
Chapter 7 

MAGNETIC SUSCEPTIBILITY MEASUREMENTS 

7.1 Introduction 

As mentioned in the previous chapters we have related some of the dielectric and optical mea- 
surements to the orientational order parameter which was determined using magnetic suscepti- 
bility measurements. In this chapter we will describe the magnetic susceptibility measurements. 
We can measure the orientational order parameter by using the anisotropy of any appropriate 
physical property of the medium. For example optical, dielectric or diamagnetic anisotropies 
can be used for this purpose [I]. The dielectric constant is > 4 in typical cases and the local 
field correction is substantial. Further, in an anisotropic medium a calculation of the internal 
field is quite difficult. Also as we have discussed earlier, the short 'range order can vary with 
temperature making an absolute measurement of the order parameter difficult using the dielec- 
tric data. On the other hand the diamagnetic susceptibility is very small (- 10" cgs units 
per gram) and hence internal field effects can be neglected. For this reason the diamagnetic 
anisotropy is extensively used to measure the orientational order parameter of nematic liquid 
crystals [3,74,106-1091. 

The diamagnetic susceptibility xa6 relates the induced magnetic moment A? (per unit 
mass), to the applied field 3: 

where x,p denotes an element of the susceptibility tensor X. Choosing the z-axis along the 
director, the tensor corresponding to the nematic phase is given by 

where the subscripts 11 and I refer to the directions parallel and perpendicular to the director, 
respectively. The average mass susceptibility is given by 

In the isotropic phase xap = x&p. 

The average mass susceptibility is independent of tonip~Fptwe, i.e. 2 in the nematic phase 
is equal to the isotropic phase susceptibility. The ma$nebic adisotropy is defined as 
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The order parameter is then 

where AX, is the diamagnetic anisotropy in the fully aligned state i.e. for S = 1. In Section 7.3 
we describe a method of calculating AX,. 

7.2 Experimental 

The magnetic susceptibility is measured by the classical Faraday-Curie method. A schematic 
diagram of the experimental setup is shown in Figure 7.1. The sample is placed in a magnetic 
field that has a gradient in the vertical direction and the force acting on the sample is determined 
by using a sensitive balance. The energy (U) of a sample of mass m and magnetic susceptibility 
x when kept in horizontal magnetic field H, is given by 

The vertical force Fz exerted on this sample is then given by 

F, = Amg where Am is the extra mass measured by the balance due to the force exerted by 
the field gradient, and g is the acceleration due to gravity. As in all the samples we have used 
Xa > 0, the field causes a uniform orientation of the director along the direction of the field, and 
X I I  can be measured. A measurement of x in the isotropic phase gives the value of R and hence 
S (see Equations 7.4 and 7.5). 

7.2.1 Description of the Apparatus and Procedure 
An OXFORD INSTRUMENTS NlOO electromagnet with Faraday pole tips has been used to 
conduct the experiments [110, 1111. The pole tips are shaped to give a region where (H,*) is 
constant. This region is approximately 15mm high and 12mm wide. The force is measured by 
a Sartorious balance model S3DV with a digital control unit, which has a maximum capacity of 
3 g and sensitivity of 0.1 pg (Figure 7.1). Using two translational stages the balance beam may 
be shifted approximately 5mm in the f x,  f y directions to adjust the position of the sample. 

The sample is loaded in a variable temperature continuous flow cryostat CF 1200 (OXFORD 
INSTRUMENTS). It is top loaded through an access port on top of the cryostat. This port is 
sealed by a plug against an '0' ring and the sample is suspended through this port by a quartz 
fibre and hung onto one side of the balance. After the sample is loaded, compensating weights 
are added to the pan on the other side so that the reading on the balance is close to 0. The 
cryostat is then evacuated by a rotary pump. To improve the heat flow in the sample chamber 
after evacuating it, it is filled with helium as a heat exchange gas. 

The quartz fibre has a diameter of - 124 pm. The advantage of using quartz fibre is that 
its susceptibility and the temperature variation of the susceptibility are low. Hence it can be 
used over a wide range of temperatures. The length of the fibre (-62 cm) is adjusted so that 
the sample when suspended is very close to the heater. The sample cup is held in an aluminium 
pan and is suspended at the end of the quartz fibre. The vertical '2' position of the heater is 
adjusted so that the field gradient at the sample and hence the force measured is maximum. At 
the bottom of the sample chamber, just above the heater, there is a beta larnp which illuminates 
the sample. With the aid of this beta larnp we can see that the sample is centred properly. 
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Figure 7.2: Temperature calibration curve of the sample area as a function of the temperature set 
on the ITC4. The line corresponds to the fit T = 230.011-0.2793(Xset +273.15)+0.001695(Tset + 
273.15)~ - 273.15OC. Where T is the sample area temperature and TSet is the temperature set 
on the ITC4. 

7.2.2 Temperature and Field Gradient Calibration 

The temperature of the sample region is controlled by an OXFORD INSTRUMENTS Intelligent 
Temperature Controller (ITC4). The sensor is a Chromel-alumel thermocouple positioned at 
the bottom of the crysostat near the heating coil. The temperature can be set to an accuracy 
of 0.1 K. As the sensor is slightly below the sample and the sample is not in direct contact with 
the heater there is a temperature difference betyeen that of the sample and the temperature 
set an the front panel of the temperature controller. To calibrate the temperature of the sample 
we have used the N-I transition temperatures of the compounds for which we have measured 
the magnetic susceptibility as the calibration points. We have d t t d  ai polynomial to these 
calibration points as shown in Figure 7.2. To calibrate the field gradient we have measured the 
force experienced by a standard sample, for different dial settings on the magnet power supply. 
The sample used was mercury tetrathiocyana;tocobaltate (H~CO(CNS)~) which is known to have 
a mass susceptibility of 16.44~10-~ cgs units s t  20' C [112]. Figure 7.3 shows the H,% as a 
function of the dial setting on the powex supply. For most of the experiments we have used a 
H,% of - 10' gauss2/~m. 

7.2.3 Sample Preparation 

To reduce the amount of sample required for the susceptibility measurement the sample has been 
taken in aluminium cups usually used with the Perkin Elmer DSC. The mass of the cup is 30 
mg, whereas that of the quartz ampoule which is lusually used in such experiments is much bger 
(0.5 gm) . Another advantage of ping aluminikm cups is that the sample temperature can be 
qpected to be more uniform and temperature stability is also obtained in a shorter time (- 19 
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Figure 7.3: Calibration points for H,* as a function of the dial setting on the power supply. 

min) than in a quartz ampoule (N  20 to 30 min at about 70°C). Thekotal mass of the aluminium 
cup and the sample is ,., 50 mg. The cups are pressure sealed. As the samples are liquid when 
heated they tend to leak from the rims of these cups even after pressure sealing. To prevent 
this leakage the cups are further sealed with a silicone rubber adhesive. The susceptibilities 
of both the aluminium cup and the silicone rubber adhesive have been measured as functions 
of temperature and ultimately their contributions have been subtracted from the total Am 
experienced by the sample cups. Figures 7.4 and 7.5 show the variations of the Am experienced 
by an aluminium cup and silicon rubber adhesive as functions of temperature. 42.lmg of the 
silicone rubber adhesive was used in the measurement while 3 to 4 mg are typically needed to 
seal the aluminium cup. 

7.3 Results 

We have measured the magnetic susceptibility of the following compounds: p-cyanophenyl p-n 
heptylbenzoate (CP7B), octyloxy cyanobiphenyl(80CB) 5-n-heptyl-2 (4cyanophenyl)-pyrimidine 
(ROCP7037) and 4methoxyphenyl-trans -4-pentyl cyclohexylcarboxylate (S1495). The chemi- 
cal structures and their transition temperatures are shown in Figure 7.6. The magnetic suscep- 
tibility of ROCP7037 and CP7B have been measured previously by Buka and de Jeu 1741. Our 
values are - 8% less than their values. 

All the measurements were made by cooling the sample in steps of 0.1 to 5OC depending on 
the proximity to the N-I transition point. After the set temperature was reached it was allowed 
to stabilise for N 10 to 15 minutes. The temperature stability was reflected in the stability of 
the Am measurement. As can be seen from Equation 7.7 the mass susceptibility x of the sample 

~ ~ , , m , l ,  x 980 .. CES units 
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Figure 7.4: Variation of Am for an aluminium cup of mass 56.1 mg as a function of temperature. 
The fit corresponds to Am = 0.536366 - 5.237976 x ~o-~(T + 273.15) + 3.508352 x ~o-~(T + 
273.15)~. HxdHx/dz = 1.18 x lo7 gauss 2/cm. 

Figure 7.5: Variation of Am of silicon rubber adhesive of mass 42.lmg as a function of 
temperature. The fit corresponds to Am = -0.28971329 + 3.25465 x ~O'~(T + 273.15). 
HxdHx/dz = 1.18 x lo7 gauss2/cm. 
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Figure 7.6: Chemical structures and transition temperatures of the compounds used in the 
experiments reported in this chapter. 
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Figure 7.7: Variation of x of 80CB as a function of temperature. 

where Am is the extra mass measured by the balance due to the force experienced by the sample 
of mass m, for a field gradient of H%. In the isotropic phase x = R whereas in the nematic 
phase x = XI,. For all the measurements we have used HxdHx/dz = 1.18 x 10' gauss2/cm. 

Figures 7.7, 7.8, 7.9 and 7.10 show the temperature variations of x as functions of tem- 
perature of the compounds mentioned above. AX, can be calculated by using the Haller 
extrapolation technique [113]. Haller et a1 [I131 made a log-log plot of the scaled polarizability 
vs reduced temperature to get a straight line. They extrapolated this straight line to 0 K to 
obtain the anisotropy of the polarisability in the fully aligned state. Using this they calculated 
the absolute order parameter. This technique has been used by many authors to calculate the 
absolute order parameter [74,108]. To calculate AX, we have fitted the experimentally measured 
Xa to the form 

where AX,, y and z are fit parameters and T is in K. From the fitted AX, we calculate the order 
parameter S as 

Figures 7.11, 7.12, 7.13 and 7.14 show the graphs of the experimental data fitted to the 
functional form given in Equation 7.9. For fitting the parameters we used the software COPLOT. 
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Figure 7.8: Variation of x of CP7B as a function of temperature. 

Figure 7.9: Variation of x of ROCP7037 as a function of temperaturg. 
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Figure 7.10: Variation of x of S1495 as a function of temperature. 

0.4 
60 65 70  75 

T("C) 

Figure 7.11: Theoretical fit of X, to the functional form shown in Equation 7.9 for 80CB. Data 
calculated from that shown in Figure 7.7. 
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Figure 7.12: Theoretical fit of X, to the functional form shown in Equation 7.9 for CP7B. Data 
calculated from that shown in Figure 7.8. 

Figure 7.13: Theoretical fit of X, to the functional form shown in Equation 7.9 for ROCP7037. 
Data calculated from that shown in Figure 7.9. 
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Figure 7.14: Theoretical fit of X, to the functional form shown in Equation 7.9 for S1495. Data 
calculated from that shown in Figure 7.10. 

Sample TNI(OC) Axo (lod7 cgs units) y . z 
80CB 79.5 1.56 0.9882 0.162 
CP7B 56.0 1.44 0.9887 0.130 

ROCP7037 51.0 1.94 0.9976 0.175 
S 1495 71.0 0.462 0.9944 0.126 

Table 7.1: Fit parameters for the different compounds according to the functional form given in 
Equation 7.9. 

Figure 7.15 shows the order parameters calculated from Equation 7.10 for all the compounds. 
Table 7.1 shows the clearing temperatures and the fitting parameters for the compounds used 
in this chapter. 

It should be noted that TNr /y is the temperature at which the order parameter calculated 
using the functional form shown in Equation 7.9 goes to zero. According to the y values shown 
in Table 7.1, this value occurs at 2 to 3OC above TNI showing that the N-I transition is really 
a weak first order transition. The values of y and z are similar to those obtained by Buka and de 
Jeu [74]. As discussed by them, the low values of z (< 0.18) indicate that the order parameter 
has a much slower variation with temperature than implied by the mean field models, as we 
have discussed in Chapter 3. 
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Figure 7.15: Order parameter as calculated according to Equation 7.10 for all the compounds. 



SUMMARY 

In this thesis we have described a new experimental technique for conducting quantitative elec- 
trical and optical measurements on liquid crystals under the application of a strong electric field. 
We have shown that even small heating effects (< O.Ol°C) can be measured with an in situ nickel 
resistance thermometer. We have studied the field effect on the nematic-isotropic and nematic- 
smectic A phase transitions in a few highly polar compounds. In ,principle this technique can 
be used to study the effect of a strong electric field on any liquid crystalline system. 

Using dielectric measurements we have probed the paranematic-nematic critical region in 
5CB and 80CB. We have fitted the experimental results to an appropriate Landau theory and 
obtained the corresponding Landau coefficients. The Landau parameters for 5CB broadly agree 
with previous measurements. 

We have presented the first experimental results of the effect of a strong electric field on 
the N-SA phase transition in a pure compound (80CB) to find that the transition temperatke 
shows a quadratic dependence on the applied electric field. This is consistent with the prediction 
of the relevant Landau theory. We have seen that both the N-SA and the SA-NR transition 
temperatures in a mixture exhibiting the reentrant nematic phase increase with field. The 
former increases less rapidly than the latter indicating that the SA phase maybe bounded above 
at a high enough electric field, though we could not reach such a field in our experiments. 

We have found experimental evidence for polar short range order in a nematogen which has 
a large positive dielectric anisotropy (CP7B). The compound exhibits a large enhancement of the 
order parameter under the application of a strong electric field. The divergence of the second and 
third harmonic electrical signals indicate that we can reach the critical region in our experiments. 
We have presented the first measurements on the conductivity of a nematogen under a strong 
electric field near the paranematic-nematic critical point. We have discussed the variation of the 
conductivity in the nematic phase in terms of the combined effects of the ionic conductivity, and a 
molecular relaxation. These in turn vary with the orientational order parameter which depends 
on field and temperature. We interpret the peak in the conductivity near the paranematic- 
nematic critical point to be due to the critical slowing down of polar domains. The detection of 
a small but significant second harmonic signal supports this interpretation. These experimental 
studies may indicate one possible route to the realisation of a polar nematic liquid crystal. 

The experimental results on a mixture exhibiting the reentrant nematic phase and CP7B 
indicate that as the temperature is lowered the concentration of molecules in the parallel con- 
figuration increases. This supports the molecular model developed by our coworkers which was 
in'itially put forward to explain the phenomenon of double reentrance. 

We have conducted low frequency electrooptic measurements which show the direct influence 
of the electrolytic nature on the electrooptic response of the nematic liquid crystals subjected 
to strong electric fields. We have discussed a possible origin of the optical response to be 
due to the coupling of flexoelectric polarisation with the field gradient in the sample. Further 

* 
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experimentation and theoretical modeling is required to understand the mechanisms involved in 
this process. 
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