HIGH RYDBERG STATE RECOMBINATION LINES FROM INTERSTELLAR CARBON : AN OBSERVATIONAL STUDY

A Thesis Submitted for the Degree of Portor of Philozophy

in the Faculty of Science

By NIMISHA G. KANTHARIA

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF SCIENCE BANGALORE-560 012 (INDIA)

JULY 1997

Declaration

I hereby declare that the work presented in this thesis is entirely original, and has been carried out by me at the **Raman** Research Institute under the auspices of the Joint Astronomy Programme of the Department of Physics, Indian Institute of Science. I further declare that this has not formed the basis for the award of any degree, diploma, membership, associateship or similar title of any University or Institution.

Naparthanie

Nimisha G. Kantharia

Department of Physics Indian Institute of Science Bangalore - 560012 INDIA

Raman Research Institute Prof. Sir C.V.Raman Avenue Bangalore - 560080 INDIA

ACKNOWLEDGMENTS

It has been a pleasure to work in the quiet and encouraging environment at Raman **Research Institute**. I thank my **thesis** advisor, Prof. K. R. **Anantharamaiah** for providing me with the opportunity to work with him. I am deeply indebted to him for introducing me to the fascinating world of observational radio **astronomy**, for suggesting the problems, for his guidance and for his patience. I have greatly benefited from the numerous scientific discussions with Prof **K.R.Anantharamaiah**. It has been instructive being witness to his unique approach and attitude towards problems. The freedom he **gave** me to learn and grow at my pace has been rewarding. This thesis would not have **reached** this stage but for his extensive advice, suggestions and insight. **Thanks Anantha**.

I would like to thank Prof. G. Srinivasan, Prof. Rajaram Nityananda, Dr. Vivek Dhawan, Prof. Chanda Jog, Prof. Arnab Rai Choudhuri, Prof. D.C.V.Mallik and Prof. Harish Bhatt for the wonderful Joint Astronomy **Programme** lecture classes during my first year. I thank Prof. **T.P.Prabhu** for guiding me through my summer project at Kavalur.

I thank H.A. Ashwathappa, C. Nanje Gowda, G.N. **Rajashekhar** for helping me with long observations with the Gauribidanur telescope and the entire team at the Gauribidanur Observatory for maintaining the telescope. I thank **T.S.Ravishankar** and A. Santhoshkumar for the design and constitution of the multi-line receiver at **Gauribida-nur**. I thank Prof. **A.A.Deshpande** for *marg-* useful insights regarding the Gauribidanur system. I am grateful **to** D. Anish **Roshi** for helping me with the observations using the Ooty Radio Telescope and useful discussions and Dr. **V.Balasubramanian** for allotment of telescope time. Thanks are also due to the **entire** team maintaining the Ooty Radio Telescope and to the team maintaining the RRI 10.4-m telescope.

I thank Dr. **H.E.Payne** for providing the VLA data on Cas A and also for the modified computer code that I have used to calculate the departure coefficients. I am grateful to Prof W. M. Goss for initiating me into the W3 problem and for his patience. I thank Prof. **K.S.Dwarakanath** for helping with the VLA observations of G14+00.

Many thanks to the entire computer section (past & present) for the state-of-the-art computing facilities and for making me an Authorised User. I also thank the section, especially P. Rajashekar & P. Ramadurai, for their help in software development.

I appreciate the efforts of the library section who have kept the library accessible and user-friendly. I thank the staff for their help whenever I required them and especially

to Mr. Chowdappa who ungrudgingly made multiple copies of the thesis.

I am grateful to the RRI canteen staff and the IISc mess staff who have provided me with ready-made meals.

I have enjoyed having many academic and non-academic discussions with my colleagues and faculty at RRI. It is somewhat **difficult** to name and thank all my friends at IISc, RRI & **IIA** who have been supportive and a joy to have. I **am** not mentioning names here but I would **certainly** Like to say that there is silent gratitude for all of you. I appreciate your friendship which has enriched my life. Thanks for being there and making the journey towards a **Ph.D**. more cheerful, wholesome and memorable **inspite** of the occasional frustrations. I thank you for many memorable discussions on various topics.

Last, but not the least, I am deeply grateful to my parents for introducing me to astronomy and research. My family has been a constant source of encouragement, strength and love, I also thank Ba for her special kind of wisdom. Ta.

The set of the second of the later of the later of the second of the second

en para de la constitución (como como en en constitución de la como en constitución de la como en en constitución de la como en c

and the second state of th

ugan Geografia

N. ANN

in the second second

Synopsis

This thesis describes the results of an observational study of the **partially** ionized gas in the Galaxy using low-frequency radio recombination lines of carbon arising due to electronic transitions at large quantum numbers (150 < n < 600).

Radio recombination lines are useful for studying the ionized component of the interstellar medium. Different types of ionized regions in the Galaxy give rise to detectable recombination lines of various atomic species such as hydrogen, helium and carbon. In general, recombination lines of hydrogen and helium are detected from hot $(T_e \sim 10^4 \text{ K})$ fully ionized clouds known as HII regions. On the other hand, recombination lines of **carbon arise** in cooler (50 - 500 K) partially ionized regions. Although extensive studies of hot, ionized regions using recombination lines of hydrogen and helium have been carried out, there are only a few observations of recombination lines of carbon from partially ionized gas. Carbon lines at relatively high frequencies ($\nu > 1$ **GHz)** are detected **from** the partially ionized gas surrounding some strong H_{II} regions and these have been reasonably well studied. In 1980, Konovalenko & Sodin discovered a new type of carbon recombination line at a very low frequency (~ 26 MHz) in the direction of the strong radio source, Cas A. This line was in absorption and corresponded to the transition between $\mathbf{n} = 631 \& \mathbf{n} = 632$ in carbon. Subsequently many other transitions at higher ($n \sim 800$) and at lower quantum numbers ($n \sim 160$) have been observed in this direction. These low-frequency carbon recombination lines exhibit interesting **observable** properties. The line width increases sharply towards lower frequencies (*i.e.* higher quantum numbers) due to pressure and radiation broadening and the lines turnover into emission at frequencies above 150 MHz (n < 350) due to inversion of level population and consequent stimulated emission. Interpretation of these lines has led to the conclusion that the lines arise in one of the major constituents of the ISM i.e. either atomic clouds or molecular clouds or possibly both. In these largely neutral component of the ISM, carbon, due to its lower ionization potential (11.4 eV) can be ionized by the background ultraviolet radiation.

Since these low-frequency carbon recombination lines arise in a major component of the ISM, these lines **are** potentially widely detectable and could be a useful diagnostic of physical conditions in the ISM. Searches for these lines in other directions in the Galactic plane have met with some success. Near 25 MHz, carbon lines have been detected in absorption from the directions of **G75+00**, NGC2024, S140, L1407 & DR21. Towards the Galactic centre, lines have been detected in absorption at 75 MHz and in

emission near **328** MHz. Similarly towards M16, absorption lines at **69 & 80** MHz and emission line near **325** MHz have been detected. In a recent survey at 76 MHz using the **Parkes** radio telescope, recombination lines of carbon were detected in absorption from all the observed directions with longitude $\leq 20^{\circ}$. In all, there were more than 20 new detections which showed that ionized carbon is fairly widespread in the inner galaxy and that the recombination lines of carbon are detectable at low frequencies with existing instruments.

In this thesis, we undertook extensive observations of carbon recombination lines near **34.5 MHz** using the **low** frequency **'T'-shaped** dipole array located at Gauribidanur which is **80** km north of Bangalore. Since these were the first major spectral line observations using this radio telescope, a new spectrometer with associated hardware and software was developed for this purpose. Using this instrument, we searched for recombination lines of carbon at **34.5** MHz ($n \sim 575$) from about **35** positions, most of them in the Galactic plane and a few against **specific** sources from which low frequency lines had been **previously** detected. We detected carbon lines in absorption, from ten of these positions, eight of them in the **first** quadrant and one in the fourth quadrant of the Galaxy. The positive results include the first detection of a broad **Voigt-shaped** line **profile** from the direction of Cas A. The Voigt-shaped profile results from **pressure and/or** radiation broadening and in this thesis we derive constraints on the line-forming region from the observed line parameters.

To complement the absorption line detections made with the Gauribidanur telescope, we observed a subset of these directions at 328 MHz ($n \sim 270$) using the Ooty Radio Telescope and detected recombination lines of carbon, in emission, from all the positions with Galactic longitude $< 20^{\circ}$. An emission line at 328 MHz was also detected from the direction of Cas A. At low frequencies, Cas A is an extremely strong continuum source because of which the effective angular resolution is determined by the angular size of Cas A *i.e.* \sim 5'. However, towards other directions in the Galactic plane, the angular resolution is determined by the telescope beam. At low frequencies, angular resolutions are generally poor (beam size \sim several degrees) and cloud sizes are likely to be smaller than the beam size and therefore beam-dilution effects are likely to be significant. Since this modifies the line strengths, the models that fit the observed data also change. Thus, the size of the line-forming clouds plays a significant role in the interpretation of the observed line strengths. In order to obtain some constraints on the sizes of the line-forming regions, the observations with the Ooty Radio Telescope were made with two different angular resolutions *i.e.* 2° x 6' and 2° x 2". Furthermore, we attempted to image one of the Galactic-plane positions in recombination lines of

16.

carbon with high angular resolution (\sim 5') near 330 MHz using the Very Large Array (VLA) which is an aperture synthesis instrument located in the USA. The methods, the data analysis and results of all these observations are described in this thesis.

We have combined our observed recombination-line data towards various directions in the Galactic plane with previous results at other frequencies to model the carbon line-forming regions. Two types of models are considered. The first one is the cold gas $(T_e \leq 20)$ model in which the carbon line regions are considered to be associated with molecular clouds which may not be in pressure equilibrium with the interstellar medium. In the second type, which we refer to as the warm gas $(50 < T_e < 300 \text{ K})$ model, the observed carbon lines are considered to originate in the neutral HI component which is in rough pressure equilibrium with other atomic components of the interstellar medium. In both these models, the effect of a dielectronic-like recombination proon the level populations of high quantum number states of carbon have been included. In this process, an energetic (~ 100 K) free electron recombines to a high quantum number level in carbon with simultaneous excitation of a core electron from the finestructure state ${}^{2}P_{1/2}$ to ${}^{2}P_{3/2}$. Since these fine-structure levels are separated by 92 K, this process is more effective in the neutral HI component with temperature ~ 100 Ka**The** physical parameters that we obtain from modelling favours the association of the carbon line region with neutral HI gas in the Galaxy. However, the origin of these lines in molecular gas cannot be entirely ruled out. We find that a range of physical conditions are probable depending on the cloud size.

The only direction that has been extensively investigated in low frequency recombination lines of carbon is that towards **Cas** A. The observed dependence of optical depth on quantum number **seems** to rule out the origin of these lines in cold (~ 20 K) molecular clouds and favour the association with warmer (~ 100 K) HI gas. If the spatial distribution of the carbon recombination lines over the face of **Cas** A can be compared with that of the H1 21-cm line which traces the atomic gas and ¹²CO line which traces the molecular gas, then further knowledge on the possible association of the carbon line region with the neutral **gas** components **can** be obtained. For this purpose, we have imaged **Cas** A in the **C270** α line emission near **332 MHz** using the VLA with an angular resolution of $\sim 25''$. The ¹²CO line emission with a resolution of ~ 1' was obtained using the 10.4-m mm-wave telescope at **Raman** Research Institute, Bangalore. The distribution of H1 emission was obtained from published data. A comparison of recombination line distribution with ¹²CO & H1 distributions showed that there is good correspondence between **C270** α & H1 distributions and rather poor correlation between ¹²CO & C270 α distributions. These observations lend support to

the models in which the line-forming regions are associated with the Ht gas."

Lastly, we have investigated in this thesis, the partially ionized gas adjacent to the well known Galactic HII region W3A, using radio recombination lines of carbon and hydrogen near 1420 MHz. High angular resolution, high-sensitivity images of W3A were obtained in C168 α and H168 α lines using the VLA. The H168 α line is found to be a combination of a broad (> 20 kms⁻¹) and a narrow (< 10 kms⁻¹) component. While the broad line emission is attributable to the fully ionized hot HII region, the narrow line arises in the partially ionized gas surrounding the HII region. The intense carbon and hydrogen line emission is a result of stimulated emission by the background thermal region. We find from a comparison of the narrow H168 α and C168 α distributions across the continuum source that the two line-forming regions, although sharing some overlap, are not entirely coextensive. We have constrained the physical properties of these regions from the observed line parameters. The parameters of broad hydrogen line and the continuum emission detected towards W3A are combined with other data to obtain constraints on the temperature, density and clumpiness in the HII region.

In summary, we present in this thesis an extensive observational study of **low**-frequency carbon recombination lines from partially ionized gas associated with a widely distributed component of the interstellar medium. In addition, we also present a limited study of carbon and hydrogen recombination lines at a higher frequency from the partially ionized medium adjacent to a well known **H**II region.

) Sear

Contents

1 Introduction			ion	1		
	1.1	The Interstellar Medium (ISM) - an Overview · · · · · · · · · · · · · · · · · · ·				
		1.1.1	Classification of the ISM based on the dominant form of Hydrogen	n 2		
		1.1.2	Pressure Equilibrium in the ISM	4		
		1.1.3	Ionized Carbon in the ISM	6		
	1.2 Radio Recombination Lines A Brief Review					
		1.2.1	Hydrogen and Helium Recombination Lines	7		
		1.2.2	Radio Recombination Lines of Carbon ••••••	10		
	1.3	Previe	ew of the Present Work	14		
2	Son	ne the	ory of Radio Recombination Lines	16		
	2.1	Introd	uction • • • • • • • • • • • • • • • • • • •	16		
	2.2	Recon	abination Line Frequencies	17		
	2.3	The R	adiative Transfer Equation	18		
	2.4	Recon	nbination Line Profiles	23		
	2.5	Calcu	lation of Departure Coefficients	27		
	2.6	Dielectronic-like Recombination in Carbon				
	2.7	Boundary Conditions for calculating Departure Coefficients				
	2.8	Interp	retation of RRL Observations	33		
		2.8.1	Determination of Electron Temperature	34		
		2.8.2	Determination of Electron Density	35		
	2.9	Freque	equency Dependence of Carbon Recombination Lines			
	2.10	Summ	ary	40		
3	Obs	servati	ons and Results	41		
	3.1	Introd	uction · · · · · · · · · · · · · · · · · · ·	41		
	3.2	Obser	vations with the Gauribidanur Telescope	42		
		3.2.1	The Astrophysical Plan	42		

ii

۰. د

		3.2.2	The Equipment		44	
		3.2.3	The Observations		57	
		3.2.4	The Results		60	
	3.3	3.3 Observations with the Ooty Radio Telescope (ORT)				
		3.3.1	The Astrophysical Plan	•	68	
		3.3.2	The Observations	I	69	
		3.3.3	The Results		72	
	3.4	Obse	rvations with the Very Large Array (VLA)	ı	79	
		3.4.1	The Astrophysical Plan		79	
		3.4.2	Observations & Results		81	
	3.5	Obse	rvations with the RRI 10.4 m Telescope		90	
		3.5.1	The Astrophysical Plan		90	
		3.5.2	Observations & Results		90	
	3.6	Sumn	nary		93	
4	Ior	nized C	arbon towards Cas A	. !	95	
	4.1	Introd	luction		95	
4.2		Obser	vations towards Cas A	1	97	
	4.3	Properties of the Line Forming Region			99	
		4.3.1	Physical limits from Observed Line Width	(99	
		4.3.2	Spatial Distributions of C270 α , ¹² CO and H _I lines	1(02	
		4.3.3	Constraints from the Integrated Line Strength	1()5	
	4.4	Discus	sion	1()9	
	4.5	Summ	ary	11	11	
_	τ			11	-	
5	ION		irbon in the Galactic Plane	11	7	
	5.1 5.2		neulon Size of the Line producing Clouds	11	0	
	5.2	1 ne A	Deem Dilation at 245 MIT	11	9	
	5 2	5.2.1 Constant	Beam Dilution at 34.5 MHZ	12	1	
	5.3	Constr	aints from the Observed Line Widths	Observed Line Widths		
	5.4	Site of	Origin of Low-frequency Recombination Lines	12	5	
		5.4.1	Origin of Low-frequency lines in Hot Gas	12	0	
		5.4.2	Origin of Low-frequency lines in Cold Neutral Gas	120	b	
		5.4.3	The Longitude-Velocity Diagram of Carbon Recombination Lines	1.0'	7	
			at 54.5 MHz & 528 MHz and Comparison with HI & "CO	12	1	

		5.4.4	The Line-to-Continuum Ratios of Carbon Recombination line $\&$
			Comparison with H1 & 12 CO
	5.5	Mode	lling the Line-Forming Regions
		5.5.1	Physics underlying the modelling
		5.5.2	The Modelling Procedure 137
		5.5.3	Criteria for selecting Good Models
		5.5.4	Generating the Models
		5.5.5	Effect of change in physical parameters on the product $b_n \beta_n \ldots$ 143
		5.5.6	Results of Modelling - Positions in the Inner Galaxy 146
		5.5.7	Other Galactic positions
		5.5.8	Discussion on the Probable Models of the Line-Forming Regions 156
	5.6	On th	e Common Origin of Low-frequency Carbon Recombination lines
		and [C	CII] 158 μ m line emission
	5.7	Summ	ary
6	Rec	combin	ation Lines from the Galactic HII complex W3 163
	6.1	Introd	uction
	6.2	Observ	vations & Results 165
	6.3	The Pa	artially Ionized Medium
		6.3.1	Spatial Distribution of Hydrogen & Carbon line regions 178
		6.3.2	Expansion in the North-west region 179
		6.3.3	Comparison with other tracers 180
		6.3.4	Modeling H° & C11 regions
	6.4	The Fu	Illy-Ionized HII region 185
		6.4.1	Electron Temperature
		6.4.2	Electron density and Filling Factor
	6.5	Summa	ary
7	Sun	ımary	& Conclusions 191
	7.1	Sugges	tions for Future Work 197
8	Bib	iograp	hy 199