CHAPTER V

ELASTIC CONSTANTS IN THE VICINITY OF THE SMECTIC A-MEMATIC TRANSITION

Introduction

In the case of a nematic liquid crystal which shows the saectic A phase at lower temperatures strong smectic like short range order builds up as the temperature is lowered. Hence as the nematicsmectic A transition (A-N transition) is approached bend and twist deformations become difficult since they tend to change the layer thickness in the smectic like groups. As a consequence, the corresponding elastic constants are expected to exhibit pretransition anomalies close to the A-A transition point. The effect is particularly pronounced when the transition is second order or quasi-second order. Measurements of bend, splay and twist elastic constants (Cheung ot al. 1973, Delaye et al. 1973) show that k33 and k22 diverge as Tak is approached. On the other hand kit shows the normal behaviour.

McMillan (1971) has given a molecular model for a smectic A liquid crystal. Extending the molecular theory of nematic liquid crystals due to Maier and

Saupe (1958, 1959, 1960), he introduced another order parameter ψ , the amplitude of the density wave in the direction of \vec{n} . The nematic orientational order parameter S and the spectic order parameter are coupled. Because of this coupling, greater the value of S at the A-N transition, less is %heentropy change at the transition. This means that a second order transition is favoured if T_{AN} is considerably less than T_{NI} . In fact McMillan's model (1971) predicts a second order A-N transition if $\frac{T_{AN}}{T_{NI}} \leq 0.67$. Later, $\frac{1972}{1972}$, and HcMillan, proposed a Landau type of phenomenological description of the A-N transition and of the pretransition phenomena associated with it.

Theories of de Gennes and McMillan

In a smectic A, one can define a one-dimensional density wave along \vec{n} , given by

$$f(z) = \int_{0}^{1} \left[1 + \frac{1}{(2)^{2}} |\psi| + e^{-1(q_{e} z - \phi)}\right] (5.1)$$

where S_0 is the average density, $|\Psi|$ the amplitude of the density wave, $q_g \left(=\frac{2\pi}{d}$ where d is the interlayer distance) is the wave vector of the density wave and φ an arbitrary phase. The smectic A order parameter can be written as $\Psi = |\Psi|$ e . Neglecting the background term since we are interested only in

the fluctuations in the smectic order parameter,

$$\psi = |\psi| \cdot e^{i\varphi} \quad (5.2)$$

Thus the order parameter in this case is a twocomponent function. This brings in an analogy between smectic A and superconductors as pointed out by de Gennes (1972) and McMillan (1972). The analogy is made clearer by the following cimilarity.

In a smectic A medium curl $\vec{n} = 0$ since the line integral $\int \vec{n} \cdot d\vec{r}$ around a closed loop in a dislocation free space is zero (de Gennes 1969). From Frank's (1958) expression (equation 1.4) for elastic energy density, we see that twist and bend constants involve $\nabla x \vec{n}$ which is zero in smectic A. Or in other words curl \vec{n} is excluded from saectic A. In superconductors the angnetic flux is excluded. If $\vec{7}$ is the vector potential, then the magnetic flux = curl \vec{A} should vanish. Hence \vec{m} is similar to the director \vec{n} . From these arguments, it is clear that the smectic Anematic transition is analogous to the superconductornormal phase transition.

As the A-H transition point is approached the size of the smectic like domains increases. The increased size of these clusters can be readily seen

in the increase in the X-ray peak of the scattered intensity related to the liquid structure factor (McMillan 1972, 1973).

In the mean field approximation, the free energy in the neighbourhood of a second order phase transition can be expanded in terms of Ψ and its gradients. For a fixed orientation of the director \Box , along 2)

$$F_{g} = \alpha |\psi|^{2} + \frac{p}{2} |\psi|^{4} + \frac{1}{2M_{\psi}} \left(\frac{\partial\psi}{\partial z}\right)^{2} + \frac{1}{2M_{\pi}} \left[\left(\frac{\partial\psi}{\partial x}\right)^{2} + \left(\frac{\partial\psi}{\partial y}\right)^{2}\right]$$
(5.3)

where α is a temperature dependent term and $M_{_{\bf V}}$ and $M_{_{\rm T}}$ will be defined presently.

For T) T_{AN} , neglecting the term containing 4 , we have from the equipartition theorem, tho thermal average of the Fourier components,

$$\left< \left| \Psi(q) \right|^2 \right> = \frac{k_{\rm B}T}{\alpha + \frac{1}{2M_{\rm Y}} q_{\rm g}^2 + \frac{1}{2M_{\rm T}} (q_{\rm x}^2 + q_{\rm y}^2)}$$
 (5.4)

We define the coherence lengths

$$f_{\parallel} = \frac{1}{2M_{\psi}\alpha}, \qquad f_{\perp} = \frac{1}{2M_{\chi}\alpha}$$
 (5.5)

 ξ_{\parallel} and ξ_{\perp} signify the size of the smectic like clusters. In the mean field approximation $\alpha \ll T - T_{AN}$. As T_{AN} is approached ξ_{\parallel} and ξ_{\perp} diverge.

Now if we allow for director fluctuations; as shown by de Gennes (1973), $F_{\rm m}$ takes the general form

N

$$\mathbf{F}_{\mathbf{g}} = \alpha \left| \boldsymbol{\psi} \right|^{2} + \frac{\beta}{2} \left| \boldsymbol{\psi} \right|^{4} + \frac{1}{2M_{\mathbf{v}}} \left(\frac{\partial \boldsymbol{\psi}}{\partial \mathbf{g}} \right)^{2} + \frac{1}{2M_{\mathbf{v}}} \left| \vec{\nabla}_{\mathbf{y}} \boldsymbol{\psi} - \mathbf{1} \mathbf{q}_{\mathbf{g}} \, \delta \vec{\mathbf{n}} \, \boldsymbol{\psi} \right|^{2}$$
(5.6)

where ∇_{\perp} is the gradient operator in the plane of the layers. This equation is similar to the Landau-Ginsburg free energy for the superconductors.

Now the electic free energy density can be expressed as

$$\mathbf{F} = \frac{1}{2} \mathbf{k}_0 (\nabla \vec{\mathbf{n}})^2 + \mathbf{F}_{\mathbf{g}} (\Psi)$$
 (5.7)

where k_0 is the Frank elastic constant in the absence of any smectic like order and $F_{\rm g}(\Psi)$ is given by equation (5.6) averaged over all Ψ .

If we ignore the difference between M_{ψ} and M_{ψ} ,

$$\mathbf{F}_{\mathbf{S}} = \frac{\mathbf{q}_{\mathbf{S}}^{2}}{\mathbf{H}} \left\langle |\Psi|^{2} \right\rangle^{2} (\nabla \mathbf{\vec{A}})^{2} \boldsymbol{\xi}^{T} \qquad (5.8)$$

where $\vec{\delta n}$ is written as $\xi \forall \vec{n}$ which has the order of the magnitude of the strains in a cluster of size ξ a In the mean field approximation

$$\langle |\gamma|^2 \rangle = \text{const.} \frac{\pi}{\alpha \beta^3}$$
 (5.9)

This corresponds to the correlated fluctuations in a volume ξ^3 . From the above three equations we find that the ameetic like order gives rise to a correction for twist and bend constants, the correction being $\delta k \ll \xi$.

Now if we take $M_{\psi} \neq M_{\Omega}$, it can be shown (de Gennes 1972) that

and

$$\delta k_{22} = \frac{\pi (2)^{\frac{1}{2}}}{6} \cdot \frac{k_{B}T}{d^{2}} \cdot \frac{\xi_{I}}{\xi_{II}}$$

$$\delta k_{33} = \frac{\pi (2)^{\frac{1}{2}}}{6} \cdot \frac{k_{B}T}{d^{2}} \cdot \xi_{II}$$
(5.10)

In the mean field approximation $f \propto (T - T^*)^{-\frac{1}{2}}$ (For a purely second order transition $T^* = T_{AH}$. For a weak first order transition $T^* \leq T_{AH}$). de Cennes (1972) argued that mean field results may not be applicable to A-N transition. Using wilson's (1972) calculations he concluded that $f \propto (T - T^*)^{-0.66}$.

Hence the full expression for the elastic constant can be written as

 $k_{i1} = k_{i1}(0) + \text{const.} (T - T^{X})^{-\gamma}$ (5.11) $i = 2,3, \quad 7 = \frac{9}{2} \text{ in mean field approximation and}$ 7 = 0.66 in helium analogy.

If $k_{11}(0)$ is assumed to obey mean field variation

$$\mathbf{k}_{11}(0) \propto s^2$$
.

Hence

$$k_{11} = c_1 s^2 + c_2 (T - T^*)^{-\gamma}$$
 (5.12)

These theoretical predictions initiated a large number of experimental studies. Since we had developed a new method to determine k_{22} we thought it worthwhile measuring the twist constant in some nematics which exhibit the smectic A phase at lower temperature. We have also measured k_{33} for some of these compounds. However we must emphasize that the experimental set up used here was not specifically designed to measure the c: itical phenomena (the temperis-re control being only $\sim \pm 0.02^{\circ}$ C) and hence the numerical values that are obtained by the analysis of the data are perhaps only of qualitative significance.

Experimental

Chemicals: We have measured k₂₂ and k₃₃ for BCB, 10 OMCPC, 4'-n-octyloxy-4-cyanobiphenyl (8 OCB)

and p-cyanobenzylidene-p'-octyloxyaniline (CBOOA). Of these 8CB and 10 OMCPC were prepared in our Chemistry Laboratory. 8 OCB was obtained from BDH Laboratories and was used without further purification. koo measurements were done on CBOOA supplied by Eastman Organic Ltd. after recrystallisation from **n-heptane** $(T_{12} = 82.7, T_{217} = 107)$. We have already mentioned that McMillan's model (1971) leads to the result that the A-N transition | s second order TAN \leq 0.87. Hence if the nomatic range is the if increased, the nature of A-N transition comes closer to second order. With this in mind, we have prepared two mixtures of 8 OCB and 7CB thereby extending the nematic range considerably. None of the compounds studied here have reached the McMillan limit. However, the differential scanning calorimetric measurements show that in some compounds with large menatic range, the A-N transition is hardly detectable.

The transition temperatures of 8 GCB and the mixtures are given in table 5.1. In this Chapter, we shall give, in addition to k_{22} and k_{33} , the k_{11} data for 8 GCB and the mixtures as well.

The values of S and ℓ necessary for the calculation of elastic constants are given in Chapters III and IV for 8CB and 10 OMCPC respectively. In the

case of other compounds, we have obtained them as described below.

Order parameter and density

For CBOOA, S values were taken from the work of Fernandes and Venugopalan (1976). The temperature variation of density was taken from the data of Torsa and Cladis (1975). S and % values are given in Table 5.2.

The refractive indices of 8 OCB and the two mixtures are tabulated in Table 5.3. They are plotted in Figure 5.1.

We have measured the density of 8 OUB at $T_{\rm NI} - T = 12^{\circ}C$ by the capillary method (see Appendix II). Using this value and the refractive index data its average polarizabilities \overline{a} for different wavelengths were calculated.

For the mixtures we used the relation (Chandrasekhar and Madhusudana 1969)

$$\bar{a}_{mix} = p_1(\bar{a})_1 + p_2(\bar{a})_2$$
 (5.13)

where p_1 and p_2 are the molar propertions of the components 1 and 2. Using equation (8) of Appendix II, the density of the mixtures at $T_{NT} - T = 12^{\circ}C$ are

Figure 5.1a

Refractive indices sf S OCB as functions of temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively.

Figure 5.1b

Refractive indices of Mixture I [8 OCB (62%) + 7CB (38%)] as functions of temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively.

Pigure 5.1c

Refractive indices of Mixture II [8 OCB (41%) + 7CB (59%)] as functions of temperature. The circles, triangles and squares are the values for λ 5461 Å, λ 5893 Å and λ 6328 Å respectively. of (15)

calculated. The values are given in Table 5.4. The temperature variation of density from the optical data are given in Table 5.5. They are plotted in figure 5.2.

To calculate the order parameter of 8 000, from the optical data, we need the value of $\Delta \alpha$. We have estimated the increment in $\Delta \alpha$ from 700 to 8 0CB using bond polarizabilities (see Appendix II). The value of $(\bar{\alpha}/\Delta \alpha)_{8 \text{ OCB}}$ was estimated to be 1.37. Znowing the values of S for 700 and 8 000, the order parameter of the mixtures, at any relative temperature, can be calculated using the equation (Chandrasekhar and Madhusudana 1969)

$$s_{mix} = p_1(5)_1 + p_2(5)_2$$
 (5.14)

The temperature variation of S for 8 008 and mixtures are given in figure 5.3 and Table 5.6.

Elastic constants

We shall discuss the analysis of k_{22} and k_{33} in the next section. for the sake of completeness we have given the splay elastic constants of 8 CCB and its mixtures with 7CB in Table 5.7. They are represented graphically in figure 5.4.

<u>Figure 5.2</u>: Densities of 8 OCB, Mixture I and Mixture II derived from optical anisotropy measurements as functions of the relative temperature. Each symbol represents a value averaged over the calculations for wavelengths λ 5461 Å, λ 5893 Å and λ 6328 Å.

Figure 5.3

Order parameters of 8 OCB, Mixture I and Mixture II as functions of the relative temperature. $C_{\rm f}$

Splay elastic constants of 8 COB, Mixture I and Mixture II as functions of the relative temperature.

Analysis of k₂₂ and k₃₃

The experimental values of the twist and bend constants can be fitted to the equation (5.12). Since $T^{H} = T_{AN}$ only if the transition is second order, we can treat T^{H} also as a variable. We have used a 4 parameter fit with variables o_1 , o_2 , γ and T^{H} =

The data for the full temperature range was first fitted to the equation (5.12). However as we have already discussed in earlier chapters the background term cannot be taken to be, accurately represented by $o_1 S^2$. Since the background term makes a predominant contribution near T_{NI} , it is appropriate to drop data points from higher temperature region until the R.M.S. error is minimised (see e.g., Chu and McMillan 1975). Table 5.8 gives the ratio T_{AR}/T_{NI} , ΔH_{AN} and y. The

experimental values of k_{11} (1 = 2.3) along with the least equaresfitted values are given in Tables 5.9 and 5.10. They are plotted in figures 5.5 and 5.6 respectively.

There have been a number of experimental determinations of the critical exponent γ . The values are summarized in Table 5.11. Except for light scattering method, all the other determinations make use of the Preedericker transition technique which is a static method. The method involves the application of an external field to deform the sample. Since the time constant becomes large as the A-E transition is approached, the static equilibrium in this case becomes quite uncertain. In addition, as Cheung et al. (1973)

.... Olinger

Twist elastic constants of 8CB as a function of (T - T^{*}). The values for different samples are marked separately. The curves are least square fit;ted to the equation of the type $k_{11} = C_1 S^2 + C_2 (T - T^{*})^{-\gamma}$.

Figure 5.5b

Twist elastic constants of 8 0CB as a function of $(T-T^{\infty})$. The values for different samples are marked separately. The curves are least square fitted to the equation of the type $k_{11} = C_1 S^2 + C_2 (T - T^{m})^{-\gamma}$.

Pigure 5.5c

Twist elastic constants of 10 OMCPG as a function of $(T - T^{#})$. The values for different camples are marked separately. The curves are least square fitted to the equation of the type $k_{11} = C_1 S^2 + C_6 (T - T^{H})^{-\gamma}$,

Twist elastic constants of Mixture I as a function of $(T-T^{\text{H}})$. The values for different samples are marked separately. The curves are least square fitted to the equation of the type $k_{11} = C_1 S^2 + C_2 (T - T^{\text{H}})^{-\gamma}$.

Figure 5.5e

Twist elastic constants of CBOOA as a function of $(T - T^{\pm})$. The values for different samples are marked separately. The curves are least square fitted to the equation of the type $k_{11} = C_1 S^2 + C_2 (T - T^{\pm})^{-\gamma}$.

Figure 5.5f

Bend elastic constant of 8CB as n function of T- \mathbf{F} . The least square fitting is done as mentioned in figure 5.5.

Bend elastic constant of 8 00B as a function of $T-T^{22}$. The least square fitting is done as mentioned in figure 5.5

Figure 5.6c

Bend elastic constant of 10 OMCPC as a function of $T-T^*$ The least square fitting is done as mentioned in figure 5.5

Figure 5.6d

Bend elastic conetant of Mixture I as a function of T-T[#]. The least square fitting is done as mentioned in figure 5.5

Bend elastic constant of Mixture II as a function of $T-T^{2}$. The least square fitting is done as mentioned in Figure 5.5

have pointed out, one cannot approach T_{AB} very closely because fa this region an instability of a certain type sets in. For these reasons, the light scattering method in which no external field is used, is expected to be the most accurate. From the table, we see that an accurate light scattering experiment gives a value $\gamma = 0.5$ while other methods give higher values.

Another important factor to be considered in the data analysis is the purity of the sample. Cladis (1974) has shown that the value of γ is extremely sensitive to the state of purity of the sample. While sample of a very pure CBCOA gave a value $\gamma = 0.5$, the one doped with a small amount (~ 1.5%) of ortho MBBA raised the value of γ to 1.0. Thus it is clear that a value γ other than 0.5 and 0.66 might either be due to the impurity content in the sample or due to the inaccuracies in the experiment.

We must also mention here that de Gennes (1973) has pointed out that some compounds may give $\gamma = 0.66$ and some $\gamma = 0.5$. Also Chu and McMillan (1975) conclude that the value of $\gamma = 0.5$ for CBOOA might be due to the fact that the compound is near its tricritical point.

In all our experiments, we have not made any

special efforts to purify the sample. However since most of the experiments were done on chemically stable compounds, there is little chance of the sample decomposing during the experiment.

Since the temperature controls in our experiments were not specially designed for studying precritical phenomena, we do not put any emphasis on the values of γ obtained. However, we wish to point out the γ is closer to 0.66 rather than to 0.5 in most cases. We also observe from Table 5.8 that γ obtained for k_{22} in any compound is smaller, in general, than that for k_{33} . We know that even in menatics which do not have smootic A at lower temperatures, the index x in the equation $k_{11} = 0S^X$ is larger than 2 for k_{33} while for k_{22} it is nearly 2. Therefore for k_{33} a background tan of C_1S^2 may not be quite appropriate.

From Table 5.8, it is also seen that as the nematic range is increased by adding 70B to 8 0CB, the heat, of A-N transition decreases. Correspondingly, γ has a tendency to decrease. Very close to the tricritical point, one would expect γ to attain the mean field value.

References

J. de Phys. 30, C4-24.

Cheung, L., and Meyer, R.B. 1973 Phys. Lett. 43A, 261.

Cheung, L., Meyer, R.B. and Gruler, H. 1973 <u>Phys. Rev.</u> Lett. <u>31</u>, 349.

Chu, K.C. and MoMillan, W.L. 1975 Phys.Rev. A11, 1059.

Cladis, P.B. 1974 Phys. Lett. 48A, 179.

de Gennes, P.Q. 1969 J. de Phys. 30, 04-65.

de Gennes, P.G. 1972 Solid State Commun. 10, 753.

de Gennes, P.G. 1973 Nol. Cryst. Lig. Cryst. 21, 49.

Delaye, M., Ribotta, R. and Durand, G. 1973 <u>Phys.Rev</u>. Lett. <u>31</u>, 443.

Delaye, M. 1976 (to be published).

Djurck, D., Baturic-Rubcic, J. and Franulavic, K. 1974 Phys. Rev. Lett. 33, 1126.

Frank, F.C. 1958 Disc. Fareday Soc. 25, 19.

Fernandes, J.R. and Venugopalan, S. 1976 Mol. Cryst. Liq. Cryst. 35, 113.

Leger, L. 1973 Phys. Lett. 44A, 535-

Maler, W. and Saupe, A. 1958 Z.Naturforsch. 13a, 564 Maler, W. and Saupe, A. 1959 Z.Naturforsch. 14a, 882 Maier, W. and Saupe, A. 1960 <u>Z.Maturforsch</u>. <u>15a</u>, 287 McMillan, W.L. 1971 <u>Phys. Rev. A</u>, <u>4</u>, 1238.

McMillan, W.L. 1972 Phys. Rev. A, 6, 936.

McMillan, W.L. 1973 Phys. Rev. A. 7, 1419.

Torza, S. and Cladis, P.E. 1974 Phys. Rev. Lett. 32, 1406.

Torza, S. and Cladis P.E. 1975 (Private communication) Wilson, K.G. 1972 Phys. Rev. Lett. 28, 548.

Table 5.1

Transition	temperatures	of 4'-n-octyloxy-4-cyanobiphenyl
	and mi	xtures

<u></u>		C1 C1	ryst ryst	al-sm or al-ne	ectic Natic	@se‰ nemat	Pc~- Le		iematio- leotropic
8 00B Mixture Mixture	I II			53.3° 12.2° 12.9°	3	66.9 45.7 25.2	90 90		76.7°C 56.3°8 56.5°8
Miztu Mixtu	ire ire	I: II:	8 0 8 0	CB (6) CB (4)	2 mole 2) mole 2)	+ 708 + 708	(36 (59	nole nole	3

Table 5.2

Order parameter and density of CHODA

°C	Order parameter S	density _e Es/cc
24.4	0.625	0.9422
21.5	0.608	0.9406
'SO. 1	0.592	0.9388
14.2	6.574	. 5 368
11.8	0.548	0.9355
8.9	0.532	0.9337
7.0	0.508	0.9325
5.5	0.492	0.9315
3.1	0.463	0.9298
2.1	0.434	0.9290
0.7	0.412	0.9277

		Table	5.3			
Refractive	indices	8 10	OCB and	its mixt	tures wi	th 7CB
T _{NT} -T	λ 5461	Å	λ 589	3 Å	λ 632	BĂ
°Č	no	ne	no	ne	no	ng
		(1)	8 OCB		•	
16.3 (II) 14.4 (I) 13.7 (II) 12.4 (I) 11.8 (II) 9.9 (II) 9.7 (III) 9.7 (II) 7.6 (III) 7.6 (III) 6.8 (I) 5.5 (II) 5.1 (III) 5.1 (II) 3.0 (I) 2.6 (III) 1.3 (I) 1.2 (II) 0.8 (III) 0.4 (II)	1.508 1.508 1.510 1.510 1.512 1.511 1.512 1.513 1.513 1.513 1.515 1.515 1.519 1.529 1.529 1.529	1.695 1.691 1.690 1.687 1.684 1.679 1.679 1.679 1.673 1.673 1.673 1.675 1.655 1.655 1.655 1.655 1.654 1.654 1.643 1.641 1.631	$\begin{array}{c} 1.503 \\ 1.503 \\ 1.504 \\ 1.505 \\ 1.506 \\ 1.506 \\ 1.506 \\ 1.509 \\ 1.509 \\ 1.509 \\ 1.509 \\ 1.510 \\ 1.511 \\ 1.511 \\ 1.515 \\ 1.515 \\ 1.515 \\ 1.519 \\ 1.519 \\ 1.518 \\ 1.524 \end{array}$	1.685 1.679 1.676 1.674 1.669 1.669 1.664 1.664 1.659 1.655 1.655 1.655 1.645 1.645 1.645 1.632 1.634 1.633 1.622	1.500 1.501 1.502 1.502 1.502 1.504 1.503 1.504 1.505 1.504 1.506 1.507 1.507 1.507 1.507 1.507 1.507 1.510 1.516 1.515 1.514 1.519	1.677 1.673 1.672 1.668 1.667 1.661 1.661 1.655 1.655 1.655 1.655 1.655 1.648 1.648 1.648 1.648 1.648 1.637 1.637 1.626 1.627 1.626
	· · ·	(11)	Mixture	I		
20.1 (I) 19.5 (II) 17.6 (I) 17.1 (II) 15.6 (I) 13.9 (II) 13.9 (II) 13.9 (I) 11.5 (I) 11.5 (I) 11.1 (II) 5.2 (I) 8.3 (II) 6.8 (I) 6.2 (II) 4.7 (I) 4.2 (II) 2.8 (II) 2.6 (I) 1.4 (I) 1.3 (II)	1.514 1.513 1.515 1.515 1.515 1.517 1.517 1.517 1.517 1.522 1.5522 1.55200 1.5520 1.552000 1.552000 1.55200000000000000000000000000000000000	1.707 1.705 1.705 1.700 1.698 1.698 1.695 1.688 1.688 1.688 1.680 1.677 1.673 1.670 1.660 1.660 1.660 1.655 1.646	1.509 1.509 1.510 1.510 1.511 1.511 1.512 1.513 1.512 1.514 1.515 1.516 1.518 1.520 1.521 1.522 1.524	1.697 1.695 1.692 1.690 1.687 1.684 1.679 1.678 1.678 1.674 1.671 1.665 1.650 1.650 1.650 1.650 1.650 1.650	1.506 1.507 1.507 1.508 1.508 1.509 1.510 1.510 1.510 1.512 1.512 1.514 1.514 1.514 1.514 1.514 1.514 1.517 1.519 1.521	1.689 1.684 1.682 1.680 1.676 1.676 1.677 1.671 1.665 1.663 1.658 1.658 1.653 1.650 1.642 1.643 1.637 1.631

Table
S
•
5
continued

HEEEEEEEEEEEEEEEE)
_ _ _ _ _ _ _ _ _ _	<u>ک</u>
1 A (111) m (111) m (111) m 1.720 1.6897 1.6697 1.6697 1.6697	• 0
	4 F Q
	N N N N N
1111111111111111 64556777777 645567777888888877777 645586777788888877777 645586777777 6558888777777 6558888777777 6558888777777 655888777777 655888777777 655888777777 655888777777 655888777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 65588777777 655887777777 655887777777 655887777777 655887777777 6558877777777 6558877777777777 65588777777777 655887777777777777777777777777777777777	>0

Table 5.4

Densities and average polarizabilities of 8 0CD and its mixtures with 7CD

	Density ? at (T _{NI} -T)=12°C in gm/co	Avera 2 م	se polari: t 1024 en ∧5853 Å	
	in gm/co	v 1046V		1 CC OC /
3 003	1.055.4**	38.64		38.28
Mixture I	1.0239	37.92		57.57
Mixture II	T 1.0301	るとうでし		

measured value.

1 1	23	μ.	٦	6 3	С,	¢
٠.	C3.		هايد	ς	~	-

5: Density of 8 OCE and mixtures

	م میں میں ایک میں	Density	₹ gm/cc	1
°C	λ 5461 Å	λ 58 93 Å	λ 6328 Å	Mean
		(1) 8 OCB		
0.8 2.6 5.1 7.6 9.7	1.0253 1.0274 1.0299 1.0321 1.0326	1.0254 1.0274 1.0296 1.0323 1.0328	1.0258 1.0281 1.0310 1.0320 1.0335	1#0255 1.0276 1.0302 1.0321 1.0330
1.3 3.0 4.6 6.8 9.4 12.4 14.4	1.0268 1.0285 1.0298 1.0317 1.0337 1.0360 1.0367	1.0264 1.0286 1.0299 1.0314 1.0337 1.0358 1.0362	1.0275 1.0273 1.0308 1.0323 1.0346 1.0367 1.0371	1.0269 1.0281 1.0302 1.0318 1.0340 1.0362 1.0367
0.4 1.2 3.9 5.5 7.7 9.8 11.6 13.7 16.3	1.0256 1.0271 1.0289 1.0311 1.0323 1.0340 1.0354 1.0365 1.0388	1.0250 1.0267 1.0289 1.0308 1.0327 1.0338 1.0354 1.0362 1.0386	1.0259 1.0276 1.0265 1.0311 1.0335 1.0350 1.0350 1.0367 1.0396	1.0255 1.0271 1.0281 1.0310 1.0328 1.0343 1.0358 1.0358 1.0369 1.0390
an a	(11)) Mixture I	ne a na an faith a thair an	in
1.3 2.8 4.1 6.2 8.3 11.1 13.9 17.1 19.5	1.0148 1.0169 1.0181 1.0201 1.0213 1.0242 1.0260 1.0283 1.0254	1.0148 1.0170 1.0181 1.0203 1.0220 1.0239 1.0263 1.0285 1.0301	1.0153 1.0168 1.0188 1.0206 1.0218 1.0245 1.0269 1.0287	1.0150 1.0169 1.0183 1.0203 1.0217 1.0242 1.0264 1.0285 1.0257
1.4 2.6 4.7 6.8 5.2 11.5 13.5 15.6 17.6 20.1	1.0163 1.0174 1.0197 1.0215 1.0234 1.0252 1.0271 1.0276 1.0301 1.0311	1.0163 1.0172 1.0196 1.0213 1.0233 1.0250 1.0270 1.0278 1.0296 1.0312	1.0165 1.0180 1.0202 1.0219 1.0235 1.0261 1.0278 1.0286 1.0303 1.0318	1.0164 1.0175 1.0198 1.0216 1.0234 1.0254 1.0254 1.0280 1.0280 1.0300 1.0314

Table	5.5	continued
-------	-----	-----------

T _{NI} -T		Density 9	gm/ce	a and anti-to-to-to-to-to-to-to-to-to-to-to-to-to-
°C	λ 5461 Å	λ 5893 Å	λ6328 Å	Mean
n Lin, fengensk forskerigen i Kerningen		iii) Mixture	ngen general verske som en som en Teller and teller I Sen and teller And teller and teller a Teller and teller and te	an a
o.6	1.0004	1.0007	1.0018	1.0010
3.1	1.0034	1.036	1.0043	1.0038
6.7	1.0069	1.0072	1.0081	1.0074
10.4	1.0099	1.0108	1.0108	1.0105
14.1	1.0124	1.0126	1.0136	1.0125
6.6	1.0142	1.0144	1.0157	1.0148
	1.0167	1.0168	1.0180	1.0172
3.4	1.0186	1.0187	1.0197	1.0190
6.7	1.0206	1.0206	1.0214	1.0205
2.4	1.0022	1.0026	1.0038	1.0029
4.5	1.0045	1.0052	1.0063	1.0053
9.4	1.0085	1.0087	1.0097	1.0095
2.1	1.0103	1.0107	1.0118	1.0109
5.5	1.0130	1.0132	1.0139	1.0154
9.5	1.0159	1.0165	1.0168	1.0164
2.8	1.0186	1.0188	1.0190	1.0168
5.7	1.0206	1.0204	1.0210	1.0207
8.9	1.0214	1.0221	1.0224	1.0220
53.4	1.0245	1.0248	1.0257	1.0250

Pah	10	С,	6
نية شيئا مع مالة مسيد مقل	نية عام الاستخداد	all and a second	

T _{NT} -T	gan gan an a	na han dan basa kalan di dan kalan di dan kalan ka S	n an	B (227) (227)27 (1987) + 244 (1986) + 246 (1987) - 197 (227) -
°C	λ 5461 Å	>5893 Å	λ6328 Å	Mean
		(1) 8 OCD		
0.8 2.6 5.1 7.6 9.7	0.346 0.394 0.438 0.467 0.491	0.347 0.325 0.436 0.468 0.490	0.349 0.396 0.436 0.466 0.490	0.347 0.395 0.437 0.467 0.490
1.3 3.0 4.6 6.8 9.4 12.4 14.4	0.342 0.391 0.424 0.454 0.484 0.515 0.535	0.342 0.391 0.423 0.452 0.454 0.514 0.576	0.343 0.383 0.423 0.450 0.483 0.515 0.935	0.342 0.388 0.423 0.452 0.484 0.515 0.535
0.4 1.2 3.1 5.5 7.7 9.9 11.8 13.7 16.3	0.299 0.346 0.397 0.440 0.466 0.489 0.507 0.529 0.545	0.297 0.348 0.397 0.439 0.467 0.489 0.507 0.528 0.545	0.705 0.348 0.410 0.439 0.466 0.487 0.508 0.529 0.529 0.545	0.300 0.347 0.397 0.439 0.466 0.488 0.507 0.529 0.545
антара оправ Катон	(11) Mixture I	n Maraka Alamata kangga manga yana ka Angalan La Manana kan kang dan kangga kangga Bahan	naş aya level göleri kanaşınış kanaşı nış kanaşı
1.3 2.8 4.1 6.2 8.3 11.1 13.9 17.1 15.5	0.342 0.396 0.419 0.446 0.471 0.497 0.520 0.538 0.558	0.346 0.394 0.420 0.449 0.473 0.498 0.519 0.540 0.558	0.344 0.392 0.421 0.451 0.473 0.501 0.519 0.540	0.344 0.394 0.420 0.449 0.472 0.499 0.519 0.539 0.539
1.4 2.6 4.7 6.8 9.2 11.5 13.9 15.6 17.6 20.1	0.375 0.392 0.432 0.459 0.480 0.501 0.518 0.530 0.546 0.561	0.369 0.392 0.429 0.481 0.500 0.517 0.528 0.545 0.561	0.367 0.392 0.430 0.458 0.480 0.501 0.501 0.528 0.543 0.561	0.370 0.392 0.458 0.480 0.501 0.517 0.529 0.545 0.561

Order parameters of 8 OCB and mixtures

Table 5.6 continued

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000040000 000040000 140047-0	TNI-T
00000000000000000000000000000000000000	000000000 5555554443 5765554443 765565 765555445 765565 765565 765565 765565	7 5461 <b>4</b>
00000000000000 50555555555555555555555	111) Mixture 0.350 0.457 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.5500 0.5500 0.5500 0.5500000000	7 5893 A
CCCCCCCCC 55555555445 56764200728 86805555444	H DCCCCCCC VVVVVV4444 7655419202 7655471602 840271602	λ6328 Å
0000000000 ₩44₹₹₹₹₹₹ ©000004₹₹₹ ©000004775	0000000000 555555555555555555555555555	Yean

	(1) 8 OCB	A A D
H _C Kgauss	(k ₁₁ ) _{exp} x 10° dyne	(k ₁₁ )cal x 10° dyne
2.10	0.50	0.49
2.36	U. (4 .) Ca	0.98
2.90	1.16	1.18
2.80	1.32	1.35
2.53	1.55	1.57
3.10	1.82	1.13
2 μm 	معهد موجه مراجع معد محمد محمد محمد	م محمد محمد معمد محمد محمد محمد محمد محم
2.14	0.51	0.49
2.46	0.83	1.05
2.59	1.02	1.25
2.17		1.42
3.00	1.64	1.64
3.10	1.62	1.80
1 µ¤	an a	and the second and the second s
	(11) Mixture I	
2.15	0.56	0 <b>.51</b>
2.40	0.81	V. 10 3. 59
2.24	1.17	1.16
2.00	1.35	1.36
2.87	1.52	1.56
3.03	1.77	1.73
3.13	1.98	2.09
<b>2</b> •22 * 23	2.20	2.11
2 µm	the grant set	
	a aligo alem yvas entr egot ota alige entre e	
1.97	0.42	<b>.5</b> 3
2.43	0.38	0.88
2.56	1.05	1.06
2.66	1.17	1.27
2.80	1.42	1.64
2.33	1.81	1.83
 •1∆	1 67	1.99
2.10	1 • <i>4</i> 2	
	H _c Kgauss 2.10 2.36 2.56 2.63 2.80 2.53 3.10 2 μm 2.14 2.46 2.59 2.75 2.85 3.00 3.10 1 μm 2.15 2.40 2.54 2.66 2.77 2.87 3.03 3.13 3.22 3.24 2 μm 1.97 2.25 2.43 2.56 2.66 2.93 3.03	$(1) & OCB$ $H_{c} (k_{11}) \exp x 10^{6}$ Kgauss dyne $2.10  0.50$ $2.36  0.74$ $2.56  0.98$ $2.63  1.16$ $2.80  1.32$ $2.53  1.55$ $3.10  1.82$ $2 \mu m$ $2.14  0.51$ $2.46  0.33$ $2.59  1.02$ $2.75  1.24$ $2.85  1.35$ $3.00  1.64$ $3.10  1.02$ $1 \mu m$ $(11) Mixture I$ $2.15  0.56$ $2.40  0.81$ $2.54  1.00$ $2.66  1.17$ $2.77  1.35$ $2.87  1.52$ $3.03  1.77$ $3.13  1.98$ $3.22  2.16$ $3.24  2.20$ $2 \mu m$ $1.97  0.45$ $2.25  0.67$ $2.43  0.93$ $2.56  1.05$ $2.66  1.17$ $2.93  1.60$ $3.24  2.20$ $2 \mu m$

Table 5.7

Table 5.7 continued

TNI-T °C	H _c Kgauss	(k ₁₁ ) _{exp} x 10 ⁶ dyne	(k ₁₁ ) _{cal} x 10 ⁶ dyne
and an	na ya ana in ana ana in ana mana ana ana ana ana ana ana ana a	(111) Mixture II	nnen er seneren Gemann slav over er storen far en er senere er senere er senere er senere er som er senere er s
0.6 1.9 5.3 5.3 7.4 9.7 12.5 15.0 15.0 15.0 15.7 20.9 24.2 26.6	2.25 2.40 2.53 2.64 2.75 2.84 2.95 3.00 3.07 3.20 3.29 3.34	0.56 0.71 0.85 1.00 1.14 1.28 1.44 1.54 1.65 1.85 2.02 2.12	0.51 0.58 0.82 1.00 1.17 1.31 1.46 1.59 1.73 1.86 2.01 2.12
x2/.	ο μ <u>α</u>	gay ayay adah onlar olan uur uas aasa daxa	نواروس میکند. توریخ ویکوی ویکوی میکند. توریخ
1.3 3.3 5.0 10.7 15.9 15.9 15.5 25.4	2.32 2.59 2.75 2.85 2.95 3.07 3.17 3.32 3.45	0.60 (.85 1.04 1.78 1.33 1.69 1.64 1.88 2.13	0.60 0.84 1.03 1.20 1.37 1.50 1.64 1.80 2.07
× = 27.	1 µm		

# Table 5.8

 $\mathbb{T}_{AN}/\mathbb{T}_{NI},$  heats of transition and the indices  $\gamma$  for the systems studied

any nanangan wasangan ang kanangan kanangana an maganganakanan kananganganasi dari sera ang kanangangangan kang

	T an	Δ H _{AN}	and the second	
	T _{NI}	cal/gm	£22	¥33
8 <b>C</b> B	0.98	0.10	0.74	1.0
8 008	0.95	0.03	0.64	0.82
10 OMCFC	0.25	<0.01	0.56	0.04
Mixture I	0.94	0.01	0.63	6.67
CBOCA	0.94		0.60	
Mixture II	0.92	<0.01	0.59	0.69

an ve an 100 v		· oal	2
T-T*	k _{exp} x 10 ⁶	k _{cal} x 10 ⁶	
°C	dyne	dyne	
	(1) 8 (3)		
0.06	1.14	1.11	0, = 2.68
0.18	0.82	0.82	C = 0.071
1.13	ö.66	<b>0.62</b>	2
1.60	0.60	0.59	γ = 0.68
2.94	0.55	0.35	9 ¹² # 53,27
6.17	<b>6.3</b> 2	0.34	
6.77	0.25	0.27	RMS error = $0.0210$
6.13	0.85	0.90	0 - 0 CZ
0.77	0.68	0.68	
1.20	0.63	0.64	$0_2 = 0.045$
4.33	ें.45	0.47	γ = 0.79
5.75	0.35	0.37	<b>r</b> = 33.30
6.47	0.26	un variante de activitation de la companya de la co	$RMS \ error = 0.0223$
	(11) 8 000		
0.13	1.44	1.44	C, = 3.07
0.24	1.26	1.25	C. = 0.19
0.72	1.05	1.02	γ ⁻ = 0.74
1.83	0.68	0.88	T [#] = 66.936
2.63	0.82	0.83 0.75	BMS error = 0.0146
5.83	0.68	0.68	
7.34	0.61	0.61	
5.52	ं <b>.</b> 37	0.38	
0.22	1.14	1.06	
6.43	1.02	0.98	0 ₁ = 3.05
0.71	0.94	0.89	¢₂ ≈ 0.12
1.86	ŏ.83	0.83	γ = 0.66
3.58	<b>.76</b>	0.75	T [#] = 66.984
<b>7.7</b> 8	0.58	0.00 0.58	RMS error = 0.0150
10.58	0.44	0.43	
12.29	<b>○.3</b> 0	0.29	

 $\frac{\text{Table 5.9}}{\text{Twist elactic constants } [k_{cal} = C_1 S^2 + C_2 (T - T^{\#})^{-\gamma}]}$ 

Table 5.9 continued

£-7 [≇] °C	(k/AK) _{exp} x 10 ² dyne	(k/AK) _{cal} x 10 ² dyne	
Andre and a rear age and rear	(111) 10	omapc	
0.37 0.53 0.93 1.37 1.94 2.41 4.53 6.66 9.40 12.05 14.74	0.73 0.66 0.61 0.57 0.51 0.47 0.45 0.38 0.35 0.35 0.30 0.26 0.20	0.82 0.70 0.64 0.58 0.52 0.48 0.46 0.40 0.36 0.31	C ₁ = 1.27 C ₂ = 0.219 γ = 0.58 T ² = 56.915 RMS error = 0.0060
0.36 0.52 0.91 1.58 2.44 4.01 6.23 8.35 10.42 12.61 14.86 15.96	0.73 0.67 0.57 0.52 0.48 0.43 0.40 0.30 0.29 0.24 0.17 0.14	0.58 0.76 0.60 0.48 0.46 0.41 0.37 0.33 0.30 0.26	0, = 1.24 0 ₂ = 0.226 7 = 0.54 T ^H = 56.837 RMS error = 0.0155

Table	5.9	الاينية (	ntinued
Table	5.1		ntinued

\		
k _{exp} x 10 ⁶ dyne	k _{cal} x 10 ⁶ dyne	-
2.34 1.44 1.28 1.02 0.92 0.88 0.80 0.72 0.62 0.50 0.38 0.28	2.19 1.38 1.20 0.97 0.93 0.92 0.83 0.76 0.68 0.58 0.48 0.36	$C_1 = 2.97$ $C_2 = 0.177$ $\gamma = 0.70$ $T^{2} = 45.574$ RMS error = 0.0570
1.94 1.42 1.26 1.20 1.05 0.92 0.81 0.70 0.62 0.40 0.23	1.94 1.46 1.26 1.12 1.00 0.89 0.81 0.73 0.68 0.48 0.31	C ₁ = 2.88 C ₂ = 0.247 γ = 0.56 T [#] = 45.973 RMS error = 0.0422
	kexp dyne 2.34 1.44 1.28 1.02 0.92 0.88 0.80 0.72 0.62 0.50 0.38 0.28 1.94 1.42 1.26 1.20 1.05 0.92 0.81 0.70 0.62 0.92 0.81 0.70 0.62 0.40 0.23	$k_{exp}$ x 10 ⁶ $k_{eal}$ x 10 ⁶ 2.342.191.441.381.281.201.020.970.920.930.880.920.600.830.720.760.620.680.500.580.380.480.280.361.941.941.421.461.201.121.051.000.920.890.810.610.700.730.620.68

Table 5.9 C	ontinued
-------------	----------

(v)	CBOOA
-----	-------

T - T [#] °C	(k/Axom)exp	(k/ $\Delta x_{on}$ ) cal	
0.28 0.36 0.63 1.32 2.23 3.73 6.15 8.29 11.77 15.76 18.63 20.17 22.25 23.46	5.15 2.94 2.64 2.46 2.27 2.12 2.04 1.90 1.79 1.58 1.35 1.19 1.06 0.95	3.12 2.97 2.67 2.41 2.27 2.13 2.00 1.90 1.75 1.55 1.38 1.27 1.10 0.99	$C_1 = 5.39$ $C_2 = 0.43$ $\gamma = 0.70$ $T^2 = 82.584$ RMS error = 0.0370
0.27 0.70 1.84 3.27 5.49 8.12 10.70 13.11 16.52 19.45 21.80 23.70	3.37 2.75 2.54 2.54 2.54 1.54 1.85 1.76 1.54 1.34 1.15 0.89	3.17 2.75 2.45 2.29 2.14 2.00 1.88 1.76 1.58 1.38 1.38 1.20	$G_1 = 5.50$ $G_2 = 0.55$ $\gamma = 0.61$ $T^2 = 82.496$ RMS error = 0.0456

Table 5.9 continued

•C	k _{exp} x 10 ⁶ dyne	k _{cal} x 10 ⁶ dyne	
0.24 0.65 0.88 1.24 2.56 4.02 6.17 8.46 10.78 15.02 17.42 18.86 21.40 23.68 25.20	2.77 2.12 1.96 1.75 1.61 1.52 1.44 1.31 1.21 1.05 0.98 0.95 0.81 0.70 0.51	2.77 2.09 1.96 1.82 1.61 1.49 1.39 1.28 1.28 1.24 1.11	C ₁ = 2.48 C ₂ = 0.60 γ = 0.63 T ^H = 29.871 RMS error = 0.0349
0.25 0.32 0.55 0.78 1.17 2.58 5.18 5.18 5.15 12.66 16.58 19.86	2.54 2.33 2.08 1.93 1.84 1.70 1.47 1.31 1.14 0.98 0.84	2.41 2.30 2.11 1.99 1.66 1.65 1.49 1.33	C ₁ = 2.45 C ₂ = 0.67 γ = 0.54 T [#] = 29.956 RMS error = 0.0648

(vi) Mizture II

australia e sentes Stater

# Table 5.10

Bend elastic constant  $[k_{cal} = c_1 s^2 + c_2 (2 - 2^n)^{-\gamma}]$ 

	(1) 8 0		
T-T ^M	k _{exp} x 10 ⁶ dyne	k _{cal} x 10 ⁶ dyne	
0.185 0.365 0.465 0.715 0.765 1.195 1.395 2.245 3.855 5.965 5.965 6.595	6.17 3.63 3.07 2.30 2.23 1.76 1.64 1.24 1.02 0.79 0.66 0.54	6.13 3.63 3.06 2.33 2.23 1.74 1.62 1.29	$C_1 = 4.27$ $C_2 = 1.02$ $T^{\text{M}} = 33.215$ $\gamma = 0.97$ RMS orrox = 0.0245
0.402 0.582 0.732 0.932 1.212 2.112 2.112 2.122 3.952 5.852 6.832	3.98 3.07 2.39 2.09 1.82 1.75 1.33 1.03 0.79 0.67 0.49	3.97 2.57 2.51 2.13 1.80 1.64 1.32 1.03 0.80 0.70 0.53	0 ₁ = 3.82 0 ₂ = 1.22 1 ² = 33.098 7 = 1.03 NAC error = 0.0619

(1) 8 CE

-----

• •		
k _{exp} x 10 ⁶ dyne	k _{cal} x 10 ⁶ dyne	-
9.62	<b>9.61</b> 7.70	$C_1 = 4.41$
6.71	6.54	0 - 0 16
5.24	5.25	⁶ 2 ^m 2.10
4.91	4.91	T [¥] = 66.964
4.38	4.44	
3.60	3.71	γ = 0.83
3.14	)•11 2 %4	
2.41	1.92	RMS error = 0.077
1.72	1.66	
1.34	1.37	
1.07	1.15	
0.94	1.01	
0.75		
9.67	9.71	C. = 4.82
7.71	7.60	-1
4.99	5.11	C, = 1.96
4.42	4+41	
2.78	2.71	$T^{-} = 66.557$
2.59	2.50	v = 0.81
2.26	2.22	
1.94	1.91	RMS error = 0.0646
1.54	1.50	
1.42	1.33	
1.12	1.18	
	$k_{exp} \times 10^{6}$ $dyne$ 9.62 7.59 6.71 5.24 4.91 4.38 3.60 3.14 2.41 1.99 1.72 1.34 1.07 0.94 0.75 9.67 7.71 4.99 4.42 3.97 2.78 2.59 2.26 1.94 1.54 1.42 1.29	$k_{exp}$ x 10° $k_{cal}$ x 10°dynedynedyne9.629.617.597.706.716.545.245.254.914.914.384.443.603.713.143.112.412.341.991.921.721.661.341.371.071.150.941.010.7599.679.114.424.413.974.052.782.712.592.502.262.221.941.911.541.561.421.451.291.331.121.18

(11) 8 OCB

T - T ^X °C	(k/AK) _{exp} x 10 ²	(k/AK) _{cal} x 10	2
$\begin{array}{c} 0.12\\ 0.16\\ 0.21\\ 0.28\\ 0.40\\ 0.56\\ 0.77\\ 0.87\\ 1.12\\ 1.78\\ 2.27\\ 2.88\\ 4.18\\ 4.91\\ 6.08\\ 8.04\\ 9.73\\ 11.08\\ 8.04\\ 9.73\\ 11.08\\ 13.56\\ 14.94\\ 15.91 \end{array}$	11.79 9.72 8.18 6.99 5.69 4.87 3.94 3.76 3.17 2.53 2.12 1.93 1.49 1.43 1.33 1.12 0.95 0.88 0.69 0.52 0.31	$ \begin{array}{r} 11.65\\ 9.80\\ 8.33\\ 7.02\\ 5.68\\ 4.67\\ 3.89\\ 3.63\\ 3.15\\ 2.44\\ 2.15\\ 1.89\\ 1.56\\ 1.44\\ 1.29\\ 1.11\\ 1.00\\ 0.92\\ 0.78\\ 0.70\\ 0.65\\ \end{array} $	$C_1 = 1.59$ $C_2 = 2.95$ $\gamma = 0.64$ $T^M = 57.028$ RMS error = 0.1160
0.17 0.24 0.33 0.45 0.54 0.88 1.06 1.38 1.85 4.94 6.08 7.62 9.18 10.60 12.24 13.70 15.36	8.75 7.00 5.91 4.80 4.22 3.51 2.93 2.67 2.22 1.82 1.29 1.17 1.01 0.90 0.82 0.72 0.60 0.42	8.70 7.07 5.84 4.86 4.37 3.29 2.96 2.55 2.18 1.82 1.28 1.15 1.02 0.92 0.84 0.76 0.69 0.61	$C_1 = 1.34$ $C_2 = 2.72$ $\gamma = 0.64$ $T^{25} = 57.015$ RMS error = 0.0908

Table 5.10 continued

(iii) 10 OMCPC

Table 5.10 continued

T-T °C	k x10 ⁶ dyne	k _{cal} x10 ⁶ dyne	т–Т* °С	k _{exp} x10 ⁶ dyne	k _{cal} x10 ⁶ dyne
0.22 0.32 0.81 1.00 1.28 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.23 1.220 1.23 1.220 1.286 1.23 1.2.20 1.2.826 1.2.20 1.2.826 1.2.20 1.2.826 1.2.20 1.2.826 1.2.20 1.2.826 1.2.20 1.2.826 1.2.20 1.2.826 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96 1.2.96	13.91 10.64 6.43 5.53 4.65 4.23 3.76 3.19 2.97 2.74 2.53 2.42 2.08 1.98 1.61 1.49 1.46 1.27 1.19 1.02 0.81 0.55	13.73 $10.83$ $6.12$ $5.41$ $4.70$ $4.26$ $3.84$ $3.23$ $2.97$ $2.68$ $2.53$ $2.97$ $2.68$ $2.53$ $2.01$ $1.89$ $1.71$ $1.58$ $1.49$ $1.42$ $1.30$ $1.24$ $1.14$	0.14 0.21 0.28 0.70 0.89 1.952 2.73 3.74 4.10 6.00 8.094 12.71 15.669 18.96	14.49 11.96 9.43 8.99 7.45 5.91 5.95 3.98 3.49 2.75 2.56 1.71 1.54 1.64 1.55 5.99 0.56	14.50 11.47 9.73 8.86 7.74 5.84 5.14 3.93 3.45 3.45 2.94 2.72 2.54 2.21 2.05 1.90 1.79 1.70 1.60 1.54 1.25
$C_1 = 2$	.82 56		° ₁ =	3.06 3.93	
y = 0.	.69		y =	0.64	
$\mathbf{T}^{\mathbf{X}} = 4$	5.889		T [*] =	45.976	
RMS eri	ror = 0.099	3	RMS e	rror = 0.14	56

(iv) Mixture I

anh'	۶.	10	conti	nued
1 G U	a	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

-

(v) Mixture II

T-T [#] °C	kexp ^{x106} dyne	k _{cal} x10 ⁶ dyne	0 C	kerp ^{x106 dyne}	k _{cal} x10 ⁶ dyne
0.26 0.41 0.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5	$16.04 \\ 12.25 \\ 10.15 \\ 8.10 \\ 7.17 \\ 6.29 \\ 5.80 \\ 4.89 \\ 4.35 \\ 3.55 \\ 3.55 \\ 3.55 \\ 2.53 \\ 2.53 \\ 2.53 \\ 2.53 \\ 2.53 \\ 1.69 \\ 1.47 \\ 1.27 \\ 1.09 \\ 0.69 \\ 0.69 \end{bmatrix}$	16.05 12.29 9.99 8.17 7.18 6.44 5.87 4.79 4.20 3.56 3.29 3.00 2.59 2.30	0.40 0.50 0.83 0.93 1.152 1.52 1.52 1.52 1.52 1.52 2.55 4.56 1.52 5.15 10.74 5.16 10.75 16.10 21.13 22.55 24.65 25.71 26.85	11.85 5.94 6.27 7.25 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5	11.06 5.74 8.18 7.33 6.88 6.35 4.50 4.50 4.50 5.35 4.50 3.22 2.57 1.62 1.65 1.05 1.05
°1 *	= 3.69		c	<b>5.34</b>	
°2 *	= 0.29 = 0.63		ب ب	· • 0.75	
1 - 1 -	- 32.025		•	<b>*</b> - 32.(82	
RMS erro	or = 0.0862	2	ł	NMC = 0.2 ppror	005

-----

Reference	Measured	X	thod	Compound	AB	7
Cheung and Meyer (1573)	k33	Vc by capa meas	oi tance urenent	BENDA	363 cal/mole	-
Cheung et al.	k ₅₃	H _c by opti	cal method	CBUON	¥	0.66
Delaye et al.	k22	Light scat	tering	CE 00 A	Ħ	0.66
Cladis (1974)	k ₅₅	H _c by cono	scopic method	CB CO A	*	0.5 (pure) 1.0 (impure)
Leger (1973)	K ₂₃	H, by opti	cal method	BBOA	85 cal/mole	0.66
Chu & McMillan	្អុង	Light scat	tering	CB 00A	M	0.5
Delaye (1976)	<b>k</b> 22	Light scat	tering	8 003	9 cal/mole	0.5
BBHBA - BBOA -	p-butoxyber p-butoxy be	rzylidene-p'-	B methory butyl-octyl aniline.	eniline		
*Different val Cladis (1974)	ues have be obtained a	en reported Value $\Delta H_{AR}$	by different wo	rkers. For using DTA.	example, Torsa Djurek <u>et al</u> .	(1574)
from adlabati a value 4 cal DSC megaureme	c calorimet /mole from rts give si	ry oo talmed DSC measurem ightly highe	ents. However r value for $\Delta H$	ve must men because th	tion here that it side in side	LTA and pecific
beat near the	transition	also gives	rise to a bump	In the cury		

Table 5.11