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Preface 

Our work reported in this thesis concerns wave propagation and transport i11 active 

and passive disordered media. The work can essentially be divided into two parts: 

The first deals with coherent wave transport and localization in spatially random 

media and the associated statistics of fluctuations, and the second is concerned with 

the development of stochastic models t o  describe the wave propagation in terms of 

an incoherent energy transport in stochastic media. In the first part, we also discuss 

the use of an imaginary potential as a quantum 'clock' for the sojourn time of a wave 

in a scattering potential. 

In the first part (Part-A), consisting of Chapters-2, 3 and 4, we study wave prop- 

agation in spatially random media. It is well known that  the interference associated 

with coherent multiple scattering of waves (for quenched or static disorder) causes 

physical quantities such as the reflection/transmission or the conductance/resista~ice 

of a disordered sample to  become non-self-averaging (i. e., the fluctuations grow faster 

than the mean) regardless of the sample size. Thus, one needs the entire probabil- 

ity distribution over an ensemble t o  describe such quantities. In low dimensions. 

the effect of disorder on wave propagation is more drastic resulting in the localiza- 

tion of all states in one and two dimensions. This is particularly true for light, for 

which localization in higher dimensions can be accomplished only by a combinatio~l 

of strong Bragg scattering and large refractive disorder. Moreover, the Bosonic na- 

ture of light, which allows for coherent amplification and absorption, leads t o  new 

phenomena such as random lasers. In this part of the thesis, we study the statistics of 

the non-self-averaging quantities such as reflection and quantities describing the dy- 

namical aspects such as the delayldwell times of scattering from a random ~nedium. 

One of the main ideas in this thesis is that the coherent amplification/absorption. 

which preserves the temporal coherence of the wave, will also cause a concorriitarit 

scattering of the wave. Thus, we have a synergetic interplay of Anderson localizatio~i 

and coherent amplification/absorption, where the localization could be caused by the 



very scattering concomitant with a spatially fluctuating arriplification/absorytiori iri 

a medium. In Chapter 3, we define a 'clock' for the quaniturn-mccha~iical sojourn ti11ic 

in a scattering potential using coherent amplification/absorption as a niathcrriatical 

artifice, but find that we have to correct for the extra scattering conicomitarit with it. 

In the second part (Part-B), consisting of Chapters-5, 6 and 7, we develop ricw 

models for the problem of photon migration in turbid media, where we describe 

the wave propagation in a random medium as an incoherent energy transport in 

a stochastic (time varying random) medium. The underlying idea is that  under 

conditions of weak, but multiple scattering, the transport of a wave becomes almost 

diffusive and the entire process can be described as a random walk of a particle. 

This approach, originally developed in the context of radiative transfer in stellar 

atmospheres, results in a Boltzmann transport equation for the specific intensity or 

the particle flux in the phase space. However, the general analytic solutions of this 

equation are unknown even for the simplest geometries, and the diffusion equation, 

which is a good approximation for the transport equation a t  long length scales (L >> 

I * ,  where I* is the transport mean free path) is most-often used. But, the diffusion 

approximation, which is a Wiener process for the spatial co-ordinates of a particle. is 

physically unrealistic, and accounts neither for a finite mean free path nor for a finite 

and constant speed(c) of the particle, which is characteristic of light propagation in a 

random medium. It  has also been shown experimentally t o  fail to  describe phenomena 

at short length-scales (L < 101*) and short time scales (t < lot* where t* = l* /c ) .  

It is precisely these length- and time-scales that  are involved in medical imaging and 

diagnostics using laser light, and it is of importance to  develop better and alternative 

schemes to  the diffusion approximation. We develop here simple models of photo11 

migration in a stochastic medium, where the photon propagates with constant speed 

in between the scattering events. This imposition of the constraint of constant speed 

effectively incorporates a finite mean free path into the problem as well as persistence 

in the phase space. 

Below, we present a summary of the problems studied and the results obtaincd 

chapterwise. Each chapter has a self-contained introduction, which sets the back- 

ground for the material presented in that chapter. 

Chapter 1: This is an introduction to  the thesis, pertinent to  the work reported in 
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it. We review the important ideas and previous literature that are directly related to 

the problems addressed in the thesis. 

Chapter 2: ,4 mismatch in the imaginary part of the refractive index (i~riagi~iary 

potential) always causes a concomitant scattering in addition to amplification or ab- 

sorption. Pure imaginary (amplifying) potentials can cause resonant emliancement 

of the scattering coefficients, which is important for Anderson localization of light in 

higher dimensions. The probability distribution of the reflection coefficient for light 

reflected from a one-dimensional random amplifying medium with cross-correlated 

spatial disorder in the real and the imaginary parts of the refractive index is derived 

using the method of invariant imbedding. The statistics of fluctuations have been 

obtained for both the correlated telegraph noise and the Gaussian white noise mod- 

els for the disorder. In both cases, an enhanced backscattering (with a reflection 

coefficient greater than unity) results because of coherent feedback due to  Anderson 

localization and coherent amplification in the medium. The results indicate that the 

effect of randomness in the imaginary part of the refractive index on localization and 

reflection is qualitatively different. 

Chapter 3: The delay time for scattering is the most important quantity regarding 

the dynamical aspect of scattering in quantum mechanics, and one of the common 

measures for this quantity is the Wigner phase(q5) delay time (hdq5ldE). Th' is quan- 

tity, however, has certain deficiencies and alternative clocks such as precession of a 

spin in a magnetic field have been proposed. Here, we discuss a non-unitary clock, in- 

volving absorption/amplification by an added infinitesimal imaginary potential(iT.',) 

and find it not to  preserve the positivity of the conditional sojourn times, in gen- 

eral. The sojourn time is found to  be affected by the scattering concomitant with 

the mismatch, however weak, due to  the very clock potential(iV,) introduced for this 

purpose. We propose a formal procedure, separately for the cases of wave propaga- 

tion (non-tunneling at  above-the-barrier energy) and tunneling (at below-the-barrier 

energy), by which the sojourn time can be clocked ideally using the non-unitary 

counter by correcting for these spurious scattering effects. We further find that the 

conditional sojourn time for reflection is positive definite only if we agree to consider 

only those partial waves that have traversed the region of interest. This is justified in 

that the sojourn time should causally relate to the region of interest. The resulting 
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time is then positive definite for an arbitrary potential and has the proper high- and 

low-energy limits. We also discuss why the spurious effects effectively cancel out for 

a random potential. 

Chapter 4: In this Chapter, we consider the distribution of sojourn/delay tirrics 

for wave reflection from a one-dimensional random potential. We show that the so- 

journ time distribution for the reflection is related directly to that of the reflectiori 

coefficient, derived with an arbitrarily small but uniform imaginary part added to 

the random potential. The sojourn time distribution in the weak disorder-high en- 

ergy limit then follows straightforwardly from the earlier results for the reflection 

coefficient, and coincides with the distribution for the Wigner delay time obtained 

recently by other workers. All the moments of the distribution are divergent. The 

sojourn time distribution for a random amplifying medium is then derived. In this 

case, however, all the moments work out to be finite. We also correct an earlier cal- 

culation of the distribution of the Wigner delay time, where a slightly different for~ri 

of the distribution had been obtained. Further, our numerical simulations using the 

Tight Binding Hamiltonian indicate that the probability distribution obtained for 

the sojourn time using the imaginary potential and the distribution for the Wigner 

delay times coincide for both weak and strong disorder. For energies very close to the 

bandedge, however, the Wigner delay time distribution begins to  differ and beconlcs 

non-zero for negative delay times indicating a strong deformation of the incident wave 

packet. The sojourn time distribution obtained from the imaginary potential method 

displays no such behaviour, indicating that this clocks the 'literal' sojourn time of 

the wave in the potential. 

Chapter 5: Here we adapt use of the Ornstein-Uhlenbeck process of Brownian nlo- 

tion to describe photon migration in turbid media. The Ornstein-Uhlenbeck process 

of Brownian motion is able to incorporate the finiteness of the mean free path and a 

well defined root-mean-squared (rms) velocity but assuming, of course, a distribution 

of speeds. We show by a path integral approach that the finite r.m.s speed defined 

by the fluctuation-dissipation theorem for this process is a stronger global constraint 

than a weaker average constraint implemented recently by others. We have devel- 

oped approximate analytic solutions based on the mirror-image method for absorbing 

boundaries for this process. The results have been compared to Monte-Carlo sirriu- 
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lations and good agreement is found even at  short time-scales. The simplicity of the 

solution for absorbing boundaries makes it an important and useful alternative to tlic 

diffusion approximation. 

Chapter 6: Here, we develop a model in which the propagation of light in a scat- 

tering medium is described as the motion of a special kind of a Brownian particle on 

which the fluctuating forces act only perpendicular to its velocity. This strictly and 

dynamically enforces the constraint of constant speed of the photon in the medium. A 

Fokker-Planck equation is derived for the probability distribution in the phase space 

assuming the transverse fluctuating forces to be a white noise. Analytic expressions 

for the moments of the displacement < xn > along with an approximate expression for 

the marginal probability distribution function P (x ,  t )  are obtained. Exact numerical 

solutions for the phase space probability distribution have been obtained for infinite 

media, semi infinite media and slab geometries with absorbing boundary conditions. 

The results show that the velocity distribution randomizes in a time of about eight 

times the mean free time (8 t*) ,  only after which the diffusion approximation becorries 

valid. This factor of eight is a well known experimental fact. A persistence exponent 

of 0.4350zt.005 has been calculated for this process in two dimensions by numerically 

studying the survival probability of the particle in a semi-infinite medium. \Ve also 

study the case of a stochastic amplifying medium. 

Chapter 7: In this Chapter, we discuss a generalization of the Telegrapher process 

to higher dimensions, which describes the diffusion of inertial particles in a model 

phase space. In one-dimension, it is long since known that the Telegrapher equation 

describes exactly the probability distribution function in one dimension for a particle 

undergoing random scattering events and moving with constant speed between the 

scattering events. Here only two values of the velocity f c are allowed. We have 

generalized this process to higher dimensions (d 2 2 )  rigorously, where the particle 

can move only along the 2d directions of the diagonals of a d dimensional hypercube. 

Using a stochastic approach, a closed set of 2d coupled, linear, first-order, partial 

differential equations for the probability distribution function is obtained. This ad- 

mittedly artificial phase space incorporates considerable persistence in the photon 

random walks. We discuss several aspects of this model including the effects of the 

angular non-symmetry of the model that has been missed out in similiar other studies. 
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