
Chapter I11 

SEMICLASSICAL DECAY OF THE KALUZA-KLEIN VACUUM 

Our aim in this chapter is to describe an important distinctive feature of higher 

dimensional gravity : semiclassical instability of the ground states and the corresponding 

decay process. Such a process is fundamentally different from all others in four dimensional 

gravity where, in fact, it can never occur due to reasons to be described below. 

III.(A) Vacuum Decay in Field Theory 

Let us first start with a very brief qualitative description of the semiclassical decay 

processes that arise in ordinary field theories (without gravity). This will help in bringing 

forth the distinguishing features of the equivalent process in the presence of gravitation 

when we will describe that later. 

The first description of such a process was given by Voloshin, Kobzarev and Okun 

(1975) and the theory was further developed mainly by Coleman (1977). Consider a self- 

interacting scalar field @ in four-dimensional spacetime with nonderivative interactions 

Let U possesses two relative minima, @*, only one of which, @- , is an absolute minimum. 

The state of the classical field theory for which @ = @- is the unique classical state of 

the lowest energy and, at least in perturbation theory, corresponds to'the unique vacuum 

state of the quantum theory. The state of the classical field theory for which @ = @+ is 

a stable classical equilibrium state. It is, however, rendered unstable by quantum effects, 

in particular by barrier penetration. It is a false or metastable vacuum. Once in a while, 

an energetically favourable bubble of true vacuum will form and this will grow converting 

the false vacuum to a true one. 

The semiclassical process of bubble nucleation can be pictured as the evolution of 



Fig.7 The assumed shape of the potential of the field 

the field @ in imaginary time ( t E ) .  To describe the process. therefore. one has to study 

the corresponding Euclidean field equations. The solution of this equation is called its 

'bounce'. This solution approaches the false vacuum value at spacetime infinity and satis- 

fies dQ/d tE  = 0 at t~  = 0. It can be shown that the field can emerge into the Lorentzian 

region after the tunneling process only if the eigenvalue spectrum of the small fluctuation 

operator (essentially theCsecond variation of the action) possesses a negative eigenvalue. 

Its presence will indicate the instability of the false vacuum. 

The probability of bubble nucleation per unit time per unit volume is proportional to 

exp(-IE), where IE is the Euclidean action for the bounce. The decay process is dominated 

by the lowest action bounce which has the important property of O(4) invariance, i.e. 



To obtain a description of the classical evolution of the bubble after nucleation, one 

has to analytically continue the bounce solution to the Minkowskian time ( t  -+ it), so 

that 

@(s, t )  = 6 ( x 2  - t 2 )  (111.3) 

So, the O(4) invariance of the bounce solution implies that the Lorentzian evolution of the 

bubble is 0(3,1)  invariant. Equivalently, one can say that the expanding bubble looks the 

same to all Lorentz observers. 

Let us now study, in this context, the guidelines that such a process should follow 

when we take gravity into account. As will be described below, the situation becomes 

highly nontrivial and complicated in this case. 

III.(B) Positive Energy Theorein and Higher Diinensional Gravity 

We recall here that in all reasonable classical field theories, the global energy can be 

easily expressed as the integral of the local energy density, Too. Since Too is always positive 

and definite, that naturally ensures the stability of the ground state. However, in gravit~r, 

the situation is not so straightforward. In fact, a well-defined concept of local energy 

density is totally absent in this case. Attempt has been made to realize this by a definition 

of energy momentum pseudotensor. But first of all, it is not a true tensor and also not 

positive definite. However, progress along this line has been able to provide a satisfactory 

definition of the total energy for a gravitating system. The system should, however, be 

quasi-Minkowskian in nature, so that the metric can be expressed as gpu = qpv + hpu. ,  

where qpy is the Minkowski metric and h,,, vanishes at infinity. Then the total energy can 

be calculated to be in the form of a surface integral : 

The integral is taken over a large surface S'. This surface integral is popularly known to 

be ADM( ArnoWitt, Deser, Misner ) mass [for details, see sec.7.6, Weinberg, 19721. 
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It was proved first by Schoen and Yau(1979) using classical methods and then by 

Witten(l98la) using spinor algebra that this total energy El in the absence of matter 

field is always either zero (only for flat Minkowski space) or positive. When matter is 

present, the statement of the positive energy theorem remains unchanged provided the 

matter contribution is positive everywhere. We may now summarize all the finer points in 

the above discussion in a compact statement of the theorem : 

Positive Energy Theorem : The total energy of any solution of the four dimensional 

Einstein equations for which Too of the matter field is either positive or zero at each point 

in spacetime and in each local Lorentz frame and which asymptotically approaches the flat 

Minkowski spacetime at infinitely large distances should always be positive or zero, and 

zero only for flat Minkowski space. 

This theorem, therefore, attributes a uniqueness to the gravitational ground state in 

four dimensions thereby ensuring its semiclassical stabilit,y. Unfortunately, the proof of this, 

theorem can not be fully generalised to higher dimensional spacetimes. It is comparatively 

easier to realise this from the proof forwarded by Witten(l98la). The important steps 

towards the proof are being described below. 

Witten's Proof : Witten's proof crucially depends on the possibility of defining spinors 

uniquely on an asymptotically Euclidean initial value hypersurface in a gravitating system 

as shown in Fig.8. Witten begins with the observation that no nonzero spinor E that 

satisfies the Dirac equation /DE = y i D i f  = 0 on some initial value hypersurface [the 

index i denotes spatial coordinates of the hypersurface, yi are curved space Dirac Gamma 

metrices] can, as well, vanish at infinity. He showed that, in the case when matter is 

present and the Dirac equation is valid, one may write 

Multiplying by E* and integrating over the three surface, 



Fig.8 Asymptotically Euclidean initial value hypersurface 

The surface term vanishes if E -+ 0 at infinity. Now, by dominant energy condition 

which ensures that in any orthonormal basis Too dominates the other components of the 

energy-momentum tensor, the second term should always be positive (semi-defini te). Thus 

the equation is valid only if the second term is zero (no matter field present) as well as 

D,E = 0 which means E =constant. However, if e vanishes at infinity, E should be zero 

throughout and the above-st ated observation follows. 

Now, to study spinors that satisfy Dirac7s equation but do not vanish at infinity? 

Witten writes E = el + € 2  where has the asymptotic behaviour at large r of the form 

€1 = €0 + O(l / r ) ;  €0 being a constant and €2 vanishes at spatial infinity at a rate faster 

than O( l / r ) .  He proves that there always exists such an E satisfying Dirac7s equation. 

Then repeating the entire sequence of the previous analysis done for vanishing e, Witten 



obtains almost the same result but with an extra surface term that vanished before : 

dSi is the area element in a large surface at infinity bounding the three dimensional initial 

value hypersurface. This surface term can be expressed in terms of the arbritary spinor €0 

and the linearized (or asymptotic) form of the spin connection rk. The explicit calculation 

of S identifies it to be proportional to the ADM mass. Since the L.H.S. of the above 

equation can never be negative, the global energy should, therefore, always be positive 

semi-defini t e. 

Unfortunately. this proof cannot be fully generalized to spacetimes with more than 

four dimensions. Witten's proof applies in any number of dimensions provided the topology 

of the initial value hypersurface is such that one can consistently define a spinor field on 

it. 

We can now see why the theorem cannot be extended to higher dimensional spacetime 

with nontrivial topology of initial value hypersurface. We observed that in a spacetime 

with zero energy, any nonzero spinor must satisfy ~ S ' E *  DIr = 0 and, therefore, must be 

covariantly constant at spatial infinity. 

The five dimensional Kaluza-I<lein ground state is assumed to be a product of the four 

dimensionsal Minkowski space and a compactified dimension, M4 x S1 and thus represents 

a multiply connected spacetime. The initial value hypersurface has a topology R3 x S1. 

The presence of the extra compactified dimension introduces a constraint that the phase 

gained by the spinor on returning to its original value after parallel transport around S1 

must be zero, so that there do not exist inequivalent ways to define spinors. 

But if we can find an alternative spacetime with the following properties : (i) with zero 

energy, (ii) approaches flat M4 x S1 spacetime at infinity, (iii) has initial value hypersurface 

of different topology that, however, approaches R3 x S1 at infinity; then it is possible that 

the different topology of the hypersurface of this second spacetime would induce a non-zero 



phase in E defined on M4 x S1 flat spacetime. So, a consistent spinor field that will be 

covariantly constant at spatial infinity can never be constructed and we will not be able 

to apply Positive energy theorem in such cases. It is quite possible that in this case the 

ground state may decay into another spacetime of same or lower energy. That is just 

the way by which Witten proved the semiclassical instability of M4 x S1 by finding an 

alternative spacetime (known as Witten Bubble spacetime) that possesses all the three 

properties above. 

But before getting into that, let us sum up here the general technical procedure that 

is to be followed up to study the semiclassical instability of the ground state of any higher 

dimensional theory of gravitation. Since the ground state corresponds to zero energy, as 

discussed above, it can decay into another spacetime of zero energy only. So, the existence 

of the alternative spacetime will essentially disprove the uniqueness of the vacuum. The 

procedure for obtaining the alternative solution is as follows : 

(1) Try to get a solution of the Euclidean field equations such that it approaches the 

analytically continued Euclidean version of the assumed ground state at infinity. This 

solution is the instanton-like 'bounce' solutioll which interpolates between the assumed 

vacuum and whatever spacetime it decays into. 

(2) Search for the negative action modes in the functional determinant obtained for small 

fluctuation around this 'bounce' solution. If such modes exist, the gaussian integral 

around this solution will contribute an imaginary part to the energy of the vacuum 

state, thus representing the instability [for details, see Gross, Perry, Yaffe, 19821. 

(3) To obtain the spacetime into which the assumed ground state decays, analytically 

continue the 'bounce' solution back to the Minkowski space. If it remains to be real- 

valued metric there, then that will represent the alternative spacetime. 

In the next section we are going to discuss how Witten found the bubble solution. 



III.(C) The Witten Bubble Solution 

The Euclideanised version of the Kaluza-Klein ground state has topology R4 x S1 

which has an asymptotically (in fact, everywhere) S3 x S1 boundary. 

where x represents the compactified dimension. To search for the bounce solution, Witten 

realised that the five dimensional Euclidean Schwarzschild solution 

also has an S3 x S1 boundary with an asymptotically flat metric. One may write it in a 

somewhat different way as 

so that it still remains to be a solution of the Euclideanised field equations. The quantity 

a should not be interpreted to be equal to 2Ghf here. Rather it is to be considered as a 

parameter. Now, studying the behaviour of this metric at r = &, he found that x has 

to be periodic with a period 2 r f i  SO that the r-x subspace remains nonsingular. Thus, 

a = Ri where Ro is the radius of the fifth dimension, a completely free parameter of the 

theory. 

Since the boundary conditions of Eqs. 111.8 and 10 are now same, (111.10) can, there- 

fore, represent the Icaluza-Iilein instanton. Also, Euclidean Sch\varzschild solution has one 

transverse traceless negative mode for small oscillations. So, the one loop determinant is 

imaginary representing the decay of flat space. 

The instanton has a discrete Z2 time symmetry. Thus, it also has a surface (tE = 0) 

on which the time derivative of the metric vanishes, or stated more geometrically, the 

extrinsic curvature vanishes. So, after the analytical continuation ( tE -t 7r/2 + ir) the 

Minkowski solution is obtained as 



where r has the range Ro 5 r < 00. 

The topology of the T = 0 surface is R2 x S2, although in its geometry it is asymptotic 

to flat metric on R3 x S1. As described in the previous section, this solution may thus 

induce a nonzero phase in a spinor (upon parallel transport) defined on R3 x S1 in Iialuza- 

Klein vacuum and become a cause for the semiclassical instability. 

The instanton represents a tunneling from flat R3 x S1 to R2 x S2 and thus involves 

a topology change. This is one of the rarest examples of the topology changing processes 

in gravitation [see Strominger, 19891. 

The spacetime (111.11) is known as Witten Bubble. Its evolution properties are being 

described in the next section. 

III.(D) Evolutioil of The Witten Bubble 

Let us first introduce here 'spherical Rindler' coordinates to describe the four di- 

mensional Minkowskian subspace of the Iialuza-Iclein ground state. A spherical array 

of uniformly accelerated observers uses such type of 'hyperbolic' coordinates. These are 

related to the Minkowskian coordinates in the following way : 

x 1  = r cosh T cos 4 sin 19, 

x 2 = r cosh T sin 4 sin 8, 

Here, we are using these coordinates to make the vacuum metric comparable with the 

metric of the Witten bubble. The five dimensional Kaluza-Iclein vacuum metric can now 

be written as 

This metric is valid for r < 0. For T > 0, the decay state of the Icaluza-Klein vacuum has 

to be described by the Witten Bubble metric (111.11). 



As a result of this decay, a microscopic hole of radius Ro will be spontaneously formed 

in space. Like the bubble wall in conventional vacuum decay, this hole will start expanding 

to infinity with a uniform acceleration (Fig.9) and, therefore, will approach the velocity of 

light. The evolution of the Witten bubble is also 0(3,1)  invariant and looks to be same to 

all lorentzian observers. But we should emphasize here that the range of r (Ro 5 r < co) 

actually represents the fact that, unlike conventional decay where the inside of a bubble 

corresponds to the true vacuum, the Witten bubble has no interior at  all. The Physical 

spacetime corresponds to the bubble wall and its exterior only. 

Also, we cannot call the bubble surface to be a 'horizon' because, unlike 'horizons' 

of black hole or Rindler system, the hyperbola corresponding to the wall represents the 

termination of the spacetime itself and no information can be received from or sent to any 

other region. As it has already been discussed in the previous section, the 'troublesome 

part' of the metric or the r - -x subspace reduces to a planar surface at T = Ro. This 

implies that the manifold is 'smooth' or geodesically complete there. The r - -X subspace 

asymptotically approaches the line element of a cylinder. 

The bubble surface is a 2-sphere of area 4 ~ R i  cosh2 
T .  So, at any particular instant 

t,  its radius is r ( t )  = d m .  For very large r ,  the metric (111.11) asymptotically 

approaches the M4 x S1 spacetime described by Eq.III.13. 

These interesting properties of the Witten bubble have also been verified by the study 

of both time-like and null geodesics by Brill and Matlin (1989). In the next chapter, we 

shall study scalar waves in the Witten Bubble background. This will reveal some more 

interesting features of the evolution of such a spacetime. 



Fig.9 E ~ ~ o l u  tion o f  Bubble in a 2+1 dimensional ,Minkon-ski subspace. 
Radial lines represent constant r lines, whereas any hj-p erbola corresponds 
to a constant value o f  r .  T h e  bubble is formed at r = 0.  



Chapter  I V  

SCALAR WAVES I N  T H E  WITTEN BUBBLE BACKGROUND 

Different classical properties of the Wit ten Bubble spacetime introduced in the last 

chapter have been studied in detail by Matlin(l991). He also investigated different semi- 

classical phenomena, e.g. particle production, back reaction problem etc., involved in the 

process of the formation and evolution of the bubble. 

The nature of the time-like and null geodesics in this spacetime has been studied 

by Brill and Matlin (1989). As in the case of the geodesics, the study of the behaviour 

of scalar waves also probes the geometry of the spacetime. The scattering phenomenon 

throws light on the nature of the bubble as well as its effect on the surrounding spacetime. 

Further, it provides us valuable information about the bound states and the stability of the 

spacetime. Also, the investigation of scalar waves in an exact solution such as the Witten 

metric offers insight into the propagation of waves in strong gravitational fields. 

In this chapter, we describe in detail all these topics related to scalar waves in the 

Witten bubble [Bhatval and Vishveshwara, 19901. Associated with this chapter are Ap- 

pendices B and C - the former contains alternative scalar wave solutions in the Witten 

bubble metric and the latter is a discussion on some coordinate transformation that we 

use in this chapter. 

IV.(A) T h e  Klein-Gordon Equation 

The Iclein-Gordon equation for a massive scalar field is given by 

where M is the mass of the field. 

The metric (111.11) is independent of the fifth coordinate x and, therefore, there is 

a Killing symmetry in the fifth dimension. The solution of the Iclein-Gordon equation is 
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found to be 

where qm(8q5) are the spherical harmonics. Other functions appearing in this solution will 

be discussed in the following subsections. 

Scalar waves for which the fifth dimensional component vanishes (ml = 0) represent 

the propagation of ordinary scalar waves in such a spacetime. The case of nonzero rnl 

cannot readily be interpreted in terms of realistic scalar waves [see Bailin and Love, 19871. 

Since the standard studies in five dimensional Kaluza-Klein theory take the compactified 

radius of the extra dimension to be of the order of the Planck length, LP1, a mode char- 

acterised by the quantum number ml then corresponds to a wavelength along the fifth 

dimension of the order of 2.nLpl/ml. The corresponding momentum or the relativistic 

kinetic energy then turns out to be of order ml .Mpl (in units c = G = f i  = I), where Mpl 

is the Planck mass (z 10'' GeV). Such highly energetic waves do not represent realistic 

ones encountered in our observed physical environment. 

So, in this work, we consider ml = 0 throughout. We shall see that this will greatly 

facilitate the solution of the radial equation in such a spacetime. 

(a) T-  Equation 

The wave-field represented by the solution (IV.2) does not oscillate in a simple har- 

monic way, but in a more complicated way given by the hyperbolic harmonics H$(r, 8, d). 

These hyperbolic harmonics are characterised by the generalised frequency w,  which labels 

the representation of the Lorentz group SO(3,l). These are actually the eigenfunctions of 

the D'Alembertian on the unit time-like hyperboloid : 

These form a complete orthonormal set with respect to the Lorentz-invariant volume 
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on the time-like hyperboloid : 

*elm' lw l1 1' H 6, 4) HiW (T, 6.4) cosh2 r sin 6 d6dddr = 6(w - w1)6tet 6....t. 

(IV.5) 

A detailed construction of these hyperbolic harmonics has been discussed by Ger- 

lach(1983) in the appendix of his paper. Some inadvertant errors seem to have crept into 

his constructions, probably stemming from the original sources used. In this work, we use 

explicit expressions for the solutions, thereby avoiding any possible ambiguities. 

where T&(r) satisfies the equation 

Introducing the function 

we can write Eq.(IV.7) in the Schrodinger-form 

In this section, we are confining our discussion only to the lowest mode (! = 0). The higher 

mode solutions (l = 0) will be discussed in section IV.(C). 

The lowest mode solution is given by 

where 1 1 6  factor has been taken to normalise the function. 
' 



1 . eiwr 

Therefore, H , " , ~ ( T , o , ~ )  = -- im4 
cosh r 

An alternative solution for ?-equation (IV.7) is discussed in Appendix A. 

(b) Radial equation 

The radial function R ( r )  satisfies the following equation : 

As discussed in the beginning of this section, we shall take ml = 0. Then for massless 

( M  = 0) scalar waves, Eq.(IV. 13) turns out to be 

Now, we make a change of variable such that 

or, x = cash-l (k) 
As r 3 Roy x -t 0. AS r + + m ,  x goes to both +m.  Here. we are choosing the limit 

to be x + m. Use of such a coordinate transformation has a natural significance which 

we shall discuss in Appendix C. 

After this transformation, Eq.(IV. 14) becomes 

r  
where 

Jq~ 
r  

The radial equation is still not free of first derivative terms. Now, if we define 



then it brings Eq.(IV.17) to the form of a Schrodinger equation : 

with an effective potential 

This Schrodinger equation has a very simple effective potential whose behaviour can be 

readily visualised. Qualitative features of the wave behaviour can also be easily discussed. 

To solve this equation, let us introduce a new variable 

so that Eq.(IV.20) becomes 

Then we define a new function 

which now satisfies the following equation 

This is in the form of a hypergeometric equation. Therefore. the analytical solutions 

of this equation near y = 0 can be found in terms of hypergeometric series. These are 

CX) (4. (b). y" qn) 
and 1.1; =lnyF(a ,b ; l ;y )+  (n!)2 

n= 1 

for 1 y I< 1, where 
1 

a =-(I + iw), 
4 
1 

b =-(I - iw), 
4 



X 
Fig.10 The solution Q1(x) for different frequencies w 

where 1C, is the logarithmic derivative of the Gamma function. 

Using Eq.(IV.24), we can now get the solutions of the Schrodinger equation (IV.20) 

to be 

Both these solutions go to zero, as y -+ 0. 

.We have also solved the Eq.(IV.20) numerically and plotted the solutions in figure 10 

for different frequencies w. 

We observe that starting from x = 0, the solution rises very rapidly to a maximum 

value and then starts oscillating like a cosine wave. As w increases, the influence of the 



spacetime on the waves reduces and the solution.starts oscillating very close to the bubble 

wall. 

However, if we look at the corresponding solutions for R-equation by using Eq.(IV.19) 

We observe that at r = Ro, 

whereas R2 --, -m 

Therefore, as far as the Schrodinger equation is concerned, the second solution behaves 

properly in that coordinate system. But when we consider the actual radial equation, the 

corresponding solut,ion blows up at r = Ro. So, we are discarding the second solution 

throughout our further calculations. 

From Eq.(IV.20), we can readily obtain the asymptotic behaviour of its solution as 

where A and B are arbitrary constants. Then, using Eq.(IV.19), we get 

since as r i +m,  J r  J- i r .  

We shall now apply these considerations to the wave scattering by the bubble. 



IV.(B) Scattering and Bound States 

The total scalar wave solution in its lowest mode can now be written in its asymptotic 

limit to be 
eimq5 eiwwr 

@(ml,! = 0 , ~ -  + +m) = - ( ~ ~ - 2 ~ 2  + Be+iw2) 6 r cosh r 

The factor (r c o s h ~ )  in the denominator ensures that the total flux of energy passing 

through a unit solid angle dR does not depend on T or r for very large r. 

What is the relation between ,4 and B ? The answer follo\vs immediately, if we just 

consider the behaviour of the differential equation (IV.17). The hypergeometric series of 

Eq.(IV.30) is always real, since a and b are complex conjugates of each other. Now, if we 

use initial condition (IV.32) in Eq.(IV.17) and study the evolution of R, we shall see that 

the real and imaginary parts of this equation will evolve independently. However, at  any 

point, both these parts will be equal. Considering this fact and matching the solution with 

(IV.34) in the asymptotic limit, one can show by a very simple calculation that this is a 

case which corresponds to I A I= I B I .  
The actual expressions for 'A' and 'B' can be obtained by analytically extending the 

solution (IV.28) to infinitely large negative values of the argument 

Then the solution is 

Matching with Eq.(IV.33), we get expressions for A and B. Since I?(;) = r ( z ) ,  we can 

easily see that A and B are complex conjugates of each other and, therefore, I A ) = I  B I. 
From the foregoing discussion, we see that only one of the two independent solutions is 

acceptable. This solution is well-behaved at infinity and consists of incoming and reflected 
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wave components with equal amplitudes. Further, this solution goes to zero at r = Ro. 

Since the other solution is not well-behaved at r = Ro, there is no scope for superposition 

of the two solutions, thereby obtaining other boundary conditions, e.g., standing waves 

that do not go to zero at r = Ro. 

On the other hand, the boundary conditions that have naturally arisen fit in well with 

the notion of a bubble surface enclosing a region r < Ro that does not correspond to points 

in physical space. One expects the incoming wave to be totally reflected from the bubble 

surface. This phenomenon is, in fact, happening here. We may also note here that by a 

similar argument, one can rule out quasinormal modes of the bubble, since waves purely 

incoming at r = Ro and purely outgoing at r + oo cannot be obtained. This indicates 

that the bubble surface acts as a perfectly reflecting rigid barrier. 

To investigate the bound states of this problem, we have to consider imaginary fre- 

quencies. Let us replace iw -i w,. Then, for T-equation (IV.9), a discrete set of square- 

integrable wave functions can be obtained as bound states. These have been constructed 

in detail by Gerlach( 1983). 

To obtain bound states in the radial equation(IV.20), we see that the parameters a and 

b in solution (IV.28) have now become real. Then, in the asymptotic expressions (IV.37), 

the first term behaves as e-"nx and the second as e+""'. Bound states are possible, only 

if the coefficient of e+&nX in the second term vanishes. However, all r functions in this 

coefficient have a positive real argument. Therefore, no I? function in the denominator can 

ever blow up and make the factor vanish. Consecjuently, no bound state is possible. 

Nevertheless, we should point out here that if one performs the following integration 6 

for E = 0 in this case, one obtains 



Following Merzbacher (1970), this means the existence of an infinite number of bound 

states. However, our explicit calculation has shown that there is no bound state at all. This 

apparent contradiction is due to our discard of solution (IV.29). though it was behaving 

well throughout the range of variable x in Schrodinger equation (IV.20). Had we considered 

both solutions, we would have obtained an infinite number of bound states. But those are 

not realistic as far as our problem is concerned. 

Now, since the same w appears in both radial and r equations, the nonexistence of 

bound states also confirms that modes exponentially growing with T do not exist. This 

shows the mode stability of the bubble spacetime against scalar perturbations. Further. 

since the scattering modes form a complete set, the bubble spacetime is stable with respect 

to any arbitrary scalar perturbations. 

IV.(C) Higher  Mode  (l > 0) Solutiolls 

As we have seen in section IV.(A), the lowest mode (.! = 0) solution given in Eq.(Il-. 10 1 

is 6-function normalised. Now, to study higher mode solution. following Gerlach(l983 1. r e  

can introduce the raising and lowering operators by factorization method in Eq.(IV.9 I .  

Then one can write ulw(r) as an eigenfunction of L:L'_, with the e igen~due  (I.' + i2 I. 
Now the general eigenfunction can be written in its normalised form to be 

For l = 1, we obtain from Eq.(IV.39), 

e i w r  

=dl ( r )e  -iO L ( r )  - 
6 



w2 + tanh2 r 
where dl(r) = ( 

w2 + 1 
W 

and O1 (r) = arc tan - 
tanh r 

As T + 00, Al( r )  + 1, Ol (r) + tan-' w. One can continue this process and see that 

any higher mode solution can always be written in the form 

Therefore, any higher mode solution is nothing but a phase-modulated wave function 

of the lowest mode solution. However, this is a transient case of phase modulation, since, 

in every case, Oe very rapidly approaches a constant value, as r increases. The amplitude 

of this modulating wave is also time-dependent. But as r increases, Ae(r )  also approaches 

the value 1 very rapidly. So, for a sufficiently large value of r, any higher mode solution 

will look like 

where O, is a constant. 

For the sake of completeness, we are writing below the explicit expressions for Ae and 

Oe for a few other higher mode solutions. 

< ! = 2 >  
w4 + (3t,anh2 r + 2)w2 + (9 tanh" - 6tanh2 r + 1) 

A; = 
w" 5w2 + 4 

3w tanh r 
tan Q2 = 

3tanh 2r  - (1 + w 2 ) '  

A: : 

Numerator =u6 + w4(8 + 6 tanh2 r )  + w2(45 tanh4 r - 12 tanh2 
T + 16) 

+ (225 tanh6 r - 270 tanh4 r + 81 tanh2 r ) .  

Denominator =w6 + 14w4 + 49w2 + 36. 

15w tanh2 r - 4w - w3 

tan Oe = 
15 tanh3 r - (6w2 + 9) tanh2 r 

. . . etc. 



IV.(D) Concluding Remarks 

In the previous sections, we have developed the mathematical formalism for and stud- 

ied the behaviour of scalar field in the Witten Bubble spacetime. We have written the 

eigenfunctions of the temporal equation as hyperbolic harmonics which manifest wave- 

behaviour in all of its modes. By choosing the null coordinate system, we could transform 

the radial equation into a very simple Schrodinger form. Studying the scattering problem, 

we have observed that our results are consistent with the concept of bubble as a perfectly 

reflecting wall. At large enough distance, we could get both incoming and outgoing waves 

with the same amplitude, thus giving the value of the reflection to be unity. On the other 

hand, near the bubble, the wave behaviour gets distorted. The higher the frequency, the 

lower is the distortion produced by the spacetime. A high frequency wave starts manifest- 

ing its wave behaviour very near to the bubble wall. 

A study of bound states confirms the stability of the spacetime against arbitrary 

scalar perturbations. For a complete stability analysis of such a spacetime, the study of 

electromagnetic and gravitational perturbations is also necessary. This study may be able 

to project a clearer concept of some inherent aspects of the Witten bubble and lead to 

further studies related to such a spacetime. 


