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Chapter IV

Ionic contribution to the Dielectric Properties of Nematic

Liquid Crystals in Thin Cells

4.1 Introduction

In the previous chapter we have discussed the effect of confinement on the order

parameters of some nematic liquid crystals. It is found that the order parameters in thin

cells in all the compounds with aromatic cores are enhanced significantly with respect to

those in thick cells. The Landau de Gennes theory partially accounts for the enhancement

of order parameter in thin cells if the surface potential is suff iciently strong.

In this chapter we will discuss the effect of confinement on the dielectric

properties of a nematic liquid crystal in thin cells.

Liquid crystals are dielectric materials. However, due to ionic impurities, they

usually have nonzero values of conductivity σ. Unless special precautions are taken σ

can be ~10-9 (Ω-cm)-1 [1]. The dielectric constant is written as a complex quantity,

,* εεε ′′−′= j  where ε ′ is the real part of the dielectric constant and ε ′′  is the dielectric

loss factor of the medium, with 1−=j . The dielectric dispersion spectrum of a nematic

liquid crystal depends on the direction of the applied field with respect to the director

( n̂ ). When nE ˆ||
�

, the relaxation frequency comes down to fairly low values (a few KHz

to a few MHz depending on the material and the temperature). For nE ˆ⊥
�

, the relaxation

frequency is in the GHz range. At very low frequencies ( ≤  1KHz), the ionic impurity

also contributes to the dielectric properties. The influence of ions on the real and

imaginary parts of the complex dielectric constant of both solid and liquid electrolytes

has been studied both experimentally and theoretically for a long time [2-4]. The theory

has since been extended for polymer melts [5], which was subsequently simpli fied to

describe the ionic effect on the dielectric response of the isotropic (I) phase of liquid

crystals [6-9]. These experiments were performed on liquid crystal cells with thickness of
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about 5µm or larger. In view of the emerging interest in using much thinner cells in

LCDs, as well as due to an intrinsic interest in the problem we carried out dielectric

investigations on liquid crystal cells with thicknesses < 2µm. When the thickness is

reduced, at any given voltage the field increases and the influence of the ions on the

electrical properties becomes significant. The earlier studies on the ionic contribution

were made for describing electro-hydrodynamic instabiliti es (EHD), and also on the dc

switching process in a boundary layer bistable nematic display [10-12]. In display

devices, the liquid crystal is usually aligned with its director parallel to the glass plates.

The dielectric anisotropy (∆ε) of the material is positive so that the nematic shows a

realignment of the director above a threshold voltage [1] (Freedericksz transition). We

have chosen a material with negative dielectric anisotropy to avoid such a problem.

However, such a material can give rise to EHD instabiliti es beyond a threshold of about

≈ 5V or more, depending on the frequency [1]. We conducted our experiments at 1V,

which is well below the threshold value. In this chapter we will describe both the

experimental and theoretical results on the frequency dependence of the dielectric

properties on a nematogen which exhibits the nematic phase in a wide temperature range.

4.2 Experimental

The compound studied is 2-cyano 4-heptylphenyl-4’ -pentyl-4-biphenyl

carboxylate [7(CN)5] which has the following phase sequence: Cr 45 0C N 102 0C I. The

chemical structure of the molecule is shown in Fig.(4.1). In the previous chapter we have

reported the measurement of birefringence in thin and thick cells of this compound. The

lateral cyano group of the molecule gives rise to a negative dielectric anisotropy in the

nematic phase. The material has a very wide nematic range and it can be supercooled

down to room temperature. It is also chemically stable. The cells are prepared as

mentioned before (see Fig.(1.16) in chapter-I. A heating stage (INSTEC HS1) is used to

control the temperature to an accuracy of ~10mK. The dielectric properties of the cells

are measured using a DSP lock-in ampli fier (SRS 830). The block diagram of the

experimental setup is shown in Fig.(4.2).
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Figure 4.1: Molecular structure of the compound 7(CN)5 used in the experiment.

Figure 4.2: Block diagram of the experimental setup. Lock-in ampli fier (LIA), Capacitor

(Cm), Computer (COM).

The sinusoidal output of the internal oscill ator of the lock-in ampli fier is adjusted to an

r.m.s. value of V0 = 1V, and applied to the cell which is in series with a 1µF standard

capacitor (Cm).
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4.3 Equivalent Circuit and Impedance Analysis

As mentioned in chapter–II, we consider the sample cell to be electrically

equivalent to a resistor and a capacitor in parallel (see Fig.(4.3)). We measure the

amplitude and phase of the voltage developed across a series capacitance, Cm (=1µF),

which is large in comparison to the capacitance of the sample cell (~150 pF ). It is

important that  Cm  is large so that the maximum voltage drop is across the cell and only a

Figure 4.3: Equivalent circuit used for the impedance analysis of the liquid crystal cell .

CS  and RS  are the sample capacitance and resistance respectively.

small voltage is measured by the LIA. The impedance of the modelled cell i s given by

( )
( )2221
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=                                                 (4.1)

where RS and CS are the sample resistance and capacitance. ω =2πf where f is the

frequency of the applied voltage. The total impedance of the circuit ZT, which is a series

combination of Zc and 1/jωCm is given by

                                            
( )( )

( )222

22

1

1

SSm

SmSSmS
T

RCC

CCCRjCR
Z

ωω

ωω

+

++−= .                          (4.2)

The total current flowing through the circuit is given by
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where 0V and 0φ  are the amplitude and phase of the output voltage of the LIA.

Substituting ZT in the above equation we get

                    
( ) ( )

( )( )SmSSmS
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tj

T

CCCRjCR

RCCeV
I

++−

+
=

+

22

222
0

1

10

ωω

ωωφω

.                         (4.3)

The voltage drop across Cm, which is measured by LIA is given by

                                            
( )

mT

tj

m ZIeV m =+φω                                                              (4.4)

where ( )m
m CjZ ω

1=   and Vm and mφ   are the amplitude and phase of the measured

signal. Simpli fying the above expression by separating the real and imaginary parts we

get the following relations for the resistance and capacitance of the sample [13]

                                             
αω sin

Y
RS =

                                             ,
Y

X
CS =                                                                            (4.5)

where ,cos QX −= α   ,
sin 22

QC

X
Y

m

+= α
 

0V

V
Q m=  and mφφα −= 0 . The calibration of

the setup was checked by connecting standard capacitors in parallel with standard

resistors in place of the liquid crystal cell . It was found that the stray capacitance is

~2 pF. The accuracy of the measured capacitance is ~1% and that of the resistance is

~3%. We have also checked the calibration by measuring the capacitance and resistance

using a Wayne-Kerr bridge which operates at 1.6 KHz. The measurements were

controlled by a computer using suitable programs. The measurements were made at

several frequencies in the range of 10-1100 Hz.

4.4 Experimental Results and Discussion

In order to bring out the strong influence of the cell thickness on the measured

properties, we have shown the effective dielectric constant [which is the ratio of the cell

capacitance with the sample (CS) to that of the empty cell ] and conductivity at 1.1 KHz as

functions of temperature for both the cells in Fig.(4.4) and Fig.(4.5), respectively. The

effective conductivity is given by
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                                          ( )SaR
d=⊥σ                                                            (4.6)

where a is the electrode area.  These measurements correspond to ⊥ε  and ⊥σ , where the

subscript refers to the direction in relation to the director. In Fig.(4.4), the dielectric

constant measured in the 6.7µm thick cell follows the expected trend, decreasing with

increase of temperature, the rate of decrease becoming rapid near the nematic-isotropic

transition point TNI. It is easily shown that [1] the contribution from the liquid crystal is

given by

S03

1 εεε ∆−=⊥                                                             (4.7)

where ( ) 3/2|| ⊥+= εεε  is the average dielectric constant, and 0ε∆  is the value of the

dielectric anisotropy when the order parameter S=1. As S decreases with increase of

temperature, and 0ε∆  is negative, ⊥ε  decreases with temperature. The trend shown by

the thin cell i s peculiar. The dielectric constant is somewhat larger than that for the

thicker cell even at low temperatures, but at temperatures above 60 0C, the value does not

decrease as in the thicker cell but more or less remains constant and decreases slightly

only very near TNI. In both cases, the dielectric constant jumps to a lower value at TNI.

Further, the value of ε  measured in the thinner cell continues to be significantly larger

than that for the thicker one even in the isotropic phase.

The variations of ⊥σ  for both the cells are shown as functions of temperature in

Fig.(4.5). As expected, the conductivity increases with temperature in both cases as the

mobili ty and the number density of the ions increase with temperature. However, it can

be noted that the relative variation of ⊥σ  in the thin cell i s somewhat higher than that in

the thick cell .

The markedly different response of the thin cell compared to the thick one arises

due to the ionic contribution. In order to investigate this effect in greater detail , we have

carried out frequency dependent measurements of the dielectric properties at different

temperatures.
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Figure 4.4: Temperature dependences of the effective dielectric constant of the liquid

crystal taken in cells with two different thicknesses, at a frequency of 1.1KHz. Note the

higher value for the thinner cell , which hardly varies with temperature in the nematic

phase above 60 0C.

Figure 4.5: Temperature dependences of the effective conductivity of liquid crystal in the

two cells as described in the caption of Fig.(4.4).

The raw data on the effective dielectric constant and the conductivity are not convenient

for a comparison with the theoretical analysis to follow. We first present a summary of

the theoretical background.
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4.4.1 Theoretical Analysis

The liquid crystal is separated from the ITO electrodes by aligning polyimide

layers as in LCDs. This boundary layer has a typical thickness of few hundred 
0

A  and its

effective electrical resistance ( Rbl ) as well as capacitance (Cbl ) can be expected to be

quite large, i.e. the layers are essentially insulating. As the dielectric constant of this layer

is similar to that of the liquid crystal, it can be assumed that there is no absorption of ions

at the interface between the two. The dielectric constant (ε⊥ ) of the liquid crystal medium

itself, which depends on the induced dipole moment and orientation polarisation

contributions of the molecules can be considered to be essentially frequency independent

in the range (<1.2 KHz) in which the measurements have been made. This contribution

produces an effective bulk capacitance denoted by CB.  The medium also has a uniform

distribution of ions, which produces a frequency independent conductivity σ, which in

turn produces a bulk resistance of the medium denoted by RB. The application of an

electric field generates a non-uniform distribution of ions, which depends on the

frequency and in turn contributes both to the real and imaginary parts of the dielectric

constant. These in turn give rise to a capacitance CI(ω) and resistance RI(ω). The

equivalent circuit corresponding to the cell i n which all these contributions have been

included is shown in Fig.(4.6).

Figure 4.6: Equivalent circuit of the liquid crystal cell with the “lumped” values of the

boundary layer capacitance Cbl and resistance Rbl arising from both the boundaries.

R b l C b l

R I (ω) C I(ω)  R B CB
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The complex impedance of the equivalent circuit is given by [6]
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In terms of the measured values CS and RS [given by equation (4.1)], the measured

complex impedance is given by

( ) ( ) 
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We summarise below a grossly simpli fied method of evaluation of the ionic

contribution which generates CI(ω) and RI(ω).  It is convenient to assume that positive

ions are very much more mobile than the negative ones and the latter do not contribute to

the current. If ρ (z,t) is the charge density of the mobile ions, the charge continuity

equation is given by

( ) ( )
0

,, =
∂

∂+
∂

∂
z

tzJ

t

tzρ
                                                  (4.10)

where J(z,t) is the current density, which is given by

( ) ( ) ( ) tjEetz
z

tz
DtzJ ωµρρ

,
,

, +
∂

∂−=                             (4.11)

where D is the diffusion coeff icient and µ is the mobili ty. As the polyimide is a blocking

layer, we can assume that at the two boundaries (z = 0 and d), J0=Jd=0. As our

measurements have been made only at the frequency ω  of the applied voltage, we

assume that

( ) ( ) ( ) tjezztz ωρρρ 10, +=                                            (4.12)

where ( )z0ρ  is the time independent density of ions and 1ρ (z) is the amplitude of ion

density which oscill ates at the frequency of the applied field. The mobile charges move
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under the action of the external field and the resulting space charges produce a

polarisation which contributes to the total dielectric constant. The space charges give rise

to a non-uniform electric field, which can be calculated by using the Poisson relation. The

solutions in that case are quite complicated and can not be expressed in a simple

analytical form. Our sample had unknown ionic species whose number density (n) is

~1015 /cc. As such, the sample is really a weak electrolyte. Furthermore, the transit time

of the ions from one electrode to the other under a reversal of voltage V is given by

( )( )Vdqrtr //6 2πητ =  where η, the coeff icient of viscosity is ≈1 poise at room

temperature, and r the ionic radius can be expected to be ~10
0

A . However as the

mesogenic molecules are strongly polar we can also expect that the ion will be dressed by

a few molecules which are attached to the ion. The effective “ionic” radius can be a few

(say~5) times larger than the bare value. For the thick cell (~7µm), 2≈trτ s while it is

about 0.1s for the thinner one (~1.5µm) for the applied voltage of 1V. As such, in the

frequency range of interest (10-1100 Hz), to a good approximation, the non-uniformity in

ion distribution can be assumed to be small . The electric field in the cell then can be

assumed to be equal to the external field. As the temperature is increased, the viscosity

reduces and the approximation becomes less justifiable. However use of the

approximation has the virtue that analytical expressions can be derived for CI(ω) and

RI(ω) . In a recent paper Sawada et al [7] have also argued that the approximation may be

adequate. Moreover, we can fit the experimental data quite well to the solutions by using

this approximation, which is hence further justified a posteriori. Using the boundary

condition that J=0 it can be shown that 0ρ  is actually independent of  z  and

( ) 
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where Dj /ωκ =  and from the Einstein relation, TkqD B// =µ , where kB  is the

Boltzman constant. Hence )(1 zρ  has components both in phase and 2
π  out of phase

with the applied A.C. field. Taking D = 2.5×10-8 cm2/sec (see Table-I), E = 30esu, the
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calculated variation of the real part of )(1 zρ  is shown in Fig.(4.7) in the 1µm thick cell at

a temperature of 65 0C.

Figure 4.7: Variation of 01 /)( ρρ z  inside the thin cell (1µm) as a function of z at the

temperature of 650C.

It is noticed that the space charge density is higher at lower frequencies (for example at

60 Hz) in the bulk as well as near the surfaces. With increasing frequency the space

charge density is reduced in the bulk as well as near the surfaces. Therefore at lower

frequencies the space charge effect is dominant. The additional polarisation due to the

space charge formation is [ ]zz)(1ρ  and the thickness-averaged value is
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The corresponding frequency- dependent ionic contributions to the complex dielectric

constant are given by:
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where “a” is the area of electrodes, 0ρ=nq  and  DdA 2
ω= . Equation (4.15) and

(4.16) agree with those derived by Sawada [6]. Using these in equation (4.8), the real and

imaginary parts of ZA can now be calculated. Comparing them with the corresponding

parts of the experimental complex impedance ZB given by equation (4.9), a nonlinear

least-squares fitting procedure (Levenburg –Marquet) is used to get the best values for

Rbl, Cbl, D, n and the frequency independent terms RB and CB. Some representative

variations of the real and imaginary parts of the impedance are shown in figures

(4.8-4.13) at three different temperatures for both the thin and thick samples. It is seen

that the agreement between the calculated and the measured variations is quite

satisfactory. The relevant fit parameters at different temperatures are collected in Table-I

for both the thin and thick samples. From the figures it is clear that the real part of ZB,

which gives the experimental data has a monotonic decrease as a function of frequency at

all temperatures for the cells of both thicknesses. The calculated values, which are the

real part of  ZA agree well with the data. The imaginary part of (the measured) ZB, and the

corresponding calculations based on ZA, show a peak around 100 Hz, which is more

pronounced for the thin   cell    (Fig.(4.9)). The   frequency   corresponding   to   the

peak   decreases  as   the temperature  is lowered, while  the  magnitude of the  impedance

Figure 4.8: Temperature dependences of the real (open circles) and imaginary (open

squares) parts of the measured impedance ZB [see equation (4.9)] in the cell with

thickness 1.2µm, at 50 0C. the lines show the calculated variations of ZA [see equation

(4.8)] with the fit parameters shown in Table-Ia.
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Figure 4.9: Same as in Fig.(4.8), at a temperature of 90 0C. Note the minimum and the

maximum in the frequency dependence of the imaginary part of the impedance.

Figure 4.10: Same as in Fig.(4.9), at a temperature of 1050C. Note the minimum and

maximum in the frequency dependence of the imaginary part of the impedance.

itself increases. In the thin cell there is also a low frequency minimum above 75 0C and

the impedance strongly increases at very low frequencies. The physical origin of these

features can be understood from equations (4.8), (4.9), (4.15) and (4.16). DdA 2
ω= ,
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i.e., 2/1fA α   where π
ω

2=f  and the lowest frequency f  that we have used is 10 Hz.

As the typical diffusion constant D~10-7 cm2/s, A is much larger than 1 even for the thin

cell . The boundary layer capacitance Cbl is ≈10-7F, and the corresponding resistance Rbl

≈107Ω. Using these, the imaginary part of ZA can be approximated

to ( )2
3

21

1
)(

ω
ω

ω C

CC
imagZ A +

+≈ , where C1~107, C2~104 and C3 ~10-6. It is clear that the

second term leads to a maximum when 
3

2 1
C=ω where 3C  is essentially the charge

relaxation time σ
εε ⊥0 . On the other hand, C1 arises from the boundary layer impedance

and the first term becomes comparable to the second one for ω ≈ 100 Hz (i.e., f ≈ 20 Hz).

Below this frequency the contribution from the boundary layer leads to a rapid increase in

ZA(imag) and hence produces the sharp minimum seen in Fig.(4.9).

Figure 4.11: Temperature dependences of the real (open circles) and imaginary (open

squares) parts of the measured impedance ZB [see equation (4.9)] in the cell with

thickness 6.7µm, at 50 0C. The lines show the calculated variations of ZA [see equation

(4.8)] with the fit parameters shown in Table-Ib.
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Figure 4.12: Same as in Fig.(4.11) at 900C. Note the peak in the frequency dependence of

the imaginary part of the impedance.

Figure 4.13: Same as in Fig.(4.12) at 105 0C. Note the peak in the frequency dependence

of the imaginary part of the impedance.

From Table-I, the number density of ions at any given temperature is much larger

in the thin cell compared to the thick one, which arises due to the fact that the two cells

were prepared on different days and the contamination during processing of the cells is

likely to be responsible for the different values. One can assume that the bulk

conductivity  µρσ ≈  and  the values  of  the  bulk  resistivity  RB are  consistent with the
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Temperature
in   0C

Diffusion
Constant D
(cm2/sec) in

(×10-8 )

Number
Density
(n/c.c)
(×1014)

Boundary
Layer

Resistance
Rbl

(in Mohm)

Boundary
Layer

Capacitance
Cbl (×10-7 F)

Bulk
Resistance

RB  in
Mohm

Bulk
Capacitance

CB

(×10-9  F)

105 6.3 20 7 2.7 1.5 2.1

90 4.9 16 7 2.7 3.4 2.1

65 2.5 6.6 7 2.7 3.2 2.2

50 1.9 4.5 7 2.7 8.5 2.4

Temperature
0C

Diffusion
Constant D
(cm2/sec)
(×10-8)

Number
Density
(n/c.c)
(× 1014)

Boundary
Layer

Resistance
Rbl in  Mohm

Boundary
Layer

Capacitance
Cbl  (×10-8 F)

Bulk
Resistance

RB  in
Mohm

Bulk
Capacitance

CB

(×10-10F)

105 9.7 4.8 12 9 12 3.8

90 8.8 2.5 12 9 50 4.15

65 6.1 0.6 12 9.01 83 4.4

50 5.4 0.2 13 9.0 145 4.71

Table-Ia
Fit parameters at different temperatures

(a) Sample thickness d=1.2µm

                                           Table-Ib

                       (b) Sample thickness  d = 6.7µm
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diffusion constant D and the number density n in both the cells. Both decrease as the

temperature is lowered as expected. The bulk value CB is proportional to ⊥ε , the

dielectric constant of the liquid crystal. From independent measurements [14] 5≈⊥ε  in

the compound used in the present study and decreases with increase of temperature as

required by equation (4.7). On the other hand, the boundary layer values Rbl and Cbl

which are the lumped values from the polyimide coatings on both the electrodes hardly

vary with temperature.

It is also easy to understand the higher effective dielectric constant exhibited by

thin cells compared to the thick one (Fig.(4.4)). The ions move faster under the higher

field acting in the thin cell , and also as the transit distance is shorter, the space charge

contribution to the polarisation is relatively large. Consequently, the effective dielectric

constant goes up. This is reflected in equation (4.15) in which A ∝ d occurs in the

denominator of the expression for )(' ωε I . From that equation, the ionic contribution is

also ∝ nD3/2. As the number density as well as the diffusion coeff icient increase with

temperature (see Table-Ia), ( )ωε I′  increases with temperature, and compensates for the

decrease of ⊥ε with temperature reflecting that of the order parameter S as given by

equation (4.7). The consequence is that the effective dielectric constant remains

practically independent of temperature over a wide range [see Fig.(4.4)].

4.5 Conclusions

Our experiments have shown that as the thickness of the cell i s reduced to

~1-2 µm, the ionic contribution to the dielectric response of a liquid crystal cell can be

significant for samples with a conductivity ~10-10(Ω-cm)-1. The effect grows very large

[∝ 2/3−ω for the real part and ∝ ω-1 for the imaginary part, see equations (4.15) and

(4.16)] as the frequency is reduced. In our simpli fied analysis, we have used the

approximation that the non-uniformity of the electric field inside the cell arising from

space charges can be ignored. The resulting simpli fied expressions for )(' ωε I  and )(" ωε I

reproduce the experimental data semi-quantitatively even for the thin cell at high

temperatures. Liquid crystals which are used in very thin display devices have to be

highly purified to avoid the ionic contribution to the dielectric response and hence to the
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electrooptic characteristics. The non-uniform field arising from the space charge effects

can be expected to alter the Freedericksz threshold voltage for materials with positive

dielectric anisotropy. This might partially account for the large increase in the

Freedericksz threshold voltage in thin cells compared to that in the thick cells, (see

section 3.3) which can not be explained on the basis of the increase in order parameter in

the thin cells.
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