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We introduce phase disorder in a one-dimensional quantum resistor through the formal device of “fake
channels” distributed uniformly over its length such that the outcoupled wave amplitude is reinjected back into
the system, but with a phase which is random. The associated scattering problem is treated via invariant
embedding in the continuum limit, and the resulting transport equation is found to correspond exactly to the
Lloyd model. The latter has been a subject of much interest in recent years. This conversion of the random
phase into the random Cauchy potential is a notable feature of our work. It is further argued that our phase-
randomizing reservoir, as distinct from the well-known phase-breaking reservoirs, induces no decoherence, but
essentially destroys all interference effects other than the coherent backscattering.
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The Lloyd model1–8 is known to be one of the very widely
used models of disorder for quantum-electronic systems. In-
deed, very recently, it has been the subject of detailed analy-
sis for electronic transport in a quantum resistor, providing
deeper insights into the scaling ideas of localization in a
one-dimensional �1D� system.7,8 In the Lloyd model for a
tight-binding disordered system, the site-energies are taken
to be distributed identically, independently, and randomly
with a Cauchy probability distribution. The latter is a fat-
tailed distribution with infinite variance. Its simple two-pole
structure in the complex site-energy plane makes for an exact
analytical treatment. In this work, we show that the Cauchy
site-energy disorder �i.e., the random site-diagonal potential�
can be formally viewed as arising from a certain process of
phase randomization. The latter is introduced through the
formal device of “fake or side channels” distributed uni-
formly along the length of the 1D resistor, wherein the out-
coupled wave amplitude is reinjected back into the system,
but with the proviso that its phase is shifted randomly over
2�. Such a phase disorder or “dephasing”—without causing
decoherence—has been invoked recently9,10 in the context of
mesoscopic conductors in calculating the full-counting statis-
tics. Our objective here, however, is different; namely, to
study how such a random-phase distribution leads to a “po-
tential” disorder giving the Lloyd model. This phase random-
ization is formally incorporated through an invariant embed-
ding treatment as known in the context of quantum transport
in disordered conductors,11–14 where the object of interest is
an emergent quantity such as the reflection and/or transmis-
sion coefficient or, equivalently, the resistance and/or con-
ductance. The evolution equation so derived for the emergent
quantity �the reflection amplitude in our case� in sample
length is found to correspond exactly to the continuum limit
of the Lloyd model. This emergence of the Lloyd model with
a Cauchy-potential disorder arising from the phase random-
ization through our phase reservoir is a striking result. It is
further argued that our phase-randomizing reservoir, unlike
the well-known phase-breaking �decohering� reservoirs,15–17

cannot eliminate the coherent backscattering. The phase ran-
domization considered here by us involves effectively paral-
lel addition of quantum resistors �as introduced originally in
Ref. 18� via the scattering matrices providing outcoupling to
the side channels. Of course, strictly speaking, being

“quenched” in nature, it can cause no reservoir-induced de-
coherence.

Let us first introduce our phase-randomizing reservoir
with its fake channels. In its simplest form, it is modeled
here by the three-port scatterer with an energy-independent
and symmetric S matrix15

S = �
1
2 ��1 − 2� − 1� 1

2 ��1 − 2� + 1� ��
1
2 ��1 − 2� + 1� 1

2 ��1 − 2� − 1� ��

�� �� − �1 − 2�
� �1�

connecting the outgoing amplitudes �o1 ,o2 ,o3� with the in-
coming amplitudes �i1 , i2 , i3� as shown in Fig. 1. Here, � is
the outcoupling to the transverse fake channel labeled 3 with
0���

1
2 . Channels 1 and 2 are the transport channels �leads�

through which the device is to be inserted into the 1D quan-
tum conductor. Our random-phase reservoir differs essen-
tially from the well-known decoherence-inducing
reservoirs15,16 in that the amplitude outcoupled into the fake
channel is here reinjected �rescattered� back into the system,
but now with a phase shift � which is assumed random over
2�.

In order to introduce the random-phase reservoirs uni-
formly over the length of the 1D quantum resistor, we now
use the method of invariant embedding and solve the scatter-
ing problem for the emergent quantity �amplitude reflection
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FIG. 1. A schematic showing the random-phase reservoir with
the “fake channel” 3. Outcoupled amplitude is reinjected with
random-phase shift �.
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coefficient in the present case�. Following the general phi-
losophy of invariant embedding for a scattering problem, we
now embed the scattering sample of length L in a super-
sample of length L+�L, and then study the change �S of the
total S matrix as �L tends to zero �Fig. 2�. Here, �L contains
the elementary random-phase reservoir with the outcoupling
� of order �L, i.e., � /�L→ finite as �L→0. Thus, the pa-
rameter � /�L measures the strength per unit length with
which the phase is randomized. The corresponding change
�S in the S matrix is then given by

�S = � − �/2 1 − �/2 ��

1 − �/2 − �/2 ��

�� �� − �1 − ��
� . �2�

In writing �S above, we have made use of the fact that �
is small, of order �L in Eq. �1�. Next we calculate the incre-
mental transmission ��T� and the reflection ��R� amplitudes
in terms of the matrix elements �in obvious notation� t13
= t23=��, t12=1−� /2, r33=−�1−��, and r11=r22=−� /2 from
the �S above. Taking into account the multiple scatterings
involving reinjection from the fake channel, we obtain

�T = t12 + t13e
i�t32 + t13e

i�r33e
i�t32 + . . .

= t12 +
t13e

i�t32

1 − r33e
i� = 1 −

�

2
+

�ei�

1 + �1 − ��ei� �3�

and

�R = r11 +
t13
2 ei�

1 − r33e
i� =

�ei� − 1��/2

1 + �1 − ��ei� . �4�

Now, consider a plane wave incident on the right-hand side
of the supersample of length L+�L. Summing over all pro-
cesses of direct and multiple reflections and transmissions
from the right-hand side of the sample of length L and with
the phase reservoir inserted in the interval �L ,L+�L /2�, we
have

R�L + �L� = �R +
�T2e2ik�LR�L�

1 − �RR�L�e2ik�L , �5�

where k is the wave vector magnitude for the incident elec-
tron wave. Expanding the right-hand side of Eq. �5� using the
values of �T and �R from Eqs. �3� and �4�, and keeping
terms to order �L, we obtain

dR

dl
= 2iR�l� +

i

2
� tan

��l�
2

�1 + R�l��2, �6�

where we have introduced dimensionless length l=kL, and
�=� /k�L as �L→0, with the initial condition R�l�=0 for
l=0. Here, the random phase ��l� is distributed uniformly
over 0–2�. Transforming � tan(��l� /2)=V�l�, we find the
distribution Pl�V� of V�l�

Pl�V� =
1

�

�

V2�l� + �2 , �7�

which is the Cauchy probability distribution. Finally, with
the above transformation from the random phase to the ran-
dom potential �Cauchy�, we obtain

dR

dl
= 2iR�l� +

i

2
V�l��1 + R�l��2. �8�

This invariant embedding equation for evolution in l has the
form of a Langevin equation for the complex reflection am-
plitude R with a Cauchy noise potential V�l�. It corresponds
to the underlying quantum-mechanical Hamiltonian for a 1D
disordered continuum with a potential V�x�, 0�x� l. The
corresponding tight-binding Hamiltonian will have the site
�Cauchy� potential V�n� with 0�n�N and N= l /ka, where a
is the lattice constant. Thus, the phase randomization is
mapped onto the Cauchy random potential V�n� for a tight-
binding Hamiltonian—the Lloyd model.

Having, thus, discussed the provenance of the Cauchy po-
tential disorder �and, therefore, the Lloyd model� in terms of
our random-phase reservoir, it will be in order now to com-
pare the latter with the phase-breaking reservoirs, giving the
reservoir-induced decoherence, as due originally to
Büttiker.15,16 For an isolated single-channel phase-breaking
reservoir, the S matrix is as given in Eq. �1� and the corre-
sponding schematic as in Fig. 3. It shows explicitly the con-
nections to the three terminals with three chemical poten-
tials: �1 ,�2 for the longitudinal �or transport channels�, and
�3 for the “potentiometric” �transverse� channel; the latter
being determined from the condition of zero net current. This
can be readily shown to give the two-probe conductance
�G12� between terminals 1 and 2,
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∆ L

∆ LX = L+

φ

X = 0 X = L

)R(L+

FIG. 2. A schematic description of the “invariant embedding”
method for a 1D conductor with random-phase reservoirs distrib-
uted uniformly along the length.
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FIG. 3. A schematic of the single-channel phase-breaking
reservoir.
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G12 =
e2

��
�	1

2
��1 − 2� + 1�
2

+
�

2
� . �9�

In our corresponding random-phase reservoir with a single
fake channel, we have the same three-terminal S matrix ex-
cept for the reinjection at the fake channel 3 with a random
phase �. For a given value of the phase �, the two-terminal
conductance G12

� can be readily shown to be

G12
� =

e2

��
�t12 +

t13e
i�t32

1 − r33e
i��2

, �10�

with the coeffiecients t12= 1
2 ��1−2�+1�, t13= t32=��, and

r33=−�1−2�. Averaging now G12
� over �, we find


G12
� �� �

1

2�
�

0

2�

G12
� d� = G12, �11�

i.e., both the reservoirs give identical results for the two-
probe conductance between terminals 1 and 2.

Now we turn to comparing the phase-breaking reservoirs
with two transverse channels and our corresponding random-
phase reservoir also with two fake channels, as shown in
Figs. 4 and 5. The corresponding four-terminal S matrix is16

S =�
0 �1 − � �� 0

�1 − � 0 0 ��

�� 0 0 − �1 − �

0 �� − �1 − � 0
� �12�

with 0���1. Note the reinjections shown in dashes with
random phases �1 and �2 at the fake channels 3 and 4 �Fig.
5�. It is to be noted that in Fig. 4, the potentiometric condi-
tion for zero net current is being imposed here for the two
transverse channels 3 and 4 separately. With this, it can now
be readily shown how that the two-probe conductances are
again equal:

G12 = 
G12
�1,�2��1,�2

=
e2

��

2�1 − ��
2 − �

. �13�

Now, however, for the case of the two-channel phase-
breaking reservoirs with the potentiometric condition of
zero net current imposed summarily16 on the two coupled

transverse or side channels 3 and 4, the conductances turn
out to be different. Some thought will convince that this is so
because the phase-breaking reservoir and the random-phase
reservoir differ essentially inasmuch as the former induces
decoherence �can destroy all interference effects� while the
latter cannot eliminate the coherent backscattering �CBS�.
Indeed, for the case of coupled transverse channels, one can
easily trace the CBS alternatives. We may say that our
random-phase reservoir leads to a purification of interference
effects to coherent backscattering.

Now some comments and clarifying remarks on the use of
the reservoirs, in general, and the physical realization of the
random-phase reservoir, in particular, as used here by us,
seem to be in order. In the original Landauer-Buttiker scat-
tering approach19–21 to quantum transport through a conduc-
tor, dissipation and associated decoherence are viewed as
taking place in the reservoirs at the two ends of the sample.
Physically, however, the dissipation takes place in the sample
throughout its length. This latter feature has been
modeled,15,16,22,23 admittedly phenomenologically, through
the formal device of reservoirs distributed along the sample
length and connected to it through the appropriately chosen S
matrices, whereby the outcoupled amplitude is absorbed and
reemitted into the sample where it adds incoherently to the
coherent transport amplitude. This constitutes the now well-
known reservoir-induced decoherence. Now, we can also
have a random-phase reservoir where outcoupled amplitude
is reinjected back into the conductor with a phase shift dis-
tributed randomly over 2� as in the work presented here. We
emphasize that this is a quenched phase disorder that causes
no decoherence or phase breaking. The invariant embedding,
in fact, allows us to introduce both the decoherence12,24 and
the phase randomization over the conductor through a proper
choice of �S’s appearing in Eq. �2�, and calculate the emer-
gent quantities like reflection and/or transmission coeffi-
cients. The random-phase reservoir is physically equivalent
to the phase disorder as considered by others.18,25 A literally
physical realization of the random-phase reservoir would be
through the chaotic cavities �with a long dwell time� termi-
nating the side channels, wherein the random phase shifts
result from the deterministic quantum chaos.9,10 The idea un-
derlying the use of these formal devices �reservoirs� is that
the strength of the outcouplings can be used to effectively
parametrize some of the physical effects of interest.

In conclusion, we have demonstrated analytically a con-
version of random phases into random potentials that corre-
spond exactly to the Lloyd model. To this end, we have
introduced a formal device of random-phase reservoir with
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FIG. 5. A schematic of the random-phase reservoir with two
uncoupled fake channels.
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FIG. 4. A schematic of the phase-breaking reservoir with two
uncoupled transverse channels 3 and 4.
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fake channels. Despite the apparent similarity to the well-
known phase-breaking reservoirs, the two types are essen-
tially different. Thus, while the phase-breaking reservoirs
with absorption and reemission of electrons cause the well-

known reservoir-induced decoherence �that can suppress all
interference effects�, our random-phase reservoirs having
fake channels subtending reinjection with random phases
cannot eliminate the coherent backscattering.
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