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Synopsis 

Most models of the formation of the structure we see in the universe today are 

based on gravitational instability. While very large scales evolve rather simply in 

the linear theory, there is a significant amount of nonlinearity even at the largest 

scales for which reliable observations are available. Numerical simulations suffer 

from serious boundary effects on such large scales. Further, some conceptual issues 

in this regime are best approached by analytic work. The understanding of weak 

gravitational clustering is the main motivation for the work described in this thesis 

where the dynamical evolution of some statistical properties of disturbances in an 

expanding universe is studied theoretically. The main poibts discussed in the thesis 

are listed below. 

Chapter I1 . 
1. The universe is modeled as a system of particles interacting only through the 

Newtonian gravitational force. This is appropriate on scales much smaller than the 

horizon scale but large enough that gravity is the dominant force. We consider an 

ensemble of such systems and we set up the equations of the BBGKY hierarchy in 

the fluid limit to study the evolution of some of the statistical properties of such an 

ensemble. A convenient parameter is used for the evolution instead of the cosmic 

time. 

2. The initial conditions are chosen such that the deviation of any of the systems 

from the uniform state can be characterized by a small parameter E. The initial con- 

ditions are also such that all the members of the ensemble have a single streamed 

flow. These initial conditions allow us to associate powers of E with various statis- , 
tical quantities for the ensemble. We consider the second and the third equations 

of the BBGKY hierarchy. By taking velocity moments of these equations we obtain 

equations for perturbatively evolving the two point and the three point correlation 

functions. At the lowest order of perturbation these equations give us the linear 

evolution of the iniFial two point and three point correlation functions. 

Chapter 111. 

3. We consider a situation where the initial disturbances are such that the density 

fluctuation is a random Gaussian field in a univer~e with the critical density. For 

these initial conditions the initial three point correlation function is zero. We cal- 

culate the nonlinearity-induced three point correlation function at the lowest order 

of perturbation for which it is non-zero. We obtain a general expression for this in 



terms of the linear two point correlation function and its average over a sphere. This 

investigation brings out the limitations of the commonly used hierarchical form. 

Chapter IV. 
4. In general the evolution of the two point correlation is influenced by the three 

point correlation function. The BBGKY hierarchy equations are used to calculate 

perturbatively, the lowest order nonlinear correction to the two point correlation 

and the pair velocity for Gaussian initial conditions. Our formalism is valid even if 

the flow becomes multi-streamed as the evolution proceeds. We compare our results 

with the results obtained using the hydrodynamic equations which neglect pressure 

and other effects of multi-streaming. We find that the two match, indicating that 

there are no effects of multi-streaming at the lowest order of nonlinearity. 
I 

Chapter V. I 
i 

\ 

5. We study the two point correlation induced at large scales for the case when it is 

initially zero there. Based on an analytic study confirmed by numerical results we 

conclude that this has a universal x-= behaviour. 

6. We numerically study a class of initial conditions where the power spectrum at 

small k has the form kn with 0 < n 5 3 and we calculate the nonlinear correction 

to the two point correlation, its average over a sphere and the pair velocity over a 

large dynamical range. We find that at small separations the effect of the nonlinear 

term is to enhance the clustering whereas at intermediate scales it can act to either 

increase or decrease the clustering. We also find that the small scales significantly 

influence the evolution at large scales and this may lead to a possible early break- 

down of linear theory at large scales due to spatial nonlocality. We obtain a simple 

fitting formula for the nonlinear corrections at large scales and we interpret this in 

terms of a diffusion process. We also investigate the case with n = 0 and we find 

that it differs from the other cases. 

7. We use the perturbative calculations described above to numerically investigate 

a widely discussed universal relation between the pair velocity and the average of 

the two point correlation. We find that in the weakly nonlinear regime there is no 

universal relation between these two quantities. 

Chapter VI. 
8. The Zel'dovich approximation (ZA) is used to study some of the issues that 

have been studied perturbatively for the full gravitational dynamics (GD) in the 

previous chapters. We investigate whether it is possible to study perturbatively the 

transition between a single streamed flow and a multi-streamed flow. We do this 

by calculating the evolution of the two point correlation function using two meth- 



ds: a. Distribution functions b. Hydrodynamic equations without pressure and 

rticity. The latter method breaks down once multi-streaming occurs whereas the 

rmer does not. We find that the two methods give the same results to all orders 

n a perturbative expansion. We thus conclude that we cannot study the transition 

om a single stream flow to a multi-stream flow in a perturbative expansion. We 

expect this conclusion to hold even if we use the full GD instead of ZA, as already 

checked at the lowest order of nonlinearity. 

9. We calculate nonperturbative expressions for the evolution of the two point corre- 

lation function, the pair velocity and its dispersion in the Zel'dovich approximation. 

We numerically investigate these formulae at various scales. 

10. We use ZA to look analytically at the evolution of the two point correlation func- 

tion at large spatial separations and we find thaf until the onset of multi-streaming 

the evolution can be described by a diffusion process where the linear evolution at 

large scales gets modified by the rearrangement of matter on small scales. We com- 

pare these results with the lowest order nonlinear results from GD. We find that the 
a 

difference is only in the numerical value of the diffusion coefficient and we interpret 

this physically. 

11. We also use ZA to study the induced three point correlation function. At the 

lowest order of nonlinearity we find that, as in the case of GD, the three point 

correlation does not necessarily have the hierarchical form. We also find that at 

large separations the effect of the higher order terms for the three point correlation 

function is very similar to that for the two point correlation and it can be described 

in terms of a diffusion process. 
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