Chapter 7

MAGNETIC SUSCEPTIBILITY MEASUREMENTS

7.1 Introduction

As mentioned in the previous chapters we have related some o the dielectric and optical mea
surements to the orientational order parameter which was determined using magnetic suscepti-
bility measurements. In this chapter we will describethe magnetic susceptibility measurements.
We can measure the orientational order parameter by using the anisotropy of any appropriate
physical property of the medium. For example optical, dielectric or diamagnetic anisotropies
can be used for this purpose [1]. The dielectric constant is > 4 in typical cases and the loca
field correction is substantial. Further, in an anisotropic medium a calculation dof the internal
fied is quite difficult. Also as we have discussed earlier, the short range order can vary with
temperature making an absolute measurement o the order parameter difficult using the dielec-
tric data. On the other hand the diamagnetic susceptibility is very small (~ 10~7 ogs units
per gram) and hence internal fidd effects can be neglected. For this reason the diamagnetic
anisotropy is extensvely used to measure the orientational order parameter of nematic liquid
crystals [3,74,106-109].

The diamagnetic susceptibility xas relates the induced magnetic moment M (per unit
mass), to the applied field &:

My = XaﬂHﬂ; a,B=uzmy,2 (7.1)

where xqs denotes an dement o the susceptibility tensor x. Choosing the z-axi s along the
director, the tensor corresponding to the nematic phase is given by

' xt 0 0 ‘
x=| 0 x1 0 | (7:2)
0 0 X

where the subscripts || and L refer to the directions parallel and perpendicular to the director,
respectively. The average mass susceptibility is given by

1 1, :
X=3 > Xy = §(X|| +2x1) ' (7.3)
Y ) i ’
In the isotropic phase Xag = X0ag-
The average mass susceptibility isindependent of temperature, i.e. ¥ in the nematic phase
isequal to the isotropic phase susceptibility. The magnetic anisotropy is defined as
3. o
Xe = X)) = xL = 500 — X). (7.4)
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The order parameter is then

Xa
S = 7.5
Ax (7.5)

where A, is the diamagneticanisotropy in thefully aligned state i.e. for $ =1 In Section 7.3
we describe a method of calculating Ax,.

7.2 Experimental

The magnetic susceptibility is measured by the classical Faraday-Curie method. A schematic
diagram of the experimental setup isshown in Figure 7.1. The sampleis placed in a magnetic
fidd that hasa gradient in the vertical direction and theforce acting on the sampleis determined
by using a sensitive balance. The energy (U) of asampled massm and magnetic susceptibility
x When kept in horizontal magneticfidd H,, is given by

2
U= —1"-’—‘2-1-"& (7.6
The vertical force F, exerted on this sampleis then given by
_ OH,
F, =mx (Hz 6;) (7.7)

F, = Amg where Am is the extra mass measured by the balance due to the force exerted by
the fidd gradient, and g is the acceleration due to gravity. Asin al the sampleswe have used
Xa = 0, thefidd causesa uniformorientationd the director along the direction of the field, and
x| can be measured. A measurement of x in the isotropic phase gives the value o % and hence
S (see Equations 74 and 7.5).

7.2.1 Description of the Apparatus and Procedure

An OXFORD INSTRUMENTS N100 electromagnet with Faraday pole tips has been used to
conduct the experiments [110, 111]. The poletips are shaped to give a region where (H, 4z) is
constant. This region is approximately 15mm high and 12mm wide. The force is measured by
a Sartorious balance model S3DV with a digital control unit, which has a maximum capacity o
3 g and sensitivity o 0.1 pg (Figure7.1). Usng two trandlational stages the balance beam may
be shifted approximately 5mm in the £ x, + y directionsto adjust the position o the sample.

Thesampleisloaded in a variabletemperature continuousflow cryostat CF 1200 (OXFORD
INSTRUMENTYS). It is top loaded through an access port on top o the cryostat. This port is
seded by a plug against an ‘O’ ring and the sampleis suspended through this port by a quartz
fibre and hung onto one side d the baance. After the sampleis loaded, compensating weights
are added to the pan on the other side so that the reading on the balance is close to 0. The
cryostat is then evacuated by a rotary pump. To improvethe heat flow in the sample chamber
after evacuatingit, it isfilled with helium as a heat exchange ges.

The quartz fibre has a diameter o ~ 124 um. The advantage o using quartz fibreis that
its susceptibility and the temperature variation d the susceptibility are low. Hence it can be
used over a wide range of temperatures. The length of the fibre (~62 cm) is adjusted so that
the sample when suspended is very close to the heater. The samplecup is held in an auminium
pan and is suspended at the end o the quartz fibre. The vertical ‘2’ position o the heater is
adjusted so that thefield gradient at the sampleand hence the force measured is maximum. At
the bottom o the samplechamber, just abovethe heater, thereisa betalamp which illuminates
the sample. With the aid d this beta lamp we can see that the sampleis centred properly.
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Figure7.2 Temperaturecalibrationcurved thesampleareaas afunctiond the temperature set
on theITC4. Thelinecorrespondsto thefit T = 230.011—0.2793(Tyet +273.15) +0.001695(Tye: T
273.15)% — 273.15°C. Where T is the sample area temperature and Ty is the temperature set
on the ITC4.

7.2.2 Temperature and Field Gradient Calibration

The temperature o the sampleregioniscontrolled by an OXFORD INSTRUMENTS Intelligent
Temperature Controller (ITC4). The sensor is a Chromel-alumel thermocouple positioned at
the bottom of the crysostat near the heating coil. The temperature can be set to an accuracy
of 0.1 K. Asthe sensor isdlightly bdow the sample and the sampleis not in direct contact with
the heater there is a temperature difference between that of the sample and the temperature
set an thefront panel d the temperature controller. To calibrate the temperature o the sample
we have used the N-I transition temperatures of the compoundsfor which we have measured
the magnetic susceptibility as the calibration points. We have fitted a polynomia to these
calibration pointsas shownin Figure7.2.  To calibrate the field gradient we have measured the
force experienced by a standard sample, for different dial settings on the magnet power supply.
The sample used was mercury tetrathiocyanatocobaltate (HgCo(CNS)4) which isknown to have
a mass susceptibility of 16.44x10~¢ cgs units st 20° C [112]. Figure 7.3 shows the H, 4 asa
function o the dial setting on the power supply. For most o the experiments we have used a
H; 4 of ~ 107 gauss®/cm.

7.2.3 Sample Preparation

To reduce the amount of samplerequiredfor the susceptibility measurement the sample has been
taken in aluminium cups usually used with the Perkin ElImer DSC. The massd the cupis~

mg, whereasthat of the quartz ampoulewhichisusually used in such experimentsis much la.rger
(05 gm) . Another advantage of using aluminium cups is that the sample temperature can be
expected to be more uniform and temperature stability is also obtained in a shorter time (~ 19
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Figure 7.3 Calibration points for H,%= as afunction d the dial setting on the power supply.

min) than in aquartz ampoule(~ 20 to 30 min at about 70°C). The total massof the aluminium
cup and the sampleis ~ 50 mg. The cups are pressure sedled. As the samples are liquid when
heated they tend to lesk from the rims of these cups even after pressure sealing. To prevent
this leakage the cups are further sealed with a slicone rubber adhesive. The susceptibilities
d both the aluminium cup and the slicone rubber adhesive have been measured as functions
o temperature and ultimately their contributions have been subtracted from the total Am
experienced by the sample cups. Figures 74 and 75 show the variations of the Am experienced
by an aluminium cup and silicon rubber adhesive as functions o temperature. 42.1mg o the
silicone rubber adhesive was used in the measurement while 3 to 4 mg are typically needed to
seal the aluminium cup.

7.3 Results

We have measured the magnetic susceptibility d the following compounds: p-cyanophenyl p-n
heptylbenzoate(CP7B), octyloxy cyanobiphenyl(80CB) 5-n-heptyl-2(4-cyanophenyl)-pyrimidine
(ROCP7037) and 4methoxyphenyl-trans-4-pentyl cyclohexylcarboxylate (S1495). The chemi-
cal structures and their transition temperatures are shown in Figure 7.6. The magnetic suscep-
tibility of ROCP7037 and CP7B have been measured previously by Buka and de Jeu {74}. Our
vauesare ~ 8% less than their vaues.

All the measurementswere made by cooling the samplein steps of 0.1 to 5°C dependingon
the proximity to the NI transition point. After the set temperature was reached it was dlowed
to stabilisefor ~ 10 to 15 minutes. The temperature stability was reflected in the stability of
the Am measurement. Ascan be seen from Equation 7.7 the masssusceptibility x of the sample
is given by - P S

~p dua
=

. Amaample X 980
~ :i:";r ims (Hw QEH;A)

cgs units (7.8)
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Figure7.4 Variationof Amfor an aluminium cup of mass56. 1 mgasa function of temperature.
Thefit correspondsto Am = 0. 536366 — 5. 237976 x 10~4(T" + 273, 15) +3.508352 x 10~7(T' +
273.15)2. HydH,/dz = 118 x 107 gauss?/cm.
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Figure 7.5 Variation of Am of dlicon rubber adhesve of mass 42.1mg as a function of
temperature. The fit corresponds to Am = - 0.28971329 + 3.25465 x 10~3(T + 273.15).
H,dH,/dz = 118 x 107 gauss’cm.
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Figure 7.6: Chemical structures and trandtion temperatures of the compounds used in the
experimentsreported in this chapter.
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Figure 7.7: Variaion of x of 80CB asa function o temperature.

where Am is the extra mass measured by the balance due to the force experienced by the sample
of mass m, for afield gradient of H4E. In the isotropic phase x = ¥ whereasin the nematic
phase x = xy. For all the measurements we have used HydH/dz = 1.18 x 107 gauss®/cm.
Figures 7.7, 7.8, 7.9 and 7.10 show the temperature variationsd x as functions o tem-
perature d the compounds mentioned above. Ax, can be calculated by using the Haller
extrapolation technique [113]. Haller et al [113] made a log-log plot of the scaled polarizability
vs reduced temperature to get a straight line. They extrapolated this straight line to 0 K to
obtain the anisotropy d the polarisability in the fully aligned state. Using this they calculated
the absolute order parameter. This technique has been used by many authors to calculate the
absoluteorder parameter [74, 108]. To caculate Ax, we havefitted theexperimentally measured

Xe to theform

T z
Xa = AXo (1 - ‘iy;—) (7.9)
, NI
where AX,, y and z arefit parametersand T isin K. From the fitted Ax, we calculate the order
parameter Sas N
' S === 7.10
X | (7.10)

Figures 7.11, 7.12, 7.13 and 7.14 show the graphs d the experimental data fitted to the
functional form givenin Equation 7.9. For fitting the parameterswe used the software COPLOT.
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Figure 7.8: Variation o x of CP7B as a function of temperature.
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Figure 7.9: Variation of x of ROCP7037 as a function of temperature.
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Figure 7.10: Variation of x of S1495 as a function of temperature.
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Figure 7.11: Theoretical fit of x, to the functional form shown in Equation 7.9 for 80CB. Data
calculated from that shown in Figure 7.7.
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Figure 7.12: Theoretical fit o x, to the functional form shown in Equation 7.9 for CP7B. Data
calculated from that shown in Figure 7.8. .
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Figure 7.13: Theoretical fit of x, to the functional form shown in Equation 7.9 for ROCP7037.
Data calculated from that shown in Figure 7.9.
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Figure 7.14: Theoretical fit o x, to the functional form shown in Equation 7.9 for S1495. Data
calculated from that shown in Figure 7.10.

Sample  Twni(°C) Ax, (107 cgsunits) Yy . =z
80CB 79.5 1.56 0.9882 0.162
CP7B 56.0 1.44 0.9887 0.130
ROCP7037 51.0 1.94 0.9976 0.175
S1495 710 0.462 0.9944 0.126

Table 7.1: Fit parametersfor the different compounds according to the functional form given in
Equation 7.9.

Figure7.15 showstheorder parameterscal culated from Equation 7.10for all the compounds.
Table 7.1 shows the clearing temperatures and the fitting parameters for the compounds used
in this chapter.

It should be noted that Tyy/y isthe temperature at which the order parameter calculated
using the functional form shown in Equation 7.9 goes to zero. According to the y valuesshown
in Table 7.1, thisvalue occursat ~ 2 to 3°C above Ty showing that the N-I transition isreally
awesk first order transition. Thevaluesdf y and z are similar to those obtained by Buka and de
Jeu [74]. As discussed by them, the low values of z (< 0.18) indicate that the order parameter
has a much dower variation with temperature than implied by the mean fidld models, as we
have discussed in Chapter 3.
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Figure 7.15: Orde parameter as calculated according to Equation 7.10 for all the compounds.



SUMMARY

In this thesiswe have described a new experimental techniquefor conducting quantitative eec-
trical and optical measurementson liquid crystalsunder the application o astrong electricfield.
We have shown that even small heating effects (< 0.01°C) can be measured withan in situ nickel
resistance thermometer. We have studied the fidd effect on the nematic-isotropicand nematic-
smectic A phase transitions in a few highly polar compounds. In ,principlethis technique can
be used to study the effect o a strong electricfidd on any liquid crystalline system.

Using dielectric measurements we have probed the paranematic-nematic critical region in
5CB and 80CB. We have fitted the experimental resultsto an appropriate Landau theory and
obtained the corresponding L andau coefficients. The Landau parametersfor 5CB broadly agree
with previous measurements.

We have presented the first experimental results o the effect df a strong electric field on
the N-S4 phase transition in a pure compound (80CB) to find that the transition temperature
shows a quadratic dependenceon the applied electricfidd. Thisisconsistent with the prediction
d the relevant Landau theory. We have seen that both the N-S4 and the S4-Ng transition
temperatures in a mixture exhibiting the reentrant nematic phase increase with field. The
former increases lessrapidly than the latter indicatingthat the S4 phase maybe bounded above
at a high enough dectric field, though we could not reach such a field in our experiments.

We have found experimental evidencefor polar short range order in a nematogen which has
alarge positivediel ectric anisotropy (CP7B). The compound exhibitsa large enhancement of the
order parameter under the application o astrongelectricfield. Thedivergenced the second and
third harmonicelectrical signalsindicatethat we can reach the critical region in our experiments.
We have presented the first measurements on the conductivity of a nematogen under a strong
electricfidd near the paranematic-nematiccritical point. We have discussed the variationdf the
conductivity in the nematic phasein termsd the combined effectsd’ theionic conductivity, and a
molecular relaxation. Thesein turn vary with the orientational order parameter which depends
on field and temperature. We interpret the pesk in the conductivity near the paranematic-
nematic critical point to be due to the critical dowing down of polar domains. The detection of
asmall but significant second harmonic signal supports this interpretation. These experimental
studies may indicate one possible route to the realisation o a polar nematic liquid crystal.

The experimental results on a mixture exhibiting the reentrant nematic phase and CP7B
indicate that as the temperature is lowered the concentration o moleculesin the parallel con-
figurationincreases. This supports the molecular modd developed by our coworkers which was
initially put forward to explain the phenomenon o double reentrance.

We have conducted low frequency el ectroopti c measurementswhich show thedirect influence
d the electrolytic nature on the electrooptic response d the nematic liquid crystals subjected
to strong eectric fidds. We have discussed a possible origin of the optical response to be
due to the coupling o flexodectric polarisation with the fidd gradient in the sample. Further

139
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experimentation and theor etical modeing isrequired to under sand the mechanismsinvolved in
this process.
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