
Chapter 3 

Three point correlation for Gaussian 
initial conditions. 

3.1 Calculating the three point correlation 

Here we shall go one step beyond linear perturbations for Gaussian initial conditions. If the 

initial perturbations are Gaussian they are completely specified by the one and two point 

distribution functions 'f' and 'c' at some initial instant Xo. All non-zero moments of the 

three point distribution function 'd',and the four point distribution function 'e' and all other 

higher distribution functions can be expressed in terms of moments of 'f' and 'c' at  Xo. The 

distribution function 'd' has no moments of order e3, but it has moments of order e4. These 

are 

< P;P; >3=< p; > a  (a, a; ,  Xo) < p: > a  (a, a;, Xo) (3 .1 )  

and 

where the sum is over all possible pairs of particle indices in the delta function. There are 

no moments of 'e' of order c4 or lower. All this implies that 

'F4 = F5 = F6 = F7 = f l l ( X o )  = 0 

and 

f5  (Xo) = f7 ( X o )  = f9 (Xo) = 0 

to order c4. The functions flo and fla can be expressed in terms of moments of 'c' using 

equations (3 .1 )  and (3 .2 ) .  Thus, the equation for the three point correlation function to 



order c4 is 

= f12 + fio - fa + - - f4. ax 8 x 2  " I  
The terms on the right hand side are all products of two terms of order c2 and can be 

calculated using the equation of the previous chapter. For an 52 = 1 universe, keeping only 

the growing mode, we can write the terms on the right hand side as 

and 

12 

2 ( 1  3 ) = ( )  fir (1,2,3,10) . (3.9) 

Using these, the equation for the three point correlation function is 

which has a solution, 



Imposing the initial condition 5 (1,2,3, Xi) = 0 on the solution, we get 

1 
5(1 ,2 ,31X)  = [(?) -1 [ A ; ( f 1 2 + f l O - f 8 )  1 

- 11X: fe - 9 2 ~ :  f4] A. . (3.12) 

Actually, for a complete solution of the equations, four initial conditions have to be'given. 

However the function E can be neglected if one is concerned only with the fastest growing 

part of the three point correlation function that is induced by the two point correlation 

function. Written explicitly this is 

, [12 (2) a 4  (< P;P$ >2 ( A O )  < PEP? >2 ( A O ) )  
Ox;8x:ax;L 8 x 3  

I 

+ 1 ~ X ; ~ X C  " (< P; >2 (a ,  a;, X O )  < P; >2 (a ,  a;, X O ) )  

33x0 a2 - - 
n4nm ~ x E ~ x ;  J P L C  (a ,  a;, X O )  c (a;, 4, Ao) X F d 3 ~ 4 d 1 2 p  

9 - - (k) a 3  
2n4n m ax;ax;8x; j p ~ p ~ c  (a ,  a;, X O )  c (a;, 4, A ~ )  x F ~ ~ x ~ ~ ~ ~ ~  

This solution can be further simplified if we use the potentials introduced earlier. Using 

the potential and doing the integrals over space by parts we have 

a 
- ax; ( F  (a ,  a;, x ~ )  J F (a;, 4, xo j x;d3z4 

- - - a d 

) 
- [ a 4 4  (a, a:) -v2m (a,  .;)I , 

* X O  81; 8s; (3.14) 

1 a2 
p;c (a ,  a;, A)  c (a;, 4, A )  ~ : d ~ x ~ d ~ ~ ~  

nn4m dxLdx; 

a2 a 
= - 2 h o -  dx;az: [a ax; (0'4 (a ,a;) )  - ax; ( v 2 ( ( a , a ; ) ) ]  

a a; 
- ah0- ax; [a44 (a,  a;) -v2m ax; (a,  a;)] , (3.15) 
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' and 

1 d3 
7rn4m2 a ~ ; a ~ b a ~ ;  / p i p i c  (c, c;, A) c (c;, 4, A) X?d3x4dl2p 

a a 
- 8- ax; b44 (a,  a;)  -V2m a x ;  (a ,  a;)] . 

Using these expressions in equation (3.13) we get 

a x ;  
\ 

which can also be written as I 

We have here an expression for the three point correlation function that arises from 

perturbations that are initially Gaussian and have no three point correlation. This expression 

is of order e4 and is a local function involving only derivatives of the potential 4 . This 

expression is valid as long as terms having higher powers of E may be neglected. It has been 

assumed that the initial perturbation had only the growing mode. If other modes are present 

4 represents only the growing part of it. One can introduce two other potentials for the two 

other modes and the three point correlation function will have terms with all combinations. 

The expression calculated is the fastest growing component. 

An interesting fact is that for all values of the density parameter the three point 

correlation function has the same spatial dependence given by 

a a 
( ( I ,  2,3, A)  = F A  ( A )  - (v44 (a ,  a;)  -v2d (a ,  a ; ) )  ax; ax;: 

> 

where FA and FB are some function of A. This is because equation (2.82) which,governs 

the growth of the three point correlation function is a differential equation in' X  alone. The 



functions F~ (A) and FB (A) have to be determined by solving equation (2.82) and will be 

different for different values of 52. \ In what follows we restrict ourselves to 52 = 1 and the 

fastest growing mode. 

3.2 Discussion 

To get a better understanding of the three poipt correlation function calculated in the pre- 

vious section it is convenient to express it explicitly in terms of the two point correlation 

function C instead of the potential 4. 
Using equation (2.60) which defines the potential and the fact that ((a) is a spherically 

symmetric function we have 

- ' 
where we have defined ((I), which is the average of ((x) over a sphere of radius x, by the 

second equality above. 

The above equation can be easily understood by an analogy to a spherical mass distri- 

bution where the gravitational force on a particle at any point can be found by replacing 

all the matter in the sphere between this particle and the center of the distribution by an 

equal point mass at the center, and ignoring all the matter outside this sphere. Using this 

in equation (3.17) we obtain 

+ 

where 

I 

y = I x0 - I, 
and 

L XrYr 
cos f l x v  = - . 

"Y 

We would like to remind the reader that a, a;, and a; are to be summed over the values 

shown in the table in the previous chapter . Although the three point correlation function 
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appears to be a local function when written in terms of the potential 4 it is not local in 

terms of the two point correlation function (. The three point correlation function (S does 

ngt depend only on the values of the two point correlation function ( at the separations 

occurring in (S. It depends on the two point correlation'at all scales smaller than the scales 

where the three point correlation function is being evaluated. It should also-be noted that 

it involves a derivative of the two point correlation function (. 
An interesting consequence of equation (3.21) arises when the two point correlation func- 

tion has compact support i.e. 

( ( r )  = 0 ; T > T I  , (3.22) 

the three point correlation has the form 

in the region where the separation between all the three points is more than T I .  M is defined 

as 

and the three point correlation function here depends only on the integral of the two point 

correlation function over the volume where it is non-zero. 

Fry (1984) has calculated the three point correlation function for the special case of 

power-law initial two point correlation function 

((x) = Ax'". (3.25) 

The general result obtained by us (equation 3.21) agrees with Fry's result (equation 34 of 

Fry 1984) for the power law case when 'n' is less than three. For larger values of 'n' the 

integral of the two point correlation function diverges and deviations from the power law 

behaviour are required at small separations to obtain meaningful results. 

If we assume deviations from the power law at small separations for the two point cor- 

relation function, keeping a power law behaviour at large x, our formula will give the same 

result as Fry's formula at large x if 
- 3 
S(X) = ~ ( ( 4  (3.26) 

for large x. Whether this happens or not depends crucially on the behaviour of the two point 

correlation function at small separations. 

As an illustration of the above point we present two examples where the two point 

correlation function has a large x behaviour 

((x) - x - ~  (3.27) 



but the three point correlation functions are quite different in the two cases. 

First we consider r- 

t 3a2  - x2 

, ((') = A ( x 2  + az)3  (3 .28)  

where A is some normalisation constant and a! some length scale. This corresponds to a 

Harrison-Zel'dovich power spectrum ( N  k l )  with an exponential decay for large k .  Using 

this we get 

which satisfies equation (3.26) for large s .  In this case we find that at large separations the 

three point correlation matches with the formula derived by Fry. , 

Next we consider 

which corresponds to a power spectrum N k0 with an exponential decay at large k and we 
I 

get 
- 
( ( X I  = a 1 - 1  - (9 (3 .31)  

1 + (:) '1 ' 

For large x we have 
- 37rA 
( ( 4  = a (3 .32)  

which does not sgtisfy equation (3.26).  In this case the three point correlation function 

that we calculate differs, even at large separations, from the expression that Fry has given. 
7 

Because ( ( x )  behaves as x - ~  and ( ( x )  behaves as x - ~  for large x ,  ( ( x )  falls off much faster - 
than ( ( I )  and the three point correlation is dominated by the term containing two ts. The ' 

three point correlation function at large separations then is controlled by the contribution 

from the two point correlation at small separations. 

Thus we see in the two cases above, though the two point correlation function has the 

same power law spatial dependence for large separations, the three point correlation functions 

are quite different. 

This is further illustrated graphically in figures 3.1 and 3.2 which shows Q ( r )  versus r 
for the two cases discussed above. Here Q ( r )  is defined as 

where the three points 1, 2, and 3 are located at the three corners of an equilateral triangle 

of sides of size r .  

Next we would like to make some cautionary remarks on the direct application of the 

three point correlation function calculated here to interpret observations. ' The calculation 







that has been done here is for the dominant matter component in the universe. If one wishes 

to use it to interpret galaxy correlations one should take the possibility that galaxies might 

be a biased tracer of matter into account. Secondly, although the galaxy correlations are 

small at large length scales, galaxies are strongly correlated at small length scales. Because of 

the non-local nature of the results, one has to check whether the perturbative results can be 

used at the large lengthscales when the small scales are strongly non-linear. In addition, even 

if the perturbative results are valid at large lengthscales, one cannot make a comparison of 

the three point correlation function at some lengthscales with just the two point correlation 

function at the same length scales. The three point correlation function is highly dependent 

on the shape of the initial two point correlation function at all scales smaller than the scales 

where the three point correlation is being evaluated. 

Finally, the formalism developed here can be applied to test the validity of any scheme 

to close the BBGKY hierarchy. Such a scheme involves a s s ~ m i n ' ~  a relationship between 

some moments of the various distribution functions. The validity of these assumptions can 

be tested in the weakly non-linear regime using the formalism developed in this chapter. As 

an example consider the scheme proposed by Davis & Peebles (1977). They assume that the 

three point correlation function has the 'hierarchical' form, i.e. 

where Q is a constant and that the correlations arose from initially small Gaussian density 

perturbations. A comparison of the expression for the three point correlation in equation 

(3.34) with the three point correlation function calculated in this chapter shows that it is not 

possible to write the induced three point correlation function in the weakly non-linear regime' 

in the form assumed in equation (3.34). Thus, although using this formalism we cannot say 

anything about the assumptions made by Davis & Peebles in the strongly non-linear regime, 

we can say that it is invalid in the weakly non-linear regime. 





Chapter 4 

Calculating the two point correlation 
function. 

In chapter I1 we have considered the linear evolution of the two point correlation function. 

In this chapter we consider the lowest order non-linear effects in the evolution of the two 

point correlation function. 

4.1 Notation and the Equations Governing the Two 
Point Correlation. 

We present below the equation governing the perturbative evolution of the two point corre- 

lation function. This equation (2.41), which was derived in chapter 11, is 

r' 
where, 

fl (112, A) = s G P B  / c (1,2,3, A) x?d3x3, ax; (4.2) 

1 
f3 (1,2, A) = - 

a3 a b c  

m3 8x;dx~dx; < PpPvP,, >2 (192, A) . 
Here the position indices take values 1 and 2 and are to be summed when they appear twice. 

For an f#? = 1 universe this becomes 

If we are interested in only the linear evolution, we can ignore the terms on the right hand 

side of this equation as they are initially of a higher order in powers of E compared to the two 
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point correlation function. The initial two point correlation function is of order rz2 whereas 

the terms on the right hand side are of order e3 or higher. In this chapter we consider the 

terms on the right hand side of equation (4.5) and calculate their effect on the evolution of 

the two point correlation function. 

We separately consider the various terms on the right hand side of equation (4.5). We 

first consider equation (4,2). This depends on three point correlation function C which has 

been considered in the previous chapter. For Gaussian initial conditions this has a non-zero 

value only at order e4 and higher. We reproduce the expression for the three point correlation 

function at order c4 from chapter 111. This is 

d2 

+ 2 ax;ax; (& (v24 (a, ai)) & (v24 (a, a;)))] a 
(4.6) 

In the equation for the three point correlation function the following conventions are used 

A. the position indices, e,g. a, take values 1,2, and 3 corresponding to the corners of the 

triangle for which the three point correlation function is being evaluated. Also, a position 

index which appears twice or more should be summed over the allowed values. 

B. for a fixed value of the position index (e.g. a = I), a; and a; are to be summed over the 

other two values (i.e. a; = 2, a; = 3 and a; = 3, a; = 2). This is to be* done whenever such 

a combination of three position indices appear. 

In some of the equations for the other moments of the three point distribution function, 

if indicated, the summation convention A may not hold, but the convention B always holds. 

To calculate f2  and f3 we have to first calculate the following quantities: < pz >3 

(1,2,3, A) and d;Bka: < pzptp:  > 2  (1,2, A).. These calcidations are discussed in the following 

two sections. The overall strategy is the same as in chapter II. We take velocity moments 

of the BBGKY hierarchy and retain terms only up to order e4. As a result of this we 

.obtain a set of ordinary differential equations in the parameter A. These equations have 

complicated spatial dependences. The spatial calculation is simplified by taking spatial 

derivatives (curl and divergence) and we then obtain a set of equations that can be easily 

solved simultaneously. The lowest order at which the functions fl, fa and f3 have non-zero 

values for Gaussian initial condition; is e4. Thus the lowest order at which we have non-linear 

corrections to the two point correlation function is e4. This rqsult is presented in the fourth 

section of this chapter. 



4.2 The triplet momentum. 

The triplet momentum < p: >3 (1 ,2 ,3 ,  A) is defined as the first moment of the three-point 

distribution function d (1 ,2 ,3 ,  A). 

It is a function of three positions 1,2 and 3,  and the index 'a' in < p: >3,  which indicates 

at which vertex of the triangle we are considering the momentum, can refer to any one of 

them. 

We want to calculate-this quantity to order c4. This is the lowest order for which it has 

non-zero value for Gaussian initial conditions. 

The evolution of the triplet momentum is governed by the first moment of the third 

equation of the BBGKY hierarchy (2.64) 

- SmGpE (a, a;) J E (a;, 4 )  X p d 3 x 4  = 0 .  

To evaluate < p; >3 we separately consider both its curl and divergence with respect to xa 

and use these to construct it. All the equations given below for the curl and divergence are 

valid only to order c4 and in all of them the summation convention A does not hold. In all 

these equations the indices a, b and c refer to the three different corners of the triangle that 

we are considering i.e. a # b # c. 

The curl of equation (4 .8)  is 

10 

+ $ (;) cp, [a;v44 (a, a;) (a, a;)] = o (4.9) 

where, 

and 

czb(1 ,  2 ,3 ,  A) = e p w 6 ' z ~ t  < p ~ p ;  >3 . (4.11) 



and we have used the fact that for Gaussian initial conditions to order e4 
\ I 

< PEP: >3=< p; >2 (a,.;) < P; >2 (a,a;) (4.12) 

to evaluate GT. 
The divergence of equation (4.8) is 

where I 

g ( a )  = '5v44 (a,  a;) v44 (a,  a;) + 7a;v24 (a,  a;) 837'4 (a ,  a;) 

+za;a:v24 (a,  a;) a;a;v24 (a,  a;) . (4.16) 

We have used equation (4.13) to evaluate Kaa and equation, (4.6) for the three point 

correlation function. 

Next we consider the second moment of the three point distribution function 

Sm2G 
- -/ n3 

( 6 ~ ~ :  + 6 ~ : ~ ; )  f ( c )d  (c",3) XzFd3x4d12p 

Sm2G 4c 3 4 l a  - --- J (6;~: + 6::~;) c (c, c;) c (c;, 4 )  x., d x d p n3 

Sm2G ca b cb a 4c 3 4 12 - - / ( ~ ~ v + 6 . , v p p , ) e ( l , 2 , 3 ; 4 ) ~ . ,  n3 d s d p = 0 .  (4.17) 

We use this to get an equation for G;b 

d 1 6m G + -H?~+-F' ax rn x2 a 
x1° + 5 m 2 0  y, [aavv2)  (a ,  b) a;v44 (a,  c)  
All  

+ a;v44 (a ,  b) a;v24 (a ,  c)] = o . (4.18) t 

where 
a b c  o b c  = y,vaI.aaac < PvPaPu >3 (4.19) 
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We have used the fact that for Gaussian. initial conditions to order e4 

a a b  
<P,PuPu >3 = < P E P :  >a ( a , b )  < P C  >a ( a , c )  

+ <PEP:  >a (+I  < P; >a (v) (4.20) 
i 

to evaluate H;M when d = a or d = b. . 
By taking divergences of equation (4.17) we obtain 

a 1 6 m  * x 1 0  - K" + -La" + - ( J a  + Jb)  + ma' [g ( a )  + 9 (b)]  = 0 ax m xa Al l  

where 
h 

Finally y e  have the third moment of the equation for the three point distribution function 
t 

SmaG - -- / (67p;pz + 6;LP;p: + %pip ; )  c  ( e ,  e;) c (e; , 4 )  X; d 3 x 4  d l  ' p  
n3 

This can be used to obtain the equation for H;" 

+ 1om3 (g) ESP [a:v2( ( a ,  b) a;v4m ( a ,  C )  

+ a;v4+ ( a ,  b)  a;v2) ( a ,  c ) ]  = 0 I (4.24) 

To obtain this equation we have used the fact that for Gaussian initial conditions to order 

a a b c  < P$uPuP, >3=< PEP: >a< pEp; >3 +permutations. (4.25) 

Taking divergence of equation (4.24) we obtain 



The equations (4.9),(4.18) and (4.24) can be simultaneously solved to obtain 

F; = 2 (g) A9 &,, [8;v4)  (a,  a;) 8 ; ~ ' )  (a ,  a;)] (4.27) 

~i~ = h2 ($ ) ep,,,, [p4 4 (a ,  a;) 0; v24 (a,  a;)] (4.28) 

~i~~ = 2m3 ($) ep,,,, [5v4( (a,  a;) KV') (a )  a;)] . (4.29) 

Simultaneously solving equations (4.13),(4.21) and (4.26) we have 

Using these we obtain the triplet momentum as 

Ah0 1 < p t  >3 (1,2,3, A )  = m- [-a0v2) (a,  a;) v') (a,  a;) 
A9 2 

1 + 7s (cv2) (a,  a;) 81V2)  fa, a;)) 

5 1 + f ; V 2 )  (a ,  a;) V 4 )  (a;, a;) + ,a;a;;v2) (a,  a;) 8 , " : ~ ' )  (a;, a;) 

1 2 + 5a;a;;d(a,a;)e:v4)(a;,a;) + 5 a ; O ~ 1 @ ) ( a l a ; ) ~ $ ~ $ ~ 2 ) ( a ; , a ; )  

3 - - J X;a: (8 :v2)  (4, a;) v') (4, a;)) d3x4] 
5671- 

(4.33) 

and we also obtain for a # b 

ma A I O  O [[.ra;v2) (a,  a;) v4) (at a;) @, < ptp;  >3 (1,2,3, A)  = -- 
7 A10 

+ 28; (a;v2) (a,  a;) g y 2 )  (a,  a;))  + 2oa;V2) (a ,  b) V 4 )  (b, c)  
b 2 + 1 0 8 ; ~ ~ )  (a ,  c )  v') (b, c )  + 14a;8:v2) (a ,  b) a , , ~  ) (b, c)  

+ 148~3:)  ( a ,  b) B;v49 (1, c )  + 7 8 3 3 : ~ ~ )  (a ,  c)  BEV2) (b, c) 

+ 7gq) ( a ,  c)  8 : ~ ' )  (1, c )  + 8 q @ &  ( a ,  b) (b, c)  

+ 4a;a;8:d ( a ,  c )  a:a:d (b, c )  
3 4a 4 

- - J x,, a,, (a:v24 (4, a;) v') (4, a;) )  d3x4] 47r 
(4.34) 
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4.3 The third moment of the two point distribution 
function. 

In this section the position indices takes' the values 1 and 2, and they are to be summed 

whenever they appear twice or more. I 

The third moment of the two point distribution function is governed by the equation 

a a b c  - I a o b c d  

ax < PpPuPu >2 +-- m ax: < P ~ P ~ P , P ,  >a (182, A) 

Sm2G - / ( ( b ~ a p b ~  e b a c  3e 3 3 

n 2  , UP,  + $ u ~ p ~ u  + JGPEP;) f (el c (e l ,  3 )  X ,  d @P 

ec a b 3e 3 3 - J (6;p;p; + ~;",P;P; + s,p,p,) d (1 ,  21 3 )  x ~ ,  d x BP = 0 . 
i n2 

If we take divergence with respect to all the three sets of free indices we have 

a a b c  o b c  o b c d  o b c d  ,a,aua, < PpPuP, > 2  + ,a,B.a,a, < PpPuPuP, >2 

+ l 2 r S m G p  [< pip: >I ap;( (1,2,  A )  + a;a; < p;p: (1 ,2 ,  A)]  

- 3 s r n ~ ~ ~ p : ~ :  / X: < p;p; (1,2,3,  A )  d3z3 = 0 .  (4.35) 

For Gaussian initial conditions the terms in this equation have non-zero values only at 

order e4 and higher. To order .e4 there are two unknown functions in the equation i.e. 
o b c  a b c  8,8,,d, < pppupu >2 and < p;p: >2 .  We need one more equation to self-consistently 

solve this equations. This equation is obtained from the second moment of the two point 

distribution function 

d a a b c  

ax >2 ( 1 , 2 , x ) +  -- - < P,Pu m Ox; < P,PuPu >2 (1, 2, A) 

From equation (4.36) we get 

a O ~ C  O ~ C  -aaaa +-a a a < p ~ , , p ,  >, ax 3 m p u u  
2 

0 0 0  + -aOaOaO < pppup, >2 - 2 ~ m ~ ~ a ; a ;  < p; >J ~ : ~ d ~ x ~  = 0. (4.37) 
3 m p u u  



Simultaneously solving equations (4.35) and (4.37) we obtain 

a b c  a b c  3 a a a  o a a  5 X  a b c d  a b c d  
a,~ua" < P,PuP, > 2 =  ga,,aua, < P,,PuP. > 2  + ~ ~ , , ~ u a o a ,  < P,,PuP.P, >2 

All the terms on the left hand side of equation (4.38) are known to order e4. Writing it in 

terms of 4 we have 

a b c  a b c  82 a,a,,a,, < pppup,, >2= ($1 [-y6# ~ $ 2 )  V'C (01 

4.4 The two point correlation. 

Using the results derived in the two previous sections we can calculate f2 and f3. We first 

consider only the X dependence of 6. Equation (4 .5)  may be written as 

a3 24 8 24 10 
- + St = (*) l1  [ h ( X o )  - h ( A o )  t x f ~ ( h o ) ]  , (4 .40)  

This has a solution 

1 Ai l  t (19% A )  = - 5 0 4 ~  [ f 2 ( ~ 0 )  - f3(A0)  t E f i ( ~ o ) ]  (4 .41)  

Using equations (4 .2) , (4 .3)  and (4 .4 )  we calculate the spatial dependence of the right hand 

side. This gives us 
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3 1 1  2 a a a  a - J x;l (;a:vao (1,3) a;$v44 (2,3) + ?B,B,V 4 (1,3) a,aUavv 4 (2,3) 
7r 

This is the two point correlation function at order e4. 

We do a Fourier transform of (4.42) and compare it with the result obtained in the single 

stream approximation (Makino et. al 1992) and find that the two match. 

The algebra involved in deriving equation (4.42) was checbed using the mathematical 

package MATHEMATICA and the Fourier transform was done using this package. 

4.5 Discussion 

The calculation presented here, which is based on the equations of the BBGKY hierarchy, 

has the effects of multistreaming, if any, at the lowest order of non-linearity i.e. e4, This 

matches with the results obtained in the single stream approximation which does not take 

into account any effect of multistrearning. Hence we conclude that there are no effects of 

multistreaming at this order of non-linearity. The equivalence between the two calculations 

at this order become clear only at the find stage i.e. after we have done the calculation. and 

one does not obtain the HD equations as an intermediate step. 

In chapter VI we discuss if we can study the effects of multirrtreaming by going to higher 

orders of the perturbative expansion or whether it is a limitation of the perturbative treat- 

ment that it does not allow us to study the transition from a single streamed to a multi- 

streamed flow. 

Given the initial two point correlation function ((l)(x, A), to evaluate the non-linear 

correction at order e4 we solve the equation 



to obtain V2gb(x) and then solve for 4(x) and use these in equation (4.42). These calculations 

are simplified a lot if we use the fact that ((x, Xo) is spherically symmetric. Equation (4.43) 

does not uniquely determine the functions V2)(x) and )(x). If V2)(x) is a solution of 

equation (4.43) then so is V2$(x) + C where C is some constant. Under this transformation 

we also have gb(x) 4 gb(x) + y. If we consider all the terms in equation (4.42) that are 

affected by this 

1 1  4 - 32v6) (1,2) V2$ (0) + 126%8,,V ) (1,2) 8L8:) (1,2) 

2 2 2  4 - '5 / ~:'t$3:) (l ,3) ~ ,B,o~v 4 (2,3) d3z3 
27r 

(4.44) 

we find that the correction to the two point correlation function is unchanged by such 

transformations and independent of C. Similarly, we can add a constant to )(a) but this 

obviously does not have any affect as only derivatives of gb(x) appear in equation (4.42). 

, Hereafter we shall use the boundary condition that V2)(x) should vanish as x goes to 

infinity to fix the constant C. 
At this stage we should point out that it such a choice of C is not always convenient. 

For example if the initial two point correlation is such that the power spectrum has the form 

P(k) a kn with n < -1 at small k, then the boundary condition stated above implies that 

is infinite. Although V2gb(0) is infinite and this quantity appears in the non-linear correctian 

to the two point correlation function ((')(x, t), we may still get a finite ((2)(x, t)  for certain 

initial conditions. This is because now ((2) is the difference of two infinite large quantities 

which cancel out to give a finite result. The same problem is encountered if one does the 

analysis in Fourier space where for -1 > n > -3 the correction to the power spectrum is 

a finite quantity which is the difference of two divergent integrals (Vishniac 1983). In real 

space this situation is easily handled by changing the boundary condition used to calculate 

V2gb(x). If we use the boundary condition V2gb(0) = 0 to fix the constant C than the situation 

discussed above does not occur and it is possible to calculate ((')(x, t) solely in terms of finite 

quantities. Here we shall only deal with situations where the former boundary condition ( 
lim,,, V2$(x) = 0) can be applied. 

4.6 The pair velocity 

We next calculate the first moment 

order c4 . This is a function of two 

of the two point distribution function, < pa >a (1,2), to 

positions and the index a indicates at which of the two 



positions the momentum is being considered. We use the pair continuity equation 

to obtain 
1 d 

< >a (1,2, A )  = 8n 1 8; ( ) - ( ( i ) d 3 i  , 
I Y - Y ' I  a A  

where 

end a' refers to the complement of a (e.g. if a=l, a' =2). Using the two point correlation at 

order e4 calculated in the previous section we get at order e4 

1 + Za;'$'~2$ (a', 3) gga;a;$ (a ,  3)  

5aa'aa' (.',a) a:a;a;t1;~~#(0,3) + Z B  7 )  

- aia,.'q'q'o (a', 3) qa;qa;s (a ,  3 )  

- 5 v 4 $  (a', 3) d:diva)  (a ,  3)  

- Id,.'v44 (a', 3) d:qd;d (a ,  3)] d3x3] . 
2 

(4.48) 

A quantity related to the first moment of the two point distribution function is the pair 

current 
< P; >a - < P: >a 

j,(x, A )  = 1 (4.49) , m 

whose divergence gives the rate at which the correlation at any separation is growing. We 

use this to calculate the pair velocity which is the ensemble average of the relative peculiar 

velocity between any two particles at a comoving separation x at time t (or A).  
In terms of the pair current this is 
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