis of a rod-like molecule and the 

director i i. The brackets < > indicate an ensemble average. From this expression, 

it is clear that for a perfect ordering S=l and in the isotropic phase S=O. Usually 

the maximum value of S in a typical NLC ranges from 0.6 to 0.8. The value of S a t  

the nematic-isotropic transition is usually about 0.3 to 0.5 and the nematic-isotropic 

phase transition has a first order character (de Gennes, 1975). 

1.3 Curvature Elasticity 

In nematic liquid crystals there is no translational order of the molecules. The 

director orientation of a nematic can gradually vary in space, with the magnitude 

of the order parameter remaining constant. Hence the fundamental elasticity of the 

NLC is associated with the curvature in the director field. The continuum theory of 

curvature elasticity was developed by Oseen (1933), Frank (1958) and Nehring and 

Saupe (1971). Taking into account the symmetry of the nematic phase there can be 

three elementary deformations, i.e., splay, twist and bend (Fig.l.2). The elastic free 

energy density, which is a scalar quantity can be expanded in terms of the director 

?t and its gradients as, 



Twist 

Bend 

Fig.l.2: The three principal types of deformations 

in a nematic (after Chandrasekhar 1977). 



where K1, K2 and K3 are elastic constants corresponding to splay, twist and bend 

deformations respectively. Usually K3 > > K2.  These constants are positive and 

are - lo-'' newton (Pi). These elastic constants are highly temperature dependent 

and vary approximately as the square of the order parameter S .  

In the absence of external fields, the condition for equilibrium can be obtained 

by minimising the energy given by equation (1.2) with respect to all variations of 

the director field A(7) and is given by (de Gennes, 1975) 

a + 
where aj = - , g,, = aJni,  C ( 3  is an arbitrary function of r' and h is called the 

ax j  
molecular field. In equilibrium the director will be parallel to the molecular field 

+ 
a t  each point. Otherwise, when f i  and h are not parallel, the director experiences 

a torque which tends to make them collinear. The torque density is given by I'd = 

A x id. In the presence of an external field acting on the nematic, in addition to id, 
the molecular field arising from the external field should also be considered. 

Nematics have anisotropic physical properties. In the following we give a brief 

description of some of the physical properties of NLC, which will be  relevant to our 

experiments. 

1.4 Dielectric Anisotropy A€ 

The dielectric displacement d induced in a nematic liquid crystal by an electric field 

I? is given by (de Gennes, 1975) 

where €11 and €1 are the principal dielectric constants parallel and perpendicular to 

the director respectively. The dielectric anisotropy A€(= € 1 1  - cL) may be positive 



or negative depending on the molecular structure. Ac is positive for molecules with 

permanent dipole moments parallel to their long axes. It is negative (ell < el) for 

molecules having permanent dipole moments at  large angles to the long axes. The 

dielectric anisotropy is temperature as well as frequency dependent. 

The free energy density of a nematic in an electric field is given by (de Gennes, 

The corresponding molecular field which is got by minimising fc,is given by 

Most of the nematic liquid crystals have diamagnetic anisotropy (A X) ,  which is 

defined in a similar fashion. This property is useful to align NLCs using magnetic 

fields. 

1.5 Electrical Conductivity 

In nematic liquid crystals impurity ions give rise to a weak electrical conductivity of 

the medium. The anisotropy of conductivity A a  = all -al, where all and a l  are the 

principal components of conductivity parallel and perpendicular to  6.  Usually for 

nematics A a  is positive as the ions can move more freely along 6 than perpendicular 

to  it. For an electric field E applied in an arbitrary direction, the current density is 

given by 
-6 

J = alE + A ~ ( ; L  - 

The electrical conductivity is a function of frequency of the applied AC field and 

also of the temperature of the nematic medium. Conductivity anisotropy plays 



an important role in the formation of electrohydrodynamic instabilities in NLC 

(Chapters I1 and 111). 

1.6 ~ l i ~ n r n e n t  of Liquid Crystals 

In an unaligned nematic medium the director ii varies gradually from point to point. 

However in experimental situations it is desirable to have a monodomain sample of 

a nematic, in which ii is uniformly aligned. In a planar or homogeneously aligned 

sample, the director ii is parallel to the bounding plates and hence the optic axis is 

parallel to the surfaces (Fig.l.3a). This alignment can be obtained by unidirectional 

rubbing of the glass plates (Chatelain, 1955; Guyon and Urbach, 1976) coated with 

a polyimide solution or by a vacuum coating of the plates with silicon monoxide at 

an oblique angle (Janning, 1972). The molecules sit in the grooves created by the 

rubbing action in polyimide coated plates, or in the grooves formed by the shadowing 

effect in SiO coated plates, to give rise to the planar alignment. 

In the homeotropic alignment the director is aligned perpendicular to the bound- 

ing plates and hence the optic axis is normal to them (Fig.l.3b). This is obtained 

by treating the glass plates with certain polymers such as octadecyl triethoxy silane 

(ODSE), which have chemical groups that can attach themselves to  the surface and 

have long chains which stick out of the surface. 

Treating one of the plates for homogeneous alignment and the other for homeotropic 

alignment, we get a hybrid aligned nematic (HAN) cell. The director pattern in such 

a cell has a splay-bend distortion as shown in figure 1 . 3 ~ .  We make use of such a 

geometry in some of our experiments (Chapters IV and V). 



Fig.l.3: Orientation of the director (i) in celIs with (a) homogeneous alignment, 

(b) homeotropic alignment and (c) hybrid alignment. 



1.7 Anchoring Energy 

The anchoring energy measures the strength of anchoring of the director along a 

well defined direction, known as easy axis at the surface. It depends on the chemical 

nature of the NLC and that of the surface. The anisotropic part of the surface free 

energy density is written as (Rapini and Papoular, 1969) 

where 0, and 8 are the polar angles made by the easy axis (no) and the actual 

orientation of the director (6) respectively with the surface normal. We is the 

anchoring energy for tilt orientation of the director. In chapter V we will describe a 

method of estimating We. 

The anchoring energy (W+) for azimuthal orientation can also be defined in a 

similar way. A method of measuring I/V4 will be described in Chapter VI. 

In many experiments (see chapter 111) external fields are used to  induce distor- 

tions in surface-aligned monodomain samples. If the surface anchoring is weak, the 

orientation of h at  the surface is affected by the bulk distortion. Then to determine 

the equilibrium configuration of the system the surface terms in the free energy will 

have to be considered. On the other hand, the surface terms can be neglected in 

the case of strong anchoring at  the surface (see Chapters V and VI). 

1.8 Hydrodynamics of Nematics 

The hydrodynamic properties of NLCs are complex due to the orientational ordering 

of the molecules. This is because the translational motion of a molecule gets coupled 

to  its rotational motion in the nematic phase. Flow can disturb the alignment of 

the director. Ericksen (1960, 1961, 1962) and Leslie (1966,1968) have developed a 



continuum theory of the hydrodynamics of nematics. In an ideal liquid with zero 

viscosity (Landau and Lifshitz, 1953; Feynmann et  al., 1964), the Euler equation is 

given by 

In this equation v is the velocity at a point (x,y,z), P is the pressure at  this point. p 

the density of the liquid, g the acceleration due to gravity and f the external force. 

The equation of continuity is given by 

The compressibility is quite small for liquids, and in the problems that we will dis- 

8 P  cuss, they can be considered to be incompressible and hence - = 0 and p =constant. 
at 

Hence equation (1.9) reduces to 

v.v'=o 

For a viscous liquid, an additional term to account for frictional force (f,;,,) should 

be added to the Euler equation (1.8). Then 

The viscous stress tensor (cT:~) is defined in terms of the gradients of velocity, as 

where i, j = x,y,z and q is the viscosity of the liquid. By considering a cubic volume 

element of moving liquid and using the spatial derivatives of the stress tensor, the 

viscous force may be calculated as qV2v'. Then the resulting equation of motion for 

an isotropic liquid can be written as, 



This is the well known Navier-Stokes equation. This has been extended to  NLCs by 

different groups and here we follow Leslie's approach (Leslie, 1966 and 1968). 

Leslie took into account the dependence of shear stress not only on the velocity 

gradients but also on the orientation and the rate of rotation of the director. The 

viscous stress tensor in its most general form, obtained from symmetry arguments, 

is written as (de Gennes, 1975) 

where are called the Leslie viscosity coefficients and they are of the order of 

1 dvj 

[ g] = Aji is the shear rate tensor. 0.01 to 0.1 I<gm-Is-'. Aij = - - + 
2 ax ,  

The rate of motion of the director relative to the background liquid is given by 

1 
wlicrc L3 = - (V x C )  is a11 a~igular v~locity. 

2 
-. r,;,, is the torque per unit volume on the director due to viscous forces anti can 

be written as (de Gennes, 1975) 

-. -t - - 
where hVi,, = ( y l N  + y2 A 4 ) .  71 = as - a 2  and y2 = as - a s .  Parodi (1970) 

using Orlsager's reciprocity relations showed that a 2  + a3 = - a s .  The a 4  term 

is independent of the director and corresponds to the viscosity ( 7 1 )  of an isotropic 

fluid. Now the equation of motion for the moving fluid can be written as 

-, 

The inertial term p(dv' /dt)  can be neglected in most problems. f is the external force 

acting on the fluid, for example due to the applied field l? acting 011 a field-i~idnccd 



space charge density Q (i.e., f= ~2). ( V  . z )  is the force due to the total stress in 

the medium. Since small deformations are involved in the problems considered, we 

simplify equation (1.17) by retaining only the linear terms. Then we get 

T11c simplified coupled equations for tlie director and fluid velocity (Eqn.l.18) a l o ~ ~ g  

with equation (1.10) are used in the study of EHD problems in later chapters of this 

tlicsis. 

1.9 Flexoelectricity 

A macroscopic polarisation can be induced in a nematic liquid crystal by splay arid 

bend distortions of the director field, as was first shown by Meyer (1'369). 'I'liis 

flexoelectric polarisation is given by 

where el and e3 are the two flexoelectric coefficients corresponding to splay and bend 

deformations respectively. According to hleyer's model only nematics made up of po- 

lar molecules with shape assymmetry can be expected to exhibit flexoelectricity. 170r 

instance (Fig.l.4) a nematic consisting of pear shaped molecules with longitudi~ial 

dipole moments becomes polarised under a splay distortion and a nematic made of 

banana shaped molecules with transverse dipole moments becomes polarised urldcr 

a bend distortion. However, in the undistorted state, because of equal probability of 

opposite orientations the dipole moments of tlie molec~~les cancel oric anotlicr aricl 

the net dipole density is zero. For weak distortions the flexoelectric polarisation is 

given by tlie equation (1.19). This expression is the most general polar vector that 



can be constructed from the apolar director field h, arid its first order derivatives. 

el and e3 have the dimensions of chargellength. 

Another microscopic model was presented by Prost and Marcerou (1977) in which 

tlie contributions to flexoelectric effect from quadrupole moments of the rnoleculcs 

are considered. In the undistorted state (Fig.l.5a), there is no net dipole moment 

due to the symmetry of the arrangement of the quadrupoles. But when there is 

splay deformation, there is a net dipole moment (Fig.l.5b) and hence the niediurn is 

polarised. Though this quadrupolar contribution to flexoelectric effect is of the salric 

magnitude as due to dipolar contribution, the former is independent of the sliape 

of the molecules. Since all nematogenic molecules have finite quadrupole moments, 

flexoelectric effect is an universal property of nematics. 

111 t l ~ c  ~ S P S ( - I I C P  of a11 ( ~ x ! , c s I I ~ ~  ol(>ctsic fidd E ,  I , ~ I ( %  j ) o I i ~ ~ i ~ i ~ t , i ( ) ~ ~  1' ( . O I I ~ ) ~ O S  I ~ I I ( ~ ~ I I . ~ Y  

with E leading to a free energy density 

This is minimiscd to get the corresponding molecular field 

-, 
lIjl = e l { E ( d i v h )  - g - a d ( E .  h ) }  + e s { E  x ( c u r l  h )  - c u r l ( d  x h ) )  (1.21) 

The linear dependence of the flexoelectric energy on the gradient in the director 

field has some interesting consequences. For instance if the distortiori is planar rep- 

resented by the angle O ( z ) ,  then f f1 identically satisfies the Euler-Lagrange equation 

I r e z  = ( )  and 0, .  = (g), and therefore does not give rise to any vo1u111; 

torque. When there is weak anchoring at the surface the flexoelectric effect results 

in a surface torque. This effect is used i11 tile estirilation of tlie ancliosing s t r e~ ig t l~s  



Fig.l.4: Meyer's model of flexoclectricity. The netliatic cornposed of asyrllrnetric 

polar molecules has no net polarization in the undeformed state (a  and c ) ,  but 

dcvcloj~s a polarization urider splay (I))  and berid (d)  defor~~iation. (after Mcycr 

1969). 

Fig.l.5: (a) A regular stacking of quadrupoles. Because of the symmetry of the 

arrangement of the quadrupoles there is no bulk polarisation. (b)  The structure 

bcco~~ics polariscd wlic~i subjcctcd to a splay distortio~l. (altcr I'rost and 

Marcerou, 1977). 



in a H A N  cell (Chapter V). However if the distortion is non-planar, and is described 

by the angles B(z)  and $ ( z ) ,  then ff' gives rise to a bulk torque. This is made use 

of in the determination of flexoelectric coefficients of NLC (Chapter IV). 

1.10 Electrohydrodynamic Instabilities in Nematics 

Coi~vcctivc hytlrodynarnic instabilities arc well krlowri i l l  isotropic liqriitls. I'or cx- 

ample, in Rayleigh-Benard instability (see for example Dubois-Violette e t  al.,  1978) 

a regular convective flow of liquids sets in when an  adverse temperature gradient 

exceeds a certain value. In this case the convection sets in due to  the  action of the 

gravitational field on a vertical density gradient. 

Hydrodynamic instabilities are also observed in weakly conducting isotropic liq- 

uids rintlcr tllc actioli of L)C or AC fields (L3liriov, 1983). Fclici (1'36'3) proposotl a 

mechanism in which unipolar charge injection by one of the electrodes results in a 

lion-uniform distribution of space charges (Fig.l.6). The  interactiori of the extcrlial 

field with these charges gives rise to a force which destabilises tlie medium restilt- 

ilig in a cellular flow iri the rnediurn. Ilowever this iiistahility disa~>pcars a l~ovc  a 

frequency T-I ,  where T is the transit time for injected charge carriers. 

Convective instabilities are all the Iriore interesting i r i  tlie case of nerriatic liciuici 

crystals with negative or slightly positive Ac and positive A a  (see for e.g., de  Gen~ics ,  

1975). Under tlie action of an external electric field such NLC exhibit convective in- 

stabilities, called electrohydrodyamic (EHD) instabilities, which were first observed 

during 1930s (Freedericksz and Zolina, 1933 and Freedericksz and Tsvetkov, 1934). 

But  detailed studies were made only in the late 60s by which tinie the possi1)ility 

of using EIID instabilities in display devices was recognised. A typical expe r i~~ len -  

tal set up (Fig.l.7) to study EHD instabilities in NLCs consists of two transparerit 



Fig.l.6: Schematic diagram showing unipolar charge injection from one of the 

electrodes illustrating Felici mechanism. 

I G I ~ S S  plate 
I T O ,  

~ i ~ u i d  Crystal Spacers 

1 Glass plate 

I ~ i ~ h t  beam 

Fig.l.7: Experimental arrangement for observing Williams Domain Mode 

(WDM). 



conducting glass plates, which are treated to get a homogeneous alignment of the 

ncmatic director along the X-axis, say. These are used in the construction of a 

cell of thickness N 20pm. The cell is filled with an appropriate NLC. Now with 

the application of a voltage above a threshold value between the glass plates, i.e., 

along the Z axis, the medium gives rise to an optical pattern (Fig.l.8) consisting of 

regular, parallel striations, perpendicular to the undistorted director, i.e., along the 

Y axis. 'l'liis is called the Williams Domain Mode (WDM) (Williams, 1963). The 

important observations on this instability may be su~nrnariscd as follows: 

a. WDM is characterised by a threshold voltage which is independent of cell 

thickness. 

b. WDM is observable under DC fields or low frequency AC fields. 

c. The width of these domains is of the order of the cell thickness. 

d. 'l'here is cellular fluid motion within the domains which is clearly seen by the 

movement of tracer dust particles. Further, fluid motion has opposite vorticity 

in adjacent domains (Fig.l.9). 

1.10.1 The Carr-Helfrich Mechanism 

Carr (1963) suggested that anisotropy of conductivity may give rise to space charge 

formation due to ion segregation under the action of an external clectric field in tlic 

liquid crystal. 'l'his was made use of by Helfrich (1969) while proposing a mechanism 

for Williariis dornain instability. 

Consider an infinitesimal bend deformation in a homogeneously aligned nematic 

film with l~cgative tliclectric atiisotrol>y (Ac) arid positive co~i(luctivity ariisott.opy 



- n -+ 

Fig.l.8: Williams Domain Mode (WDM) at a voltage slightly above the threshold 

value. li indicates the direction of aligrirnent of the director (d = 40}~?72). (Itef. 

Blinov, 1983). 

I 
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Fig.l.9: Schematic diagram of Williams domains indicating (a)  flow and (b)  

tlirector oric~itation. * + indicate bright foci. 

Fig.l.10: Space charge formation in an applied field E, caused by a bend 

fluctuatio~l of the director in a NLC with positive Aa. Ex is the resulting 

transvcise field. 



(Au) .  If it is subjected to a DC electric field (E) between the glass plates, i.e., 

along the Z-axis (Fig.l.lO), the ions move more easily along the director than in a 

perpendicular direction, since all > u l .  This results in space charge formation givi~ig 

rise to an internal transverse electric field ( E z )  along the X axis. Tlie external field 

E acting on these space charges (Q) produces a force, which tends to  set them in 

 lotion resulting in a bulk flow of the nledium, when the field I3 is srifficicntly Iargc. 

This hydrodynamic torque along with the dielectric torque due to  internal electric 

field E, produces a destabilising effect on the orientation of the dircctor, while tlic 

dielectric torque due to the external field E and the elastic torque have stabilisi~ig 

effects on the director orientation. Hence if E is sufficiently large, an  infinitesimal 

bend distortion in the director field grows and the system becomes unstable. This 

results in a breaking up of the medium into a number of hydrodynamic rolls or 

domains. This cellular flow of the medium produces a static periodic deformation 

of tlic director ficl(1 and gives rise t,o tllo optical patter11 as (I(-scril)c~tl 1)oforc. 

A linear one dimensional theory of EIlD instabilities in which the boundary 

corlditiolls are ignored was worked out by llelfrich (1969). The  nlcdiu~ll  is assutned 

to  be  of an infinite extent in the XY plane so that the lateral boundary conditions 

may be neglected. An infi~iitesimal bend fluctuation of tlie director field is co~isitlerctl 

in the XZ plane with the director 6 making a small angle 0 with the X-axis. Let 

Q be tlie space charge density created in tlie medium. As long as  tlie boundary 

conditions are neglected, 0 and all other quantities depend only on X. Because 

of tliis simplification, only tlic Z-co~riponent of velocity appears i11 the  cquatioris. 

Retaining only the linear terms, the director in the distorted s tate  is given by 

li = (cos 8, 0 ,  sin 0) 21 (1 ,0 ,0)  

? 1 1 lie systc~ii  is described by the followirig equations: 



-, .+ 
1. The Poisson equation div D = 47rQ, where D, the displacerncnt vector is givc:~~ 

by 
-, 
D = Lp!? + (L,, - Ll)(+i -2) il , 

substituting for d in the Poisson equation and simplifying, we get 

2. As we are considering a DC applied field the charge conservation equation is 

given by 

d i v ( j )  = 0 

-, 
where is the current density given by f = oil? + Ao(+i E)+i . From these 

two equations we get 

3. Using equation (1.18) the equation of motion in the linear regime is given by 

1 
where 11 = -(a4 + ag - a2) and a's are viscosity coefficients. 

2 

4. The torque balance equation is given by 

-. 
where T h y  is the hydrodynamic torque, rd the elastic torque and fi the  dielec- 

tric torque. This reduces to 



Eliminating E,, v, and Q in terms of 4 from equations (1.23) t o  (1.26) we get 

111 this model, the rolls are assumed to be formed with their wavevector along l i .  

Taking the solution of the form 0 = 0, cos(qX), we get for the threshold field 

Thus the threshold field is a function of the wavevector (q) of the distortion. The 

value of q cannot be predicted correctly by this model since the boundary conditions 

are not taken into account. Since the distortion energy is larger for larger q, while 

tlie dissipation due to the transverse flow is larger for smaller q, physically we can 

assume that the width of the domains must be comparable to  the thickness of the 

nematic layer d. Hence putting q = ( . l r /d)  in equation (1.28), a voltage threshold is 

obtained: 

This expression is found to be in qualitative agreement with experiments (Blinov, 

1'383). AII extelisiorl of Ilelfrich rriodel iricludirig tlie boundary corlditiorls was de- 

veloped by Penz and Ford (1972). The results broadly support the Helfrich model. 

1.10.2 Excitation with AC Electric Fields 

1)cl)ending oil the frecluency of the apl)lied AC field the GIID instal>ilities call I)c 

classified into (a)  conduction and (b) dielectric regimes. 



The conduction regime is observed at frequencies below a certain cut off fre- 

quency (f,) (Fig.l.11). The pattern observed in this regime is similar to WDM 

having a voltage threshold. 

The dielectric regime or fast turn off niode is observcd a t  frcqucncies above tlic 

cut off frequency (f,) (Heilrneier and Helfrich, 1970 and Orsay Liquid Crystal Group, 

1970, 1971). Unlike in the case of WDM, here the domain width is considerably less 

than the thickness of the nematic film. On increasing the applied voltage above 

t l ~ c  t,lireshold valuc, tllcsc dorriai~is bcrid and niove giving rise to what arc called 

C h e v r o n  P a t t e r n s  (Fig.l.12). This regime has a field threshold Eth in contrast to 

the voltage threshold Kh observed in the conduction regime. The threshold field 

varies with frequency of the applied field. Further the cut-off frequency f, increases 

with the conductivity of the sample. 

Dubois-Violette et  al. (1971) and Smith et al. (1975) extended the Carr-Helfricli 

~liodcl to explain EIID iristabilities under AC field excitation. Two coupled linearised 
dB 

equations for the space charge density Q and curvature II, = - are obtained: 
ax 

and 

where 

1 
- = 47r (:) is the relaxation rate of the space charges 
7 

1 c1AcE2 
T 

- I is the relaxation rate of the director 
47r611 

1 1 4 
711 = - ( a 4 $ a 5 - - a 2 ) ,  arid 1 ] 2 =  - ( a g + c r 4 + a 6 )  - - 

2 2 Y 1 



Fig.l.11: The threshold voltage of the AC instabilities in MBBA as a function of 

the frequency of the applied field. Regions I and I1 correspond to the conduction 

regime and the dielectric regime respectively. (Orsay Liquid Crystal Group, 1970). 



Fig.l.12:Chevron pattern observed at a voltage slightly above the threshold value 

in the dielectric regime. (from Blinov 1983). 
* # 



Here yl = (a3 - a2), and the a's are Leslie viscosity coefficients. 

Frorn equations (1.30) and (1.31) it is clear that as E changes sign after every 

half a cycle, either Q or $ should reverse its sign. In the first instance Q oscillates 

with the field, while $ does not oscillate, i.e., 

= -Q(t) and 1C, 

This regime is called the conduction regime. On the other hand if $ oscillates with 

the field while Q docs not, i.e., 

= -$(t) and Q 

we get the dielectric regime. 

A si~nplified one dimensional linear analysis was developed by Srriitli e t  al. (1975) 

for square wave excitation. Figure 1.13 gives the variation of threshold field for EIIII 

instability with tlie freque~icy of the al)l)lied field. The esseritial rcquirer~ie~lt for tlle 

occurrence of the EHD instabilities in the conduction regime is that the director 

relaxation time (T) must be longer than the charge relaxation time (T) (i.e., ?' > T )  

1 
so that tlie space charges can develop in the medium. Further in this regime T < - 

W 

wlicre w is the frequency of the applied field, and hence charges follow the field 1:' 
1 e1AcE2 

(curve a). This is similar to tlie DC field case. Since - = -- 
T ~ 1 7 7 ~  4 ~ ~ 1 1  

and Ac is negative, an increase in E results in a decrease of T. When T becorrles 

comparable to T we get a restabilisation branch (curve b). At frequencies higher tliari 

117, the charges cannot follow the field. In this case the curvature of the director 

can follow the field E if T is sufficiently small. This can be realised by increasing 

both the wave vector q and the field E. For T less than l / w  and hence also less 

than 7, tlie dielectric instability can set-in. Bodenscliatz' e t  al. (1988) have matle 

dctailctl calculatioris for the AC case taking i~i to accourit rigid t~ouridary conditions. 
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STA B LE 

UNSTABLE T 

Fig.l.13: The variation of the threshold field with the frequency of the applied 

electric field, obtained from numerical calculations for square wave excitation. The 

curves labelled a,b and c correspond to the onset of the conduction regime, the 

restal>ilization branch and the onset of the dielectric regime, respectively. (from 

Smith e t  a!. 1975). 



In Chapter I11 we discuss EHD instabilities in a different geometry. Here the field 

is applied in the plane of a homogeneously aligned NLC film, such that  it acts in a 

direction perpendicular to the director. We discuss an extension of the theoretical 

model to this geometry and also report some experimental results. 

1.10.3 Oblique-Roll Illstability 

It is ohserved in experiments unclcr a low frequency AC or DC excitation that 

EHD rolls are not normal to the undistorted director i i ,  but make an angle cr with ii 

(Hilsum and Saunders, 1980; Hirata and Tako, 1981 and Ribotta et al., 1986). These 

are referred to as oblique rolls and the angle o is the angle between the wavevector 

of the oblique rolls and f i  (Fig.l.14). The following observations have been made on 

the oblique rolls: 

1. 'l'he oblique rolls are formed riglit at the threshold of instability a t  low fre- 

quencies, up to a certain critical frequency f,. 

2. The obliquity of the rolls decreases as the ternperature increases. After a 

certain tclriperat~~rc they 11cco11ie ~lor~rlal rolls. 

3. fo increases with the conductivity of the sample. 

4. Beyond fo normal rolls are obtained a t  the threshold in the conduction regime. 

But as the field is further increased the normal rolls first become undulatory 

and then oblique. 

The oblique rolls are now understood as arising from the flexoelectric effect (Mad- 

husudana e t  al., 1987). 



Fig.l.14: A photograph of oblique rolls. (from Hilsum and Saunders, 1980). 



1.10.4 Travelling Wave Instability 

A travelling wave instability has been observed in the conduction regime, especially 

in thin samples (Rehberg et al., 1988). In this type of instability, the EHD pattern 

moves parallel to  the wavevector with equal probability of motion in either of the 

two possible directions. However the theoretical models developed until now do 

not give solutions corresponding to  this type of instability. We have found that by 

changing the symmetry of the nematic cell by introducing a small pretilt angle a t  the 

bounding surfaces a propagating EHD instability under a DC field can be obtained. 

The direction of propagation depends on the direction of the applied field. This 

type of propagating EHD mode is due to additional flexoelectric torques which are 

7r/2 radians out of phase with the main torques responsible for EHD instabilities. 

We describe this mode in Chapter 11. 
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