
Chapter 6 

Optical diffraction in defect 

lattices 

6.1 Introduction 

Optical diffraction is another method to study the structural features of an 

heterogenous medium. In this chapter, we undertake such a study in the sys- 

tems described in the previous chapter viz., TGBs and tapered lattices. The 

propagation of light at an angle to the direction of periodic modulation of the 

index tensor results in diffraction. A plane wavefront incident with the prop- 

agation vector (k) perpendicular to the direction of modulation emerges as a 

corrugated wavefront. This corrugated wavefront gives rise to diffraction. This 

is also referred to as the phase grating mode. This is the geometry considered 

throughout this chapter. In the case of TGBA, TGBcll and twist tapered lat- 

tice, if the linearly polarised incident light has its electric vector perpendicular 

to the twist axis i.e., E = El at each point, then the light emerges in the same 

state of polarisation but with different phases at different points. As a result, 



we get a corrugated wavefront polarised perpendicular to the twist axis. Hence 

we find diffraction for this polarisation. For the electric vector parallel to the 

twist axis i.e., E = Ell, the structure is optically not heterogenous and hence 

the emergent wavefront will continue to be a plane wavefront and there will 

be no diffraction. 

In the case of TGBc, and splay-bend tapered lattice, for any azimuth 

of the incident linear vector the medium is periodically heterogenous. Hence 

we get optical diffraction for all azimuths. However, diffraction in splay- bend 

tapered lattices is more complicated and will be discussed later in this chapter. 

6.2 Theory of optical diffraction 

6.2.1 Thin samples 

As said earlier, in TGBA, TGBcll and twist tapered lattices diffraction takes 

place only for the component of the electric vector perpendicular to the twist 

axis. A general geometry for diffraction is shown in Figure 6.1. In such 

cases, if the medium is weakly heterogenous then we can ignore internal op- 

tical diffraction. Further we assume that the amplitude of the corrugation of 

the wavefront is much smaller than the wavelength of corrugation which is 

assumed to be large compared to the wavelength of light. This is the essence 

of the generalised Raman-Nath theory (RN) [I]. At any diffraction angle O 

the diffracted amplitude is given by [I] the fourier transform the corrugated 

emergent vibration i.e., 
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Wavefront 

Sm = Smectic A or C block 

Figure 6.1: The geometry for di&ction i n  TGBA or TGBcll.  I n  a twist 
tapered lattice the twist axis i s  again along z .  Here the dotted line denotes a n  
incident wavefront with E parallel to the twist axis. The solid line i s  for E 
perpendzcular to  the twist axis. 

where 

Here p, and p, are the local ordinary and the extraordinary refractive indices, 

$ ( z )  the orientation of the local director with respect to the x axis and t is the 

sample thickness perpendicular to the direction of propagation. Since p ( z )  is 

periodic with period p/2 we get diffraction peaks at 

O = + s i n - ' ( 2 r n ~ / p ~ )  



-- -- 

Here m is an integer. In principle we can experimentally extract U ( O )  both in 
\ 

amplitude and phase. Then from ( 6.1) through a Fourier inversion , we can 

get in principle, p(z) or equivalently $(z). Hence we can retrieve the director 

profile in the system. 

6.2.2 Thick samples 

When the sample is thick, internal diffractions become important and to incor- 

porate this we use the Rokushima-Yarnakita theory (RY) [2]. Here the medium 

is sliced into thin slabs and within each slab the Raman-Nath approximation 

is assumed to be valid. When a plane wavefront enters the first slab it emerges 

out of it as a corrugated wavefront. In other words, we get the light being 

diffracted into different orders. When this light enters the next slab each of 

the diffracted beam undergo further diffraction. Thus finally, in each order of 

diffraction we have many beams each due to a slab contributing to diffraction. 

All this will have to be added coherently to get the net diffracted intensity 

in any desired direction. Hence at any point, we have different components 

of the electric and magnetic fields, each due to a diffracted beam. Thus, in 

this theory the E and H vectors of the incident plane electromagnetic wave 

and the components of the dielectric tensor are expressed as Fourier sums with 

weighted coefficients. The Maxwell's equations in the RY notation become: 



Chapter 6: Optical diffraction in defect lattices 119 

with ?6 = xwlc .  Here 

are respectively the tangential and normal components of the fields at the 

interfaces. Also 4 = &(z) and i; = =;(.(z) are infinite column matrices with 

elements e;,(x) and h;,(x), m being an integer. These elements are the Fourier 

components of E; and H; respectively. The coupling matrices C and D are 

given by 

Here I 

c i  (i,j = x,y,z) are ( 2 m  + 1) x ( 2 m  + 1 )  sub-matrices with elements 

~ ; j , ~ l  = ~ ; j , ~ - l ,  the ( n  - Fourier component of E i j  



q = 2 ~ / p  and q, = n; sin P 

n; is the refractive index of the first bounding medium and P is the angle 

of incidence. The solution to the coupled-wave equations ( 6.5) and ( 6.6) 

essentially reduces to an eigenvalue problem of the matrix C. In terms of f; 

we define, 

Here T is the transformation matrix which has the eigenvectors of C as its 

columns. This transforms equation ( 6.6) to 

Here Cd is a diagnol matrix containing the eigenvalues of C. Equation ( 6.8) can 

be solved to get the components of fi. The characteristic fields corresponding 

to these solutions have their electric vectors are either in the plane of diffraction 

( T M )  or perpendicular to it (TE). The diffraction has the coupling of these 

T M  and T E  modes through C. 

6.3 Twist grain boundary smectics 

While considering diffraction from TGBS,  three different structures are 

considered. TGBA which is very much like a cholesteric and the two TGBcll 

and TGBc, structures. In TGBcl l ,  its two-fold axis parallel to the twist axis is 

rather optically analogous to TGBA . The schematic representation of TGBcll 

and TGBc, are shown in Figure 6.2. In TGBA and TGBcll the director is in 

the x - y plane and twists about z.  In TGBc, , on the other hand, the director 

is at an angle with respect to z and precess about it as we go from one smectic 

block to the next. 
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Two-fold axis perpendicular to twist axis 

- 

axis parallel to twist axis 

Figure 6.2: Schematic representation of local smectic blocks in TGBc, and 
TGBcll.  z is  the twist axis. 

Thin Samples 

Raman-nath theory which is described before is employed for thin samples of 

TGBA and TGBcll for EL polarisation. Both TGBA and TGBcll have sim- 

ilar diffraction patterns. In principle, it is possible to get the phase of the 

diffracted beams through an interference or holographic technique. Thus we 

know the amplitude as well as the phase of the diffracted beams. From Fourier 

inversion we can get p ( z )  or equivalently $ ( z ) .  From the structure of TGBS 



it is obvious that + ( z ) ,  the orientation of the local director with respect to the 

x axis is a constant along z in the smectic blocks and varies with z only in the 

(0) 

Diffraction Orders 

Fi ure 6.3: A typical diflraction pattern for El polarization of incident light. 
(a7 TGBA (or TGBc,,) and (b )  TGBc, computed for a sample thickness of 
20p. 

grain boundaries. Hence determination of $ ( z )  profile leads to an evaluation 

of the thickness of the smectic block and that of the grain boundary. Also 

this method will reveal the nature of the director twist present inside the grain 

boundary. 
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Thick Samples 

Diffraction pattern has been computed for thick samples using the RY the- 

ory. In Figure 6.3(a) we give a computed diffraction pattern of TGBA. An 

essentially similar pattern is obtained for TGBcll.  It is seen to be symmetric. 

It must be remarked that the intensity of any order is a sensitive function 

of sample thickness. Also in' TGBA or TGBcll for an incident light at  any 

Thickness of the sample (in microns) 

Figure 6.4: TGBc, : Variation of intensity of first diflracted order with thick- 
ness in El (shown in +) and Ell (shown in o)  modes for an  incident El mode 

general azimuth the central order is elliptically polarized while all the higher 

diffraction orders are nearly linearly polarized perpendicular to the twist axis. 

As in the case of thin samples, even here optical diffraction takes place when 

the incident light is polarised with its electric vector perpendicular to the twist 

axis i.e., El mode. On the other hand no diffraction takes place for incident 



light polarized parallel to the twist axis i.e., Ell mode. 

In TGBc, we get diffraction for any azimuth of the linearly polarised inci- 

dent light. Since the optical period is pp,  the pattern has extra orders which 

happen to be the odd orders of diffraction. In Figure 6.3(b) we give the 

computed diffraction pattern for TGBc, for El mode . In any given order 

the polarization is dependant on the azimuth of incident polarization and the 

thickness of the sample. We find, the intensity of the central order in the El 

mode to be always much higher than the intensity in the Ell mode. Thus the 

central order is nearly always polarised perpendicular to the twist axis i.e., it 

is of El polarisation. In the first order, for incident El mode, the diffracted 

intensity in EL is always higher than the diffracted intensity in Ell mode. 

However in a narrow range of thickness around 150p the Ell mode intensity 

of the first diffracted order is greater than that of El mode. This thickness 

dependance is shown in Figure 6.4. Thus TGBc, behaves like chiral smectic 

C in the diffraction mode [3]. 

In summary, we cannot differentiate, using diffraction optics, between T GBA 

and TGBcll. But these two can be differentiated horn TGBc, . It must be 

noted that in all these cases the diffraction pattern is symmetric. We conclude 

this section with a few remarks. If the structures are incommensurate then 

they become quaziperiodic. Then it is not possible to work out the diffraction 

pattern using RY theory. However, we can work out diffraction in thin samples 

using RN theory. Such a problem has already been addressed to by others in 

a different system [4, 51. The important result is that in such structures we 

get very many diffraction orders and each order will have to be described by a 

pair of integers. This is also true of TGBS. 
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6.4 Tapered Lattice 

6.4.1 Twist tapered lattice 

In the limit of no damping, the tapered lattice is nothing but a periodic sine 

or cosine curve associated with a soliton. Then it is similar to  a cholesteric 
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Figure 6.5: Asymmetric di f lact ion in a twist tapered lattice for incident EL 
polarisation. (a) Diffraction pattern (b) Thickness dependance in different 
orders. 

structure. In cholesteric, we get a diffraction pattern that is symmetric. How- 

ever, in the case of the tapered lattices because of the exponential damping the 

pattern is very different. To calculate the diffraction pattern of a twist tapered 

lattice we have made use of the RY theory described earlier. Diffraction of 

light results only for electric vector perpendicular to the twist axis (El). As 

already said, the light with electric vector parallel to the twist axis (Ell) does 



not give rise to any diffraction. Further, for the El polarisation, the direction 

of normal incidence of light can be at any azimuth with respect to the x axis. 

The diffraction pattern will be dependant on this azimuth. In this sense these 

structures are different from TGBS which have a cylindrical symmetry about 

the twist axis. 

In Figure 6.5, the diffraction pattern for El is shown for light incident par- 

allel to the x axis. The pattern is asymmetric. In some thickness range, the 

intensity of the central order can be much less than the intensity of the other 

higher diffracted orders. The polarisation of a particular order is a sensitive 

function of the sample thickness. 

6.4.2 Splay-bend tapered lattice 
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Thickness Thickness 

Figure 6.6: Diffraction in a splay-bend tapered lattice for a Ell polarisation 
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We consider the modulation to be along the z axis in the xz plane. Diffrac- 

tion pattern for light incident along y-axis with both for E vector parallel 

to x axis (El) and parallel to z axis (El l )  have been worked out (see Figure 

6.7(a)). The pattern for Ell  polarisation is shown in Figure 6.6. The diffrac- 

tion pattern is again asymmetric as in the case of the twist tapered lattice. 

The polarisation of the light in different orders is a sensitive function of the 

Figure 6.7: Diffraction geometn'es for the splay-bend lattice 

thickness of the sample. The central order can be of a lesser intensity than the 

other orders depending on the sample thickness. The Ell polarisation gives rise 

to strong diffraction while the El gives rise to a weak diffraction only. The 

different orders are general elliptically polarised. The ellipticity varies with 

sample thickness. 

Contrasting the diffraction features of the twist tapered lattice and the 

splay bend tapered lattice we see that though both have similar diffraction 



features, the strong diffraction in the twist tapered lattice is only for the El 

polarisation while that in the splay-bend we get it only Ell polarisation. Here 

again, we find the diffraction pattern to change with the azimuth of the direc- 

tion of the normal incidence of light with respect to the x axis. In particular 

for a direction of incidence along x-axis, Ell mode only results in diffraction. 

When E is along y axis, i.e.,for EL, we find no diffraction whatsoever, since 

the medium is homogeneous for this state (see Figure 6.7(b)). In contrast, in 

a twist tapered lattice we find no diffraction for Ell mode. 
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