CHAPTER IV

ELASTICITY AND ORIENTATIONAL ORDER IN SOME TRANS-p-n-ALKOXY-Q-METHYL CYANOPHENYL CINNAMATES

Introduction

In this Chapter we present the elastic constants for a new series of compounds, namely, trans-p-n-alkoxya-methyl cyanophenyl cinnamates. The transition temperatures are given in Table 4.1. The compounds were prepared in our Chemistry laboratory by Mr. B.K. Sadashiva (1976). The compounds are colourless, chemically stable, fairly low temperature liquid crystals. They have strong positive dielectric anisotropy. In this homologous series third, fifth, sixth and seventh members exhibit monotropic mematic phases while the tenth member exhibits a monotropic smectic A phase also. We have studied the second, third, fourth, eighth, ninth and tenth homologues of this series,

because these exhibit mematic phase over reasonably large temperature ranges. It is found that these compounds supercool considerably. For this reason, we have made measurements only while cooling the sample. The viscosity of these esters is much larger than that of the cyanobiphenyls. This is clear from the time

taken by a deformed sample to relar back after the deforming field is removed.

This fact has to be borne in mind while measuring the critical field: the magnetic field is reduced in steps of ~ 25 gauss and 4 long time (~ 1 min) is: allowed to elapse between successive steps.

As we shall see later in this Chapter, the splay elastic constant of 10 OMCPC does not diverge as smecticnematic transition is approached while k_{22} and k_{33} do confirming that the lower temperature phase is smectic A

The complete experimental details for the measurements of k_{11} , k_{22} and k_{33} have already been given in Chapters II and III. We shall now present the results.

Results and calculations

For the calculation of the temperature variation of elastic constants we need the values of S and S_{\pm} The relative values of S and P are calculated from the refractive index measurements (see Appendix II).

(1) <u>Refractive index</u>: The values of n_0 and n_e for three wavelengths λ 5461 Å, λ 5893 Å and λ 6328 Å

Figure 4.1a

The refractive indices of 2 OMCPC as functions of the relative temperature; The circles, triangles and squares are the values for λ 5461 A, λ 5893 Å and λ 6328 Å respectively.

Figure 4.1b

The refrac ive indices of 30MCPC as functions of the relative temperature. Theocircles, triangles and squares are the values for λ 5461 A, λ 5893 Å and λ 6328 A respectively.

Figure 4.1c

The refractive indices of 4 QMCPC as functions of the relative temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively.

Figure 4	Ļ	. 1	đ
----------	---	-----	---

The refractive indices of 8 OMCPC as functions of the relative temperature. The circles, triangles and squares are the values for λ 5461 Å, A 5893 Å and λ 6328 Å respectively.

Figure 4.1e

The refractive indices of 9 OMCPC as functions of the relative temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively,

Figure 4.11

The refractive indices of 10 OMCPC as functions of the relative temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively;

are given in Table 4.2. They are plotted in figure 4.1. The values from different samples are marked separately.

(ii) <u>Density</u>: We have measured the densities
 of only two compounds in the series. The measurements for
 were made for 2 OHOPC at 13°C below T_{NI} and 8 OMOPC at
 8°C below T_{NI}, using the capillary method (see Appendix
 II). From the refractive index data, a is calculated
 for these compounds for different wavelengths.

Assuming a uniform increment $(\frac{\bar{\alpha}_8 - \bar{\alpha}_2}{6})$ in $\bar{\alpha}$ on going from one to the next higher member of the series, $\bar{\alpha}$ is estimated for other compounds also. Using the values of $[(n^2 - 1)/(n^2 + 2)]$ normalized to λ 5893 Å values, the densities at $(T_{\rm NI} - T) = 10^{\circ}$ C for other compounds are calculated. Table 4.3 gives the measured and estimated values of β and $\bar{\alpha}$.

Assuming again that $\overline{\alpha}$ is temperature independent, we have calculated the temperature variation of β using $\overline{\alpha}$ and $(\overline{n^2} - 1)/(\overline{n^2} + 2)$ (see equation (3.1)). Table 4.4 contains the density values calculated for various relative temperatures using equation (3.1). Two independent measurements on different samples were made for all compounds. The temperature variation of density is plotted in figure 4.2.

Variation of the density with relative temperature of six homologues of n OMCPO calculated from the optical data. Each symbol represents a value averaged over the calculations for three wavelengths.

(111) Order parameter 5: The temperature variation of order parameter of 8 OMCPC has been recently determined by Fernandes (1976) from I.R. dichroism studies. The temperature variations of S and $(n_e^c - n_o^2)/(n^2 - 1)$ agree guite well. With $\frac{\overline{a}}{\sqrt{a}}$ = 1.35 for λ 5893 Å, the order parameter calculated from optical anisotropy studies agrees with that from I.R. studies within +0.5% throughout the entire nematic range. Thus \triangle as omore was calculated using a value from density data. The change in $\Delta \alpha$ on going from one member of the series to the next was calculated assuming an all-trans configuration of the end chain for all the members studied. The details of calculations are given in Appendix II. (As mentioned in the previous chapter, even if the all-trans configuration is not valid. the error involved in estimating $\Delta \alpha$ is small because change of $\Delta \alpha$ from one member to the next is less than 1%.) The estimated values are given in Table 4.5. The temperature of a and variation of absolute values of S thus calculated are given in Table 4.6. They are represented graphically in figure 4.3.

K

(iv) <u>Elastic constants</u>: As shown in Chapter I we have

Variation of the order parameter with temperature for sir homologues of nOMCPC. The values for λ 5461 Å and λ 6328 Å are normalized to that for A 5893 Å at the lowest temperature.

$$k_{11} = \frac{H_c^2 x_o^2}{x^2} \Delta x_{on} \cdot s \cdot f$$

Since the values of $\Delta \chi_{om}$ of the compounds studied here are unknown, we have calculated the values of $k_{11}/\Delta I$ as functions of temperature (AX is the anisotropy of the magnetic susceptibility of a gram molecule of thr substance). As mentioned in Chapter II we assume that the anisotropy of susceptibility is essentially determined by the aromatic part of the molecule so that AX is constant far all members of the series.

$$\frac{k_{11}}{\Delta K} = \frac{H_0^2 x_0^2}{\pi^2 M} S \cdot S$$
 (4.1)

Tables 4.7, 4.8 and 4.9 give the temperature variations of splay, twist and bend constants respectively. We have least squaresfitted the values to an equation $\frac{k_{11}}{\Delta X} = CS^{X}$ (Table 4.10) except for k_{22} and k_{33} of 10 CMCPC. Figures 4.4, 4.5 and 4.6 give the values of $k_{11}/\Delta X$, along with the fitted curves.

Discussions

For the sake of comparison, we have plotted the nematic-isotropic transition temperatures and the

Figure 4.5

Temperature variation of $k_{22}/\Delta K$ of n-OMCPC.

Temperature variation of $k_{33}/\Delta K$ of n-OMCPC.

corresponding heats of transition (Sadashiva, private communication) of those homologues studied in figure 4.7. In the lower section of the figure, S, $k_{11}/\Delta E$, $k_{22}/\Delta E$ and $k_{33}/\Delta E$ at $T_{\rm NI}-T = 3^{\circ}C$ ere given. It is obvious that the behaviour in this series is more complicated than in the case of the biphenyls. Firstly $T_{\rm NI}$ alternates regularly in both the groups of three compounds (I group - 2 OMCPC, 3 OMCPC, 4 OMCPC, and II group - 8 OMOPC, 9 OMCPC, 10 OMCPC) that we have studied. The even members have higher transition points, as can be expected for compounds with alkoxy end chains. The alternation is particularly strong in the first group with lower homologues, again as is to be expected.

The order parameters also exhibit a corresponding alternation, although one sees a considerable increase in the order parameters of the second group as compared with those of the first group. The heats of transition exhibit a trend which is similar to that of 8, as is to be expected.

All the elastic constants alternate in both the groups, although there is no uniform trend amongst the three elastic constants. Thus, although the bend constant decreases considerably between the second and

The nematic-isotropic transition points (+), the beats of transition (\triangle), the order parameters (×), splay elastic constants (\circ), twist elastic constants (\vee) and bend elastic constants of n-OMCPC as functions of the number of carbon atoms in the end chain. The parameters plotted in the lower section of the figure are those at $T_{\rm NY} = T = 3^{\circ}$ C. $k_{\rm ij}/\Delta X$ are in egs units.

third members, there is hardly any increase between third and fourth members despite the fact that both T_{WT} and S show considerable increases between the Utter two members. A similar decrease between eighth and minth members and a levelling off between minth and tenth members is also seen. However the tenth member exhibits a smectic phase at lower temperatures and hence k_{33} increases strongly as the temperature is decreased (figure 4.6). k₂₂ of the second group of homologues behaves in a similar fashion. On the other hand the splay constant increases considerably between Thus in tenth member, the ninth and tenth members. k₁₁ and k₃₃ near T_{NT}, have values close to each other. This is reminiscent of the behaviour of 80B in which k₁₁ has actually has larger value than k₃₅ near T_{NI}. Like the order parameters both k33 and k11 increase considerably between 4 OMCPC and 8 OMCPC.

We have also calculated the temperature dependence of the ratios of elastic constants in all the compounds (Table 4.11). k_{11}/k_{22} can be roughly taken to be temperature independent in all compounds except in 4 OMOFC and 8 OMOFC where it decreases with increase in temperature. In all the cases, k_{33}/k_{11} and k_{33}/k_{22} decrease as temperature increases. Further, though

these ratios at any given relative temperature are comparable for neighbouring homologues, they are by no means constant throughout the series. It is also interesting to note that at any given relative temperature k_{33}/k_{22} has the lowest value for 4 OMCPC.

Fitting the data to a formula of the type $(k_{11}/\Delta K) = CS^{X}$, we notice that k_{11} and k_{22} of the second, third, fourth and eighth homologues follow approximately the mean field trend sf x being close to 2, with the exception of k22 of 4 OMCFC for which x is considerably less than 2 (4 CMCPC has the lowest index x for k_{33} also). An index x which is lower than 2 for k_{22} may mean that the ratio ξ_1/ξ_1 decreases with decreasing temperature, i.e., the cybotectic group with smectic-like order is getting elongated at lower temperatures. In the case of k_{33} , x is considerably greater than 2 for all %he compounds suggesting an increase in En as the temperature is decreased. However there are no X-ray data available as yet, on any of these compounds. It would be interesting to test the above inferences from the 1-ray studies.

Thus the properties of this series of compounds changes in a fairly complicated manner. Although the different properties show the odd-even effect, there

appears to be considerable differences between the two groups that are studied. Since the molecules are strongly polar, with a nitrile group sticking at one end of the molecule, we may have again double-molecular layers due to strong antiparallel correlations between neighbouring molecules (see for example McMillan 1973, Leadbetter et al. 1975). The substantial increases in S, \triangle H and k₃₃ between 4 OMCFC and 8 OMCPC are particularly noteworthy. The fifth, sixth and seventh hosologues form monotropic negatic phases (figure 4.8). From the figure it is evident that the melting point of the crystal steadily decreases between the second and fourth homologues and then increases drastically between the fourth and fifth members and thereafter again decreases steadily till the ninth member. Thus, it is possible that the crystal structure may change considerably between the fourth and fifth members. Thus the two groups of compounds studied may have different crystal structures. It is also quite probable that the structure: of short range order in these two groups of compounds is somewhat different. This should be such as to give rise to the elevated values of S, \triangle H and k₃₃ for the second group of compounds. Again, it would be interesting to check this point by X-ray studies.

Transition temperatures of second to tenth homologues of nOMCPC as functions of the number of carbon atoms in the end chain: solid-nematic or solid-isotropic transition pointa (circles), nematic-isotropic transition points (squares) and smectic-nematic transition point (triangle).

The temperature variations of density in all the members of the series are shown fa figure 4.2. Normally, the addition of a CH2-group would tend to reduce the density of the liquid crystal (see e.g. figure 3.6 for cyanobiphenyls). However we see that between 2 OMCPC and 3 OMCPC there is actually a small increase in the density in the nematic phase at the same relative temperature. This may be related with the considerable reduction in T_{nT} itself between them (figure 4.7). The density drops considerably between 3 OMCFC and 4 OMCFC. The drop appears to be slightly more than what one would expect from the addition of a CH2 group and the increase in THI between the two compounds Thus the structure of 4 OMCPC appears to be slightly less closely packed than in the other cases. This should also explain the fact that k_{xx}/k_{yy} has the lowest values for this compound and that the index x for k_{22} is < 2 . The densities of the compounds in the second group (eighth, ninth and tenth members) show the normal trend.

References

Fernandes, J.R. 1976 (private communication).

Leadbetter, A.J., Richardson, H.M. and Colling, C.N. 1975 J. de Physique C1-37.

McMillan, W.L. 1973 Phys. Rev. <u>A7</u>, 1419.

Sadashiva, B.K. 1976 Mol. Cryst. Liquid Cryst. 35 (3 & 4), 205.

Table 4.1

(in °C) Transition temperatures/of trans-p-n-alkofgadashiva methyl-p'-cyanophenyl cinnamate (nOMCPC) 1976).

$$C_{n} H_{2n+1} \longrightarrow \begin{array}{c} H \\ C \\ C \\ C \\ C \\ H_{3} \end{array} \xrightarrow{o} C = C \\ C \\ C \\ C \\ H_{3} \end{array} \xrightarrow{o} C = N$$

		crystal-smectic or orystal-nematic or crystal-isotropic	smectic- nematic	nematic- isotropic
2	OMCPC	80	-	90.6
3	OMCPC	70.5-71	-	66 .6 #
4	omere	63	-	73.8
8	OMCPC	58	-	72.0
\$	OMCPC	56		70.3
10	omopo	62.8	57 • 1 [#]	73.5

*monotropic transitions

T _{ur} -T	λ 5461		λ5	λ 5893 Å		28
°C NT	no	ne.	no	ne	no	ne
$\begin{array}{c} 0.5 & (1)^{*} \\ 1 & [II]^{+} \\ 2.7 & [I] \\ 3.8 & (II) \\ 6.2 & (I) \\ 7.4 & (II) \\ 10.6 & (I) \\ 13.0 & (II) \\ 14.9 & (I) \\ 18.0 & (II) \\ 20.0 & (I) \\ 23.6 & (II) \\ 26.4 & (I) \\ 29.2 & (II) \\ 29.2 & (II) \\ 31.7 & (I) \\ 34.0 & (II) \\ 37.2 & (I) \\ 40.0 & (II) \end{array}$	1.555 1.555 1.549 1.547 1.545 1.545 1.544 1.542 1.540 1.539 1.539 1.538 1.538 1.537 1.537 1.537 1.537	1.704 1.709 1.720 1.725 1.725 1.725 1.725 1.734 1.753 1.757 1.757 1.767 1.773 1.778 1.782 1.786 1.789 1.797	1.546 1.543 1.543 1.537 1.536 1.537 1.536 1.533 1.533 1.533 1.533 1.531 1.531 1.531 1.531	1.651 1.706 1.706 1.721 1.721 1.724 1.723 1.738 1.748 1.748 1.758 1.758 1.762 1.766 1.770 1.773 1.778 1.781	1.543 1.540 1.538 1.535 1.5535 1.5531 1.5528 1.5528 1.5527 1.5527 1.5527 1.5527 1.5527 1.5527 1.5527 1.5527	1.682 1.689 1.695 1.701 1.710 1.714 1.722 1.727 1.727 1.737 1.737 1.741 1.755 1.755 1.758 1.761 1.761 1.769
		· (11) 3 (OMCPC			
0.3 (I) 2.3 (II) 3.8 (I) 4.2 (I 6.9 (I 8.2 (I) 9.7 (II) 13.1 (I) 13.5 (II) 18.3 (II) 18.3 (II) 22.9 (II) 25.6 (I) 28.1 (II) 32.6 (II)	1.559 1.5552 1.55529 1.5548 1.5466 1.5444 1.5443 1.5443 1.5443	1,696 1.707 1.715 1.717 1.726 1.730 1.734 1.743 1.743 1.744 1.753 1.761 1.761 1.764 1.768 1.774	1.553 1.548 1.546 1.545 1.543 1.542 1.541 1.540 1.538 1.538 1.538 1.537 1.537	1.683 1.695 1.703 1.704 1.713 1.717 1.721 1.726 1.730 1.739 1.746 1.750 1.759	1.548 1.540 1.538 1.538 1.537 1.537 1.533 1.533 1.533 1.533 1.533 1.533	1.672 1.686 1.693 1.703 1.707 1.707 1.710 1.718 1.720 1.727 1.739 1.739 1.742 1.748

Table 4.2: Refractive indices of nOMCPC (i) 2 OMCPC

		(Ail)	4 OMCP	Ç		
T _{NI} -T	λ 54	61 Å	λ 5 8	93 Å	λ6328 Å	
°C	no	ne	no	ne	no	ne
-0.2 (1)	1.	592	1.	584	1.5	78
$\begin{array}{c} 0.6 & (11) \\ 0.8 & (1) \\ 2.3 & (11) \\ 2.7 & (1) \\ 4.6 & (11) \\ 5.7 & (1) \\ 7.6 & (11) \\ 9.0 & (1) \\ 11.4 & (11) \\ 12.6 & (1) \\ 14.8 & (11) \\ 16.2 & (1) \\ 18.1 & (11) \\ 20.1 & (1) \\ 22.9 & (11) \\ 24.5 & (1) \\ 27.6 & (11) \\ 28.9 & (1) \\ 32.4 & (11) \end{array}$	1.552 1.548 1.546 1.546 1.546 1.542 1.542 1.539 1.538 1.536 1.535 1.535 1.535 1.5334 1.533 1.533 1.533 1.533 1.533 1.533	1.677 1.686 1.692 1.697 1.703 1.709 1.714 1.720 1.724 1.728 1.735 1.735 1.738 1.735 1.738 1.747 1.750 1.754 1.756 1.761	1.546 1.542 1.540 1.538 1.536 1.536 1.537 1.531 1.530 1.530 1.529 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528	1.665 1.670 1.680 1.685 1.691 1.697 1.701 1.707 1.711 1.715 1.718 1.722 1.724 1.729 1.722 1.736 1.740 1.740 1.740	1.540 1.537 1.535 1.533 1.529 1.528 1.528 1.526 1.5225 1.5224 1.5225 1.5224 1.5225 1.5224 1.5223 1.5223 1.5223 1.5223 1.5223	1.657 1.665 1.670 1.675 1.682 1.688 1.691 1.697 1.705 1.708 1.712 1.715 1.718 1.726 1.729 1.731 1.735
adda ann adas the hea	يون جو حد خو	(iv) 8	OMORC			
-1.1 (I) -0.6 II)	1.	569 569	1. 1.	562 562	1.5	56
0.4 (1) 1.2 (11) 3.1 (1) 3.9 (11) 6.7 (11) 6.9 (1) 9.2 (11) 10.7 (1) 12.4 (11) 14.8 (1) 15.9 (11) 15.9 (11) 15.2 (1) 20.3 (24.6 (29.4 ($\begin{array}{c} 1.533\\ 1.529\\ 1.526\\ 1.522\\ 1.522\\ 1.522\\ 1.520\\ 1.520\\ 1.520\\ 1.518\\ 1.518\\ 1.518\\ 1.518\\ 1.517\\ 1.517\\ 1.517\\ 1.516\\ 1.516\end{array}$	1.643 1.652 1.663 1.666 1.677 1.676 1.683 1.687 1.695 1.695 1.698 1.705 1.705 1.713 1.716 1.719	1.527 1.524 1.520 1.519 1.517 1.516 1.515 1.514 1.513 1.513 1.512 1.512 1.512 1.512 1.512 1.512	1.633 1.642 1.653 1.656 1.666 1.666 1.672 1.679 1.679 1.686 1.691 1.693 1.700 1.702 1.797	1.523 1.520 1.516 1.515 1.513 1.512 1.510 1.511 1.509 1.509 1.509 1.509 1.509 1.508 1.508 1.508	1.627 1.634 1.645 1.657 1.657 1.657 1.664 1.677 1.670 1.674 1.677 1.683 1.690 1.693 1.697

Table 4.2 continued

Table 4.2 continued

OADWO 6 (A)

			D. LNL-L
	(•	· · · · · · · · · · · · · · · · · · ·	5461 ¹⁰ 0
11.65653 677 84 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 7 8 7	1) 10 01	1 000000000000000000000000000000000000	• ¹³ Þr
********* 50000000000 50000000000000000	0401		°°°,
111111111 666666666 6699948888 799706679			a a a
			n ₀ 632
11111111111 000000000 999444001 999444001 999444001			B Art

			8	$\overline{\alpha} \times 10^{24} \text{ cm}^3$			
		at	(T _{NI} -T)=10°C gm/co	λ 5461 Å	λ 5893 A	λ 6328 Å	
2	omcpc	[at	1.156 [#] (T _{NI} -T)=13°C]	36.70	36.29	35.96	
3	OMCPC		1.156	38.29	37.86	37.53	
4	OMCPO		1.142	39.88	39.43	39.10	
8	OMCPO	[at	1.109 [#] (T _{NT} -T)=8°C]	46.21	45.72	45.40	
9	OMCPC	-	1.107	47.80	47.29	46.97	
10	OMCPC		1.099	49.39	48.86	48.54	

Table 4.3: Average polarizability of nOMCPC

²measured values

Table 4.4: Density of nOMCPC

T _{N7} -T	a and a state of the	Density ?	gm/co	gan Maring Salah Dengar Termanan Salah Salah
°C	እ 5461 👗	∖5893 Å	λ 6328 Å	Mean
		(1) 2 OMCI	20	
1.3	1.1460	1.1453	1.1455	1.1456
3.8	1.1489	1.1480	1.1472	1.1480
7.4	1.1525	1.1515	1.1512	1.1517
13.0	1.1579	1.1560	1.1556	1.1565
18.0	1.1616	1.1605	1.1601	1.1607
23.6	1.1657	1.1648	1.1648	1.1651
29.2	1.1706	1.1692	1.1688	1.1695
34.0	1.1743	1.1731	1.1727	1.1734
10.0	1.1785	1.1777	1.1774	1.1779
0.5	1.1454	1.1448	1.1445	1.1449
2.7	1.1481	1.1471	1.1466	1.1473
6.2	1.1513	1.1508	1.1505	1.1509
10.6	1.1556	1.1548	1.1542	1.1549
14.9	1.1600	1.1584	1.1580	1.1588
20.0	1.1636	1.1628	1.1623	1.1629
26.4	1.1685	1.1673	1.1671	1.1676
51.7	1.1730	1.1717	1.1710	1.1719
57.2	1.1772	1.1760	1.1757	1.1763
		(11) 3 OMC	PC	
2.3 4.2 6.9 9.7	1.1492 1.1515 1.1540 1.1564 1.1604	1.1486 1.1510 1.1535 1.1557 1.1594	1.1484 1.1502 1.1535 1.1556 1.1595	1.1487 1.1509 1.1537 1.1559 1.1598
8.3	1.1635	1.1634	1.1622	1.1630
2.9	1.1676	1.1671	1.1665	1.1671
8.1	1.1713	1.1706	1.1699	1.1706
32.6	1.1740	1.1737	1.1730	1.1736
0.3	1.1480	1.1472	1.1461	1.1471
3.8	1.1509	1.1508	1.1504	1.1507
8.2	1.1550	1.1547	1.1546	1.1548
3.1	1.1596	1.1588	1.1585	1.1590

Table
4.4
continued

			× 5	Par-T
31111000 3111000 311000 3100000000	111111100 2222 2222 2222 2222 2222 2222	~	6 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.1068 1.11068 1.11068 1.11739	1.1.2.1.1.104 1.1.2.1.104 1.1.2.2.8 2.00 2.00 2.00 2.00 2.00 2.00 2.0	IV) 8 OMOPO	× 5893 × 111) 4 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 1112893 111393	Densi t
1.10996 1.1062 1.11062 1.1124 1.1124	1.12416558009		<pre>> / / / / / / / / / / / / / / / / / /</pre>	у १ 8,≣/00
	1.12187		1 1	

T _{NI} -T		Density 9 6	gn/cc	
°C	⊼ 5461 Å	λ5893 Å	λ6328 Å	Mean
		(V) 9 ONCPC		
-0.3	1.0946	1.0959	1.0946	1.0950
1.0	1.0989	1.0991	1.0981	1.0987
3.8	1.1010	1.1019	1.1005	1.1009
7.6	1.1045	1.1050	1.1038	1.1044
11.2	1.10/2	1 1108	1.1096	1.1102
19.0	1.1133	1.1144	1,1129	1.1135
23.7	1.1176	1.1180	1.1168	1.1175
		_		
-1.1	1.0953	1.0955	1.0943	1.0950
0.9	1.0989	1.0992	1.0980	1.0987
3.4	1.1011	1.1020	1.1004	1.1012
0.1 Q 1	1 1062	1 1069	1.1032	1 1055
12.8	1.1094	1.1099	1.1086	1.1093
16.8	1.1124	1.1130	1,1120	1.1125
21.9	1.1160	1.1172	1.1158	1.1163
	1445 1466 4466 IVII 4466 4666		440 ana 440 440 ana an	tek with alle whe was i
	(1	1) lo OMCPC		
1.6	1.0913	1.0919	1.0906	1.0913
3.3	1.0926	1.0934	1.0925	1.0928
6.7	1.0953	1.0963	1.0948	1.0955
5.9	1.0978	1.0992	1.0974	1.0981
13.U 15 8	1.1005	1.1011	1.1002	1.1006
1 2 4 2	1.1011	1.1025	1.1010	1.1021
C.8	1.0902	1.0920	1.0896	1.0906
2.0	1.0917	1.0920	1.0906	1.0914
7.1	1.0954	1.0966	1.0948	1.0956

Table 4.4 continued

Table 4.5: $\Delta \alpha$ and $(\overline{\alpha}/\Delta \alpha)$ of nOMCPC

2	OMCPC	3 OMCPO	4 OMCPC	8 OMCPC	9 OMCPO	10 OMCPC
Δα x1024 cm ³	33.34	33.26	33.52	33.88	33,80	34.06
^α 5893 Δα	1.09	1.14	1.18	1.35	1.40	1.43

!Jaw 4.6: Order parameter of nOMCPC

TT		0rder pa	rameter 8		
	λ 5461 Å	∖5893 Å	λ 6328 Å	Mean	
	(1) 2 OMCPC			
1.3	0.343	0.345	0.349	0.346	
3.8	0.390	0.390	0.389	0.390	
7.4 13.0	0.425	0.425 0.462	0.426	0.425	
18.0 23.6 29.2	0.488 0.510 0.528	0.487 0.508 0.526	0.508 0.527	0.509 0.527	
34.0	0.543	0.540	0.540	0.541	
40.0	0.556	0.556	0.556	0.556	
0.5	0.325	0.324	0.325	0.325	
2.7	0.375	0.372	0.370	0.372	
6.2	0.414	0.413	0.414	0.414	
10.6	0.449	0.446	0.448	0.448	
14.9	0.472	0.471	0.472	0.472	
20.0	0.496	0.494	0.496	0.495	
26.4	0.520	0.518	0.518	0.519	
31.7	0.536	0.534	0.534	0.535	
37.2	0.550	0.550	0.550	0.550	
-		11) 3 OMCPC			
2.3	0.347	0.350	0.350	0.348	
4.2	0.377	0.377	0.376	0.377	
6.9	0.403	0.404	0.405	0.404	
9.7	0.426	0.426	0.426	0.426	
13.9	0.451	0.450	0.451	0.451	
18.3	0.472	0.472	0.471	0.472	
22.9	0.489	0.489	0.489	0.489	
28.1	0.506	0.506	0.506	0.506	
32.6	0.520	0.519	0.519	0.519	
0.3	0.313	0.308	0.305	0.309	
3.8	0.373	0.374	0.375	0.374	
8.2	0.415	0.415	0.416	0.415	
13.1	0.447	0.447	0.446	0.447	
25.6	0.499	0.499	0.500	0.499	

Two-T		Order par	rameter S	
°C	λ 5461 Å	λ 5893 Å	λ 6328 Å	Mean
	(111) 4 OMCPO	3	
0.8	0.330	0.321	0.330	0.323
2.7	0.369	0.368	0.367	0.368
5.7	0.405	0.406	0.407	0.406
9.0	0.436	0.435	0.436	0.436
12.6	0.458	0.458	0.459	0.458
16.2	0.478	0.478	0.478	0.478
21.1	0.496	0.496	0.497	0.496
24.5	0.513	0.513	0.514	0.513
28.9	0.528	0.528	0.529	0.528
0.6	0.300	0.299	0.301	0.300
2.3	0.351	0.350	0.348	0.350
4.6	0.386	0.386	0.388	0.387
7.6	0.419	0.419	0.419	0.419
11.4	0.447	0.448	0.449	0.448
14.8	0.467	0.468	0.468	0.468
18.1	0.483	0.485	0.486	0.485
22.9	0.506	0.505	0.504	0.505
27.6	0.522	0.523	0.523	0.523
	0.538	0.538	0.538	0.538
	(1 1)) 8 omopo		
1.2	0.349	0.348	0.345	0.347
3.9	0.402	0.402	0.403	0.402
6.7	0.438	0.438	0.438	0.438
9.2	0.459	0.460	0.462	0.460
2.4	0.485	0.485	0.484	0.485
5.9	0.506	0.507	0.507	0.507
20.3	0.529	0.528	0.530	0.529
4.6	0.549	0.548	0.547	0.548
29.4	0.566	0.567	0.566	0.566
0.4	0.310	0.313	0.316	0.313
3.1	0.389	0.391	0.391	0.390
5.9	0.439	0.440	0.439	0,439
0.7	0.472	0.472	0.474	0.473
4.8	0.500	0.500	0.498	0.499
2.2	0.523	0.524	0.525	0.524
0.0	0.770	U.555	0.555	0.556

þ

Table 4.6 continued

rT		Order pa:	rameter S	
°C	⊼5461 Å	λ 5893 Å	λ 6328 Å	Mean
	(1) 9 OMCPC		
1.0	0.351	0.346	0.342	0.346
3.8	0.398	0.399	0.399	0.399
7.7	0.442	0.443	0.443	0.443
1.2	0.473	0.471	0.469	0.471
4.5	0.493	0.492	0.492	0.492
9.0	0.517	0.517	0.514	0.516
3.7	0.537	0.537	0.536	0.537
0.9	0.340	0.336	0.332	0.336
3.4	0.350	0.391	0.392	0.391
5.1	0.427	0.428	0.428	0.428
9.1	0.456	0.455	0.455	0.455
2.8	0.483	0.484	0.482	0.483
5.8	0.506	0.507	0.506	0.506
1.9	0.529	0.529	0.530	0.529
المتعم مرية موسعه (1) 10 OMCPC	وه هه هم من هو هم من ه	اللهة شه منه م
1.6	0.352	0.350	0.349	0.350
3.3	0.392	0.395	0.396	0.394
5.7	0.443	0.442	0.441	0.442
<u>ė</u>	0.472	0.474	0.473	0.473
5.0	0.495	0.496	0.495	0.495
.3	0.511	0.512	0.512	0.512
าผ	0. 323	(). 3 71	0. 396	0.327
7 0	0.JEJ ().358	0.356	0.354	0.356
6 • U				0.460

Table 4.6 continued

Т	ab	le	4.	7:	

T _{NI} -T	Hc	$(\mathbf{k}_{11}/\Delta \mathbf{E})_{exp}$	$(k_{11}/\Delta k)_{cal}$	
°C	Kgauss	x 10 ² cgs units	x 10 ² egs un	its
		(1) 2 OMCPC		
37.4	2.8	1.23	1.21	
26.7	2.7	1.07	1.05	
21.9	2.7	1.03	1.02	
16.6	2.64	0.94	ം. 94	
12.6	2.59	0.86	0.86	
5.3	2.54	0.79	0.79	
0.4 2 5	2.48		0.61	
2.2	2.30	0.52	0.52	
0.5	2.22	0.44	0.45	
x _o = 27.1	μm	400 400 400 00 100 pr	. مربعه معلم مربع	~~ et>
33.3	2.82	1.13	1.17	
27.8	2.82	1.10	1.10	
23.2	2.80	1.05	1.04	
18.5	2.75	0.97	0.57	
14.4	2.72	0.91	0.90	
	2.68	0.85	0.83	
5.6	2.56	0.70	0.69	
3.0	2.43	0.58	ŏ.59	
1.4	2.35	Ŭ .5 0	õ.50	
0.1	2.27	0.42	•.42	
x _o = 26.2	m ت س			

T _{NT} -T	Н _с	$(k_{11}/\Delta K) \times 10^2$	$(k_{11}/4k)_{cal x} = 102$
°°C	Kgauss	c.g.s. units	c.g.s. mite.
	(:	L1) 3 OMCPC	· · · · · · · · · · ·
28 .3	2.72	0.88	0.88
23.5	2.68	0.82	0.83
15.2	2.68	0.80	0.78
11.1	2.61	0.69	0.66
8.1	2.56	0.63	0.60
5.7	2.48	0.56	0.54
2.0	2.40	0.49	0.40
ö.4	2.15	0.33	0.35
x _o = 25.	2 µm		
26.4	2.53	0.84	0,86
20.9	2.50	0.78	0.80
16.4	2.48	0.74	0.74
10.1	2.40	0.05	0.03
6.9	2.38	ö . 59	ō.57
4.7	2.27	0.51	0.51
2.4	2.17	0.42	0.44
c.2	2.00	0.32	a. 34
x _o = 26.0	бµm		
	(111) 4 OMCPC	
31.3	2.64	1.07	1.06
26.1	2.58	0.99	1.00
22.0	2.55	0.92	0.94
13.5	2.46	Ő.SÓ	0.79
9.6	2.40	0.71	0.11
6.6	2.35	0.64	0.63
4.2	2.27		0.48
1.1	2.1	0.41	0.40
0.1	1.97	0.33	0.33
<u> </u>	μm	and any, the are with the set of the	
24.1	2.56	0.94	0.57
12.0	2.51	0.83	0.83
2.4	2.46	0.77	0.77
9.1	2.40	0.69	0.70
5.7 3.7	2.30	0.59	0.61
2.0	2.15	0.45	0.45

Table	4.7	conti	Inued
-------	-----	-------	-------

T _{NI} -T °C	Hc Kgauss	(k ₁₁ /AK) x 10 ² c.g.s. units	(k ₁₁ /AK) _{cal} x 10 ² c.g.s. units
		(iv) 8 OMCPC	
27.1 22.1 18.0 14.3 10.7 7.5	2.66 2.63 2.58 2.53 2.43 2.33	1.26 1.18 1.09 1.01 0.88 0.76 0.66	1.28 1.18 1.09 1.00 0.89 0.79 0.67
4.8 3.0 1.2 0.1	2.15 1.99 1.81	0.56 0.43 0.31	0.58 0.45 0.34
x _o = 33	.1 µm		- 1 1
29.8 24.4 20.1 16.1 12.7 8.9 6.1 3.9 2.1 0.4	3.17 3.12 3.05 3.0 2.93 2.85 2.75 2.64 2.48 2.27	1.35 1.25 1.15 1.07 0.97 0.87 0.76 0.65 0.52 0.38	1.34 1.22 1.14 1.04 0.95 0.84 0.73 0.63 0.52 0.37
x = 28	•4 µm		
26.4 22.4 18.1 14.6 11.1 7.8 5.4 3.1 1.6 0.4	3.0 2.9 2.85 2.80 2.72 2.64 2.56 2.45 2.35 2.2	1.28 1.15 1.07 0.99 0.89 0.89 0.79 0.70 0.59 0.49 0.38	1.27 1.19 1.09 1.00 0.90 0.80 0.70 0.58 0.58 0.48 0.37
x _o = 29	.6 µm		

Table 4.7 continued

•

.

T _{RI} -T	Hc	$(k_{11}/\Delta K)_{exp} = 10^2$	$(k_{11}/\Delta K)_{cal} \times 10^2$
°C	Kgauss	0.6.8. units	C. 6. 8. 4114.05
24.9 21.2 18.1 15.3 12.0 5.4 7.2 4.3 2.1 0.6 x. = 31	3.0 2.92 2.85 2.80 2.70 2.60 2.56 2.43 2.28 2.02	(v) 9 OMCPC 1.31 1.20 1.11 1.04 0.93 0.83 0.76 0.64 0.50 0.36	1.27 1.18 1.10 1.03 0.94 0.85 0.76 0.63 0.49 0.39
27.4 21.4 17.2 13.6 10.2 7.1 4.5 2.5 1.2 0.3 x = 29	3.07 3.0 2.95 2.87 2.64 2.54 2.45 2.25 2.12 2.12	1.30 1.17 1.09 0.99 0.88 0.75 0.65 0.55 0.43 0.36	1.34 1.19 1.08 0.99 0.88 0.76 0.64 0.52 0.43 0.37
15.6 14.5 11.9	(3.43 3.41 3.31 3.22	vi) 10 OMCPC 1.26 1.23 1.11 1.01	1.26 1.21 1.11 1.01
7.0 3.9 1.8 0.3 x ₀ = 28	3.05 2.90 2.66 2.43 8.0 µm	0.86 0.70 0.52 0.37	0.90 0.71 0.52 0.36
14.9 13.1 10.3 8.1 5.2 2.7 0.5 x ₀ = 2	3.43 3.36 3.29 3.12 2.97 2.82 2.48 7.9 µm	1.24 1.16 1.07 0.52 0.77 0.62 0.40	1.23 1.16 1.05 0.95 0.60 0.38

6 1	ał	٦.	a	A	
11	ا ک	11	8°.	- يُنها	5

Table 4.8: Twist elastic constants of nOMCPC

T _{NI} -T	^H c	(k ₂₂ /ΔK) x 102	$(k_{22}/\Delta K)_{cal} \times 10^{2}$
•0	Kgauss	c.g.s. units	c.g.s. units
		(1) 2 OMOPC	
24.8 19.5 15.2 10.4 8.1	2.3 2025 2.2 2.15 2.1	0.56 0.51 0.47 0.38 0.38	0.55 0.51 0.42 0.42
5.5 3.5 0.7 x23.]	2.07 1.97 1.89 1.89	0.35 0.30 0.24	0.30 0.31 0.24
27.4 21.8 16.4 10.6 7.4 4.2 1.5 0.4	3.27 3.22 3.17 3.12 3.02 2.87 2.80 2.67	C.57 O.53 G.49 C.44 D.35 C.33 C.28 C.23	0.57 0.55 0.49 0.35 0.35 0.26 0.26
x = 16.3	h10	ر میده بردسته ماند. ۲۰۰۰ میلون میلو ۲۰۰۰ میلون میلو	ĨĸIJĨŔŦĊĬĦĸĨĴŔſĸŒĬŔĿŒĨŎ <mark>ĔŎĬĔĨĔĔĔĔĔĔĔĔĔĔ</mark> ŦŎŎĬĬŎŎŎŎ ĨĸIJĨŔŦĊĬĦĸĨĴŔſĸŒĬŔĿŒĨŎ <mark>ĔŎĬĔĨĔĔĔĔĔĔĔĔĔĔĔĔĔ</mark> ŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ
25.2 20.9 15.3 10.8 6.6 3.8 1.8 0.4	(2.12 2.1 2.07 2.02 1.97 1.91 1.81 1.66	(<i>is</i>) 3 OMCPC 0.45 0.42 0.39 0.35 0.31 0.27 0.22 0.17	0.45 0.43 0.35 0.35 0.30 0.26 0.22 0.18
×o = 23.3	μm 	من من المن المن المن المن المن المن المن	هوه مروب المروب المروب المروب المروب المروب المروب
21.7 16.8 11.6 7.7 4.3 2.0 0.7	1.77 1.74 1.69 1.66 1.61 1.53 1.41	0.43 0.40 0.35 0.32 0.27 0.22 0.18	0.43 0.40 0.35 0.21 0.26 0.22 0.19
x _o ≃ 27.7	μπ		

Fable 4.8 continued

T _{NI} -T °C	H _c Kgauss	$(k_{22}/\Delta K) = x 10^2$ c.g.s. units	$(k_{22}/\Delta K)_{cal} = 10^2$ c.g.s. units
		(111) 4 OMCPC	
30.1 21.4 16.5 11.6 8.6 6.2 3.2 1.5	2.23 2.15 2.10 2.07 2.05 2.02 1.97 1.87	0.54 0.47 0.43 0.39 0.36 0.33 0.29 0.24	0.52 0.47 0.44 0.40 0.37 0.33 0.28 0.24
x _o = 24	.2 µm		
24.6 19.0 14.4 5.6 6.9 4.3 2.1 0.3	2.25 2.23 2.2 2.17 2.15 2.12 2.07 1.87	0.48 0.45 0.42 0.38 0.35 0.32 0.28 0.19	0.49 0.46 0.42 0.38 0.34 0.30 0.26 0.21
<u> </u>		(IV) 8 DMCPC	a Miller Britten Miller (Bei aus die eine and eine Ante Statistican Sie Lährende
25.6 21.2 17.0 14.2 11.4 7.4 6.1 2.8 1.4	2.2 2.15 2.12 2.10 2.07 2.0 1.97 1.87 1.77	0.53 0.48 0.45 0.43 0.40 0.35 0.33 0.26 0.21	0.52 0.49 0.46 0.43 0.40 0.35 0.35 0.33 0.21
x _o = 26.	0 μm	489 648 - 474 548 544 544 544 544 544	
27.0 22.4 18.4 14.4 10.5 7.3 4.7 2.0 0.5	2.48 2.46 2.41 2.38 2.33 2.28 2.2 2.12 2.0	0.53 0.51 0.47 0.43 0.39 0.35 0.31 0.25 0.20	0.53 0.50 0.47 0.39 0.35 0.31 0.24 0.19
$x_0 = 23.$	1 µma		

Tabla 4.8 continued

T _{NI} -T	Ho	$(k_{22}/\Delta K)_{exp} \times 10^2$	$(k_{22}/\Delta K)$ cal x 10 ²
<u> </u>	<u>kgauss</u>	C.g.s. units	c.g.s. units
	(v) 9 OMCPC	
26.5	2.38	0.49	0.51
22.7	2.35	U. 46	0.47
18.0	2.50	U.47 0 10	○ • 4 ⊃ (2 . 3 Q
12.0	2.17	0.35	0.36
9.4	2.07	0.31	0.33
6.4	1.97	0.26	0.28
4.0	1.87	○.22	0.23
2.3	1.81	0.19	0.19
0.5	1.71	0.16	0.16
<u>x</u> _ <u></u> _23.	8 μ <u>m</u> .	ata un din 140 - 140 - 140 - 140 - 140 - 140	
27.0	2.48	0.52	0.51
23.4	2.40	C.48	0.48
19.1	2.55	U.44	A ↓ 4 €
12.3	2.25	0.37	0.36
'§.9	2.20	0.34	0.33
7.3	2.13	0.31	0.29
3.8	1.97	0.24	0.23
1.9	1.87	0.19	0.18
0.4	1.77	0.16	U • • • •
$x_0 = 23.$	5 μ m	nan alamata da bina malan da shi kila da gayarat sha da angaran ya kasariya da sa s	
	(*	1) 10 omoro	
16.0	2.87	0.61	
15.8	2.6%	0.57	
14.7	2.53	0. 47	
14.3	2.48	0.44	
12.1	2.33	0.38	
10.0	2.28	0.35	
7.2	2.17	0.30	
4.0 1 G	2.07	0.20	
x = 23.	3 μm	V.E.U	
15.9	2.80	0.57	agan unu unu den unte anno anno anno den
15.2	2.68	0.52	
14.3	2.59	0.48	
12.3	2.45	0.43	
8.4	2.17	0.30	
6.4	2.17	ō.29	
4.2	2.07	0.24	
1.9	1.87	0.17	
0.8	1.77	0.14	
0 = 23.1	υμm		

Table	4.9	conti	nued
-------	-----	-------	------

T _{NI} -T °C	Hc Kga uss	(k ₃₃ / K) _{exp} c.g.s. units	(k ₃₃ /K) x 10 ² c.g.s. units
33.8	3.73	1.63	1.62
29.3	3.64	1.51	1.51
26.1	3.59	1.44	1.44
22.6	3.52	1.34	1.35
19.6	3.45	1,26	1.28
16.5	3. 38	1.17	1.11
14.1	2.34	1.12	1.02
11.5	2.20 * 17	0.93	n. 03
9.0	2017	0.06	ŏ.86
7.2	5.0	0.76	0.77
2.2	2.9	0.69	0.68
2.8	2.62	0.62	0.61
1.8	2.70	0.54	ŏ.54
0.4	2.5	0.43	0.43
0.2	2.38	0.38	0.42
xo_=_24.	б µт	محمد عبد بيت بيت بيت ميد بيت ا	
27.5	3.66	1.46	1.47
23.8	3.61	1.38	1.38
25.4	3.55	1.30	1.29
16.9	3.50	1.22	1.20
13.7	3.36	1.09	1.10
10.9	3.27	0.99	0.94
5 •2	3.22	0.24	0.84
6.8	3.14	0.07	0.80
6.1	2.10 2 A	0.79	0.70
4+2	2.U 2.G	0.65	0.64
2.2	6.7 2.77	0.56	0.56
6 U	2, 61	0.47	0.47
0.5	2.56	0.44	0.44
x _o = 24.	2 µm		

.

(11) 3 OMCPC

T _{NI} -T °C	H _C Kgauaa	$(k_{33}/\Delta K)_{exp} \times 10^2$	$(k_{33}/\Delta K)_{cal} \times 10$
34.9	3.75	2.32	2.31
50.2 nn 0	5.00	2 · · · 4	2.10
27.0	2.0Z 3.57		
10.0	3.46	1.78	1.80
17.7	3.36	1.64	1.70
15.0	3.22	1.47	1.58
12.5	3.20	1.40	1.46
10.2	3.13	1.30	1.34
7.9	3.0	1.15	.21
5.8	2.93	1.05	1.07
4.2	2.80	0.91	0.94
2.0	2.68	0.76	0.74
14 × 2	2.40	0.57	0.34
39.8 36.9 33.9	4.3 4.28 4.21	2.50 2.43 2.31	2.48 2.38 2.28
39.8 36.9 33.5 31.2	4.3 4.28 4.21 4.16	2.50 2.43 2.31 2.22	2.48 2.38 2.28 2.19
39.8 36.9 33.9 31.2 28.3	4.3 4.28 4.21 4.16 4.07	2.50 2.43 2.31 2.22 2.09	2.48 2.38 2.28 2.19 2.09
39.8 36.9 31.2 28.3 25.4 29.3	4.3 4.28 4.21 4.16 4.07 4.01 3.56	2.50 2.43 2.31 2.22 2.09 1.99	2.48 2.38 2.28 2.19 2.09 2.09
39.8 36.9 33.5 31.2 28.3 29.4 22.3 19.3	4.3 4.28 4.21 4.16 4.07 4.01 3.56 3.69	2.50 2.43 2.31 2.22 2.09 1.99 1.90	2.48 2.38 2.28 2.19 2.09 2.09 2.09 1.89
39.8 36.9 31.2 28.3 29.4 29.3 19.3 19.3	4.3 4.28 4.21 4.16 4.07 4.01 3.96 3.89 3.82	2.50 2.43 2.31 2.22 2.09 1.99 1.90 1.78 1.67	2.48 2.38 2.28 2.19 2.09 2.09 1.89 1.77 1.65
39.8 36.9 33.9 28.3 29.4 22.3 19.3 19.3 16.6 14.2	4.3 4.28 4.21 4.16 4.07 4.01 3.96 3.89 3.82 3.73	2.50 2.43 2.31 2.22 2.09 1.99 1.99 1.90 1.78 1.67 1.55	2.48 2.38 2.28 2.19 2.09 2.09 1.89 1.77 1.65 1.54
39.8 36.9 33.9 31.2 28.4 29.3 19.3 19.3 19.5 114.9	4.3 4.28 4.21 4.16 4.07 4.01 3.96 3.89 3.82 3.73 3.64	2.50 2.43 2.31 2.22 2.09 1.99 1.99 1.90 1.78 1.67 1.55 1.44	2.48 2.38 2.28 2.19 2.09 2.09 1.89 1.77 1.65 1.94 1.42
39.8 336.9 33.9 31.2 28.4 22.3 38.4 22.3 36.2 22.3 36.2 11.3 11.9 3	4.3 4.28 4.21 4.07 4.01 3.96 3.89 3.89 3.82 3.73 3.64 3.55	2.50 2.43 2.31 2.22 2.09 1.99 1.90 1.78 1.67 1.55 1.44 1.32	2.48 2.38 2.28 2.19 2.09 2.09 2.00 1.89 1.77 1.65 1.54 1.42 1.29
39.8 356.9 33.9 31.2 25.3 25.3 19.3 19.3 14.9 14.9 14.9 5.7	4.3 4.28 4.16 4.07 4.01 3.96 3.89 3.89 3.89 3.73 3.64 3.55 3.43	2.50 2.43 2.31 2.22 2.09 1.99 1.90 1.78 1.67 1.55 1.44 1.32 1.17	2.48 2.38 2.28 2.19 2.09 2.09 1.89 1.77 1.65 1.54 1.42 1.29 1.13
39.89 33.99 33.23 28.43 29.33 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.43 29.54 29.557 29.557 29.557 29.5577 29.5577777777777777777777777777777777777	4.3 4.28 4.21 4.07 4.01 3.89 3.89 3.89 3.89 3.89 3.64 3.55 3.43 3.43 3.27	2.50 2.43 2.31 2.22 2.09 1.99 1.99 1.90 1.78 1.67 1.55 1.44 1.32 1.17 0.95	2.48 2.38 2.28 2.19 2.09 2.09 1.89 1.77 1.65 1.94 1.42 1.29 1.42 1.29 1.13 0.94
39.8 39.9 31.3 29.3 29.3 29.3 29.3 29.3 29.3 11.4 9.7 11.9 6.1 9.6 4.0 5 4.0 5 4.0 5 5 5 5 5 5 5 5 5 5 5 5 5	4.3 4.28 4.21 4.07 4.01 3.99 3.89 3.89 3.89 3.73 3.65 3.64 3.55 3.43 3.27 3.07	2.50 2.43 2.31 2.22 2.09 1.99 1.90 1.78 1.67 1.55 1.44 1.32 1.17 0.99 0.80	2.48 2.38 2.28 2.19 2.09 2.09 2.00 1.89 1.77 1.65 1.54 1.42 1.29 1.13 0.94 2.74

Table 4.5: Bend elastic constants of nOMCPC

(1) 2 OMOPO

T _{NI} -T		$(k_{33}/\Delta K)$ exp x 10^2	$(k_{33}/\Delta K)_{cal} = 10^2$
°0	Kgauss	c.g.s. units	c.g.s. units
27.8	3.57	1.52	1.56
24.7	3.57	1.48	1.48
21.6	3.52	1.41	1.40
19.0	3.48	1.34	1.32
16.8	3.38	1.24	1.25
13.9	3.31	1.15	1.15
11.8	3.24	1.07	1.08
9.5	3.12	0.95	0.98
8.5	3.04	0.89	0.94
5.9	2.95	0.78	0.81
4.3	2.84	0.69	0.72
2.5	2.70	0.58	0.60
1.1	2.53	0.47	0.48
0.1	2,35	0.36	0.37
x _o = 25	-5 μm		
or 4		0	4 50
22.4	2.71	1.49	1.50
22.1	2.71	1.42	1.41
18.0)•) > 7 50	1.20	1.29
14.0	2.22	1.21	1.18
12.4	2.42	1.12	1.10
2.7	2+24	1.01	1.00
[+]	2+24	0.50	0.88
2.1	2.01	0.11	0.10
2.0	2+21		0.67
4 5	C • 7C	0.67	0.52
	2.5V	5 5 7 4 5	
V • 4	Z+ 74	U • 4 I	
x _o = 24	.5 µm		

Table 4.9 continued

T _{NI} -T °C	H _C Kgauss	$(k_{33}/\Delta K)_{exp} \times 10^2$ c.g.s. units	(k ₃₃ /AK) _{cal} x 10 ⁴ c.g.s. units
		4 0 4	A C:C
26.5	3.98	1.94	1.95
23.9	3.92	1.84	1.84
20.7	3.83	1.71	1.71
17.9	3.70	1.55	1.60
15.3	3.64	1.46	1.48
12.8	3+52	1.32	7.36
10.3	3.38	1.17	1.22
8.5	3.34	1.11	1.13
6.4	3.20	0.97	1.00
5.2	3.14	0.90	0.91
3.5	3.0	0.78	0.77
2.3	2.85	0.65	0.66
1.0	2.61	0.50	0.51
0.3	2.48	0.42	0.43
0.2	2.45	0.40	0.38
x _o = 27	.5 µа	,	
28.1	4.03	2.06	2.00
25.7	3.94	1.93	1,91
23.1	3.87	1.82	1.81
20.3	3.8	1.72	1.70
17.9	3.73	1.61	1.60
15.5	3.64	1.50	1.49
13.0	3.52	1.35	1.37
10.9	3.45	1.26	1,26
8.7	3.74	1 1 4	1.14
6 9	2024	1 (32	1 0%
5.0	2 14	0.61	0.60
3 7	2.14	0.21	0.30
J•1 2 A	2.02	0.66	0.13 0.66
C • 4 1 1	2.01	0.00	0.60
···	2.00	U+77 m #0	0.74
V• 6	2.4V	U • 27	V • 70
o = 27	.8 µm		

(1v) 8 OMCPC

Table 4.7 continued

T _{NI} -T °C	H _c Kgauss	(k ₃₃ /AK) x 10 ² c.g.s. units	(k ₃₃ /AK) cal x 10 ² c.g.s. units
25.9	4.41	1.71	1.69
23.6	4.35	1.63	1.61
21.3	4.20	1.23	1.52
18.5	4.17	1.47	1 25
10.7	4.IV 7 00	1 24	1.25
11.8	3.89	1.15	1.16
10.0	3.82	1.08	1.08
8.3	3.71	0.99	0.98
6.8	3.64	0.92	0.90
5.3	3.50	0.81	0.81
3.9	3.36	0.72	0.71
2.3	3.22	0.61	0.58
1.1	3.00	0.49	0.48
0.5	2.82	0.42	0.43
0.2	2.71	0.38	0.40
x ₀ = 24 μι	a 	~ ~ ~	na da 403 wa na 406 wa 406
24.2	4.33	1.62	1.62
21.5	4.21	1.50	1.53
18.6	4.15	1.42	1.42
16.4	4.10	1.35	1.34
14.1	3.94	1.22	1.26
11.3	3.80	1.09	1.14
8.9	3.71	1.00	1.02
6.8	3.60	0.90	0.90
2.3	3.48	0.81	0.81
3.0	3.30	0.71	0.03
1.9	5.20	0.79	0 JJ
0.2	2.07	し。 4 つ 4 つ	V•47 ○.40
$x_{-} = 24 \text{ m}$	2	~ • 2 2	~ ~ ~ ~

(v) 9 OMCPC

T _{NI} - T	^{II} c	$(k_{33}/\Delta K) \times 10^{2}$
• C	Kgauss	o.g.s. units
14.7	2.56	2.54
14.2	2.35	2.12
13.5	2.25	1.53
12.3	2.00	1.45
11.5	1.97	1.49
10.4	1.92	1.94
8.4	1.75	1.12
6.7	1.69	V. 37 A A A
2.4	1.00	0.07 6 £0
2.3	1.70	し、 し、 につ シー
(.) () ()	1 40	いての
	930- 100 0 1000 1000 1000 1000	an anggan yenan sudar alağın sudar vise
14.6	2.56	2.22
13.9	2.33	1.82
11.5	2.00	1.29
10.4	1.92	1.17
8.8	1.81	1.01
7.3	1.74	0. <u>9</u> 0
2.9	1.69	0.21
	1.04	0.72
4.4	4 6 6	
4.2	1.56	U. UU

(v1) 10 OMCPC

		$\frac{k_1}{\Delta}$	^k 11 ДК		k ₂₂ AK		<u>k</u> Дк	
		С	Х	C	x	C	X	
2	OMCPC	3.77	1.90	2.00	1.92	12.46	2.76	
3	OMCPC	3.27	1.92	1.76	1.95	8.42	2.55	
4	OMCPC	3.64	1.58	1.50	1.67	7.94	2.52	
8	OMCPC	4.65	2.20	1.60	1.87	4.70	2.73	
9	OMCPC	5.74	2.45	2.23	2.47	9.05	2 <u>.</u> 77	
10	OMCPC	6.36	2.43	-	-	-		
				r	•			

Table 4.10: Experimental data fitted to the equation

 $\frac{k_{ii}}{\Delta K} = CS^{X}$

200505044			Table 4
NNNNNN 1666165 164 NNU 76	9		
UNNNNN- 0756007	OMCPC	5568-884V	More Nore Nore Nore Nore Nore Nore Nore N
		UNNNNNN 00860000 NUNJNUO	333322000 MM M 0 554340-151 N M 0 559361-71
4000 		NNNNNNN UUUU 0 BUANG -	K 11 K
	10 OMCP		K 11 K 11 K 11 K 11 K 11 K 11 K 11 K 11
248 248 248	3	00000000000000000000000000000000000000	