
APPENDIX A 

Deflection of Null Ray in Higher Dimensional Black Hole Spacetime 

This is a simple calculation based on standard procedure that we (Bhawal B. and 

Mani H.S., 1988, unpublished) did to arrive at  an expression for the measure of the deflec- 

tion of null ray propagating in higher dimensional black hole spacetime. We found that, 

under certain assumptions, the general expressions obtained for even and odd number of 

dimensions differ from each other. 

In any static, spherically symmetric higher dimensional spacetime of the form 

where d0: is given by Eq.(II.3), one may consider the orbit of the null ray to be in the 

equatorial plane (i.e. where all polar angles Oi = 7r/2 for i = 2, 3 , .  . . , n), since the field is 

isotropic. 

Then proceeding in the standard way [Weinberg, 19721, one arrives at the following 

expression for the deflection of null ray by the gravitational field. 

where b is the distance of the closest approach to the central point. 

Let us now choose the background metric to be the higher dimensional Schwarzschild- 

de Sitter spacetime [Dianyan, 19881 given by Eq.(A.l) and 

A is the cosmological constant. m = D - 3. 

Integrating T for the above expressions of .4 and B is very difficult. We assume that 

throughout the orbit of the null ray, r (or, b) is much greater than ro. Then, since A is 



also a very small quantity, one may write 

Then T may be calculated to be 

Making change of variable to x = blr, we obtain the deflection of the null ray to be 

The last term containing .I blows up. Therefore, from now onn-ards we set -1 = 0 or equiv- 

alently, we confine our discussion to ordinary higher dimensional Schwarzschild spacetime. 

For A = 0, 

When D is odd (or, m + 1 is odd) 

When D is even (or, m + 1 is even) 

So, when D is odd, deflection of null ray is given by 



The corresponding expression for D even is given by 

All the integrals appearing in the above expressions can be written in terms of Beta or 

Gamma functions as shown below. For any value of m = p (say) 

The following expressions can, therefore, be obtained 

The expression of AdlE for D = 4 tallies with the standard expression obtained in four 

dimensional analysis (= 4GM/ b).  

If one wants to compare the values of deflections in two Schwarzschild spacetimes of 

different dimensions, one may do so by choosing units c = G = 1 and dimensionless variable 

for the radial coordinate. It is not easy to arrive at any general conclusion since the result 

crucially depends on the value of b as well as the corresponding: number of dimensions. 



APPENDIX B 

Alternative Scalar Wave Solutiolls in The Witten Bubble Background 

Here, we present alternative forms of solutions of both the radial and T-equations, 

obtained by different procedures, for the Klein-Gordon equation in the Witten Bubble 

spacetime. Since these solutions are not convenient for formulating scattering and other 

problems discussed in chapter IV, we have not used them in our work. However, for the 

sake of completeness and for possible use elsewhere, we describe these here. 

(i) T-Equation 

The r-part of the separated Mein-Gordon equation, which we will denote here as T ,  

instead of T:,, satisfies Eq.(IV.7). 

Let us do the coordinate transformation 

This is equivalent to the Euclidean continuation of Eq.(IV.7). Then introducing the vari- 

able 

I p = cos r , (B.2) 

we can write Eq.(IV.7) as 

d2TE dTE 
( I - ~ ~ ) - @ -  - 3p - dp + [ a -  1 - p2 T~ = O  

where by TE, we represent the Euclidean continuation of function T. Also, 

2 -e/ZTE Defining Z = (1 - p ) 

we get 



where we have chasen 

Equation(B.6) can now be written as 

by defining 

This is the standard Gegenbauer equation, which has two solutions expressed in terms 

of hypergeometric series. 

Therefore, using Eq.(B.5), we get two solutions for Eq.(B.3) 

r e  P T: = (sin T ) CA (cos T ' )  (B.12) 

T: = (sin r')' D: (cos T' ) (B.13) 

Performing the reverse transformation of Eq.(B. I ) ,  or equivalently, continuing back 

to the Minkowski solutions, we obtain 

(ii) Radial Equation 

(B. 14) 

(B.15) 

We can get a Frobenius series solution of Eq.(IV.14), if we assume it first to be of the 

form 
00 



Then substituting this in Eq.(IV. 14), we obtain the following equation 

where z = r - Ro. 

Equating the coefficients of different powers of z, we obtain q = 0 and can determine 

different a,, so that the solution turns out to be 

A second solution can be found to be of the form 

- - 

R2 = ln(r - Ro) x an(r - R ~ ) ~  + C bn(r - & I ) ,  

where a,, b, are constants to be determined from Eq.(B.15). 

The first solution behaves properly throughout the range of the variable r, whereas, 

the second solution blows up at r = Ro. 



APPENDIX C 

A Special Kind of Coordinate Transformation 

Coordinate transformations like Eq.(IV.15) are widely used in many situations both 

in flat and curved spacetimes to bring the radial equation to the Schrodinger form, e.g. 

the 'tortoise' coordinates in the Schwarzschild spacetime. However, these were considered 

to be just some mathematical operation. Their actual significance does not seem to have 

been discussed in the literature. Here, we will attempt to give a general basis for this. 

For a metric in which the Iclein-Gordon equation is separable and goo, g,, are inde- . 
pendent of time, one can always obtain the radial equation in Schrodinger form just by 

choosing a null coordinate system. 

In a static spacetime, if one solves the Iclein-Gordon equation for a massive scalar 

field, one obtains the following eigenvalue equation after separating out the temporal part 

which will be of the form e+iwt, 

Now, if it is a two dimensional metric 

let us try to get a null-vector qi by introducing a new coordinate r*,  

so that, 

dr 2 
7)il)i=-A+(-) B = o  

dr* 

Then ds2 = A(-dt2 + dr**) 



and Eq. (C. 1) becomes 

Only the mass term contributes to the effective potential. For m = 0, this is just a 

free wave solution. 

In a general dimensional spacetime, if g,,, where cr # t ,  r be r-dependent, then there 

will be an extra first derivative term in Eq.(C.4). This first derivative term can be easily 

eliminated by suitably defining a new radial function and the Schrodinger equation can 

be obtained. The r-dependence of g,, will actually contribute to the effective potential of 

this equation. 

If g,, is also time-dependent, the eigenvalue equation of @ will not be of the form 

(C.l). But one can easily see that this will not create any problem in getting a Schrodinger 

form by choosing a null coordinate. 
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